This file is indexed.

/usr/share/pyshared/tables/flavor.py is in python-tables 2.3.1-2ubuntu3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
"""
Utilities for handling different array flavors in PyTables.

:Author: Ivan Vilata i Balaguer
:Contact: ivan at selidor dot net
:License: BSD
:Created: December 30, 2006
:Revision: $Id$

Variables
=========

`__docformat`__
    The format of documentation strings in this module.
`__version__`
    Repository version of this file.
`internal_flavor`
    The flavor used internally by PyTables.
`all_flavors`
    List of all flavors available to PyTables.
`alias_map`
    Maps old flavor names to the most similar current flavor.
`description_map`
    Maps flavors to short descriptions of their supported objects.
`identifier_map`
    Maps flavors to functions that can identify their objects.

    The function associated with a given flavor will return a true
    value if the object passed to it can be identified as being of
    that flavor.

    See the `flavor_of()` function for a friendlier interface to
    flavor identification.

`converter_map`
    Maps (source, destination) flavor pairs to converter functions.

    Converter functions get an array of the source flavor and return
    an array of the destination flavor.

    See the `array_of_flavor()` and `flavor_to_flavor()` functions for
    friendlier interfaces to flavor conversion.
"""

# Imports
# =======
import warnings

from tables.exceptions import FlavorError, FlavorWarning


# Public variables
# ================
__docformat__ = 'reStructuredText'
"""The format of documentation strings in this module."""

__version__ = '$Revision$'
"""Repository version of this file."""

internal_flavor = 'numpy'
"""The flavor used internally by PyTables."""

# This is very slightly slower than a set for a small number of values
# in terms of (infrequent) lookup time, but allows `flavor_of()`
# (which may be called much more frequently) to check for flavors in
# order, beginning with the most common one.
all_flavors = []  # filled as flavors are registered
"""List of all flavors available to PyTables."""

alias_map = {}  # filled as flavors are registered
"""Maps old flavor names to the most similar current flavor."""

description_map = {}  # filled as flavors are registered
"""Maps flavors to short descriptions of their supported objects."""

identifier_map = {}  # filled as flavors are registered
"""
Maps flavors to functions that can identify their objects.

The function associated with a given flavor will return a true value
if the object passed to it can be identified as being of that flavor.

See the `flavor_of()` function for a friendlier interface to flavor
identification.
"""

converter_map = {}  # filled as flavors are registered
"""
Maps (source, destination) flavor pairs to converter functions.

Converter functions get an array of the source flavor and return an
array of the destination flavor.

See the `array_of_flavor()` and `flavor_to_flavor()` functions for
friendlier interfaces to flavor conversion.
"""


# Public functions
# ================
def check_flavor(flavor):
    """Raise a ``FlavorError`` if the `flavor` is not valid."""
    if flavor == 'numarray':
        _numarray_deprecation()
    elif flavor == 'numeric':
        _numeric_deprecation()

    if flavor not in all_flavors:
        available_flavs = ", ".join(flav for flav in all_flavors)
        raise FlavorError(
            "flavor ``%s`` is unsupported or unavailable; "
            "available flavors in this system are: %s"
            % (flavor, available_flavs) )

def array_of_flavor2(array, src_flavor, dst_flavor):
    """
    Get a version of the given `array` in a different flavor.

    The input `array` must be of the given `src_flavor`, and the
    returned array will be of the indicated `dst_flavor`.  Both
    flavors may be the same, but it is not guaranteed that the
    returned array will be the same object as the input one in this
    case.

    If the conversion is not supported, a ``FlavorError`` is raised.
    """
    convkey = (src_flavor, dst_flavor)
    if convkey not in converter_map:
        raise FlavorError( "conversion from flavor ``%s`` to flavor ``%s`` "
                           "is unsupported or unavailable in this system"
                           % (src_flavor, dst_flavor) )

    if 'numarray' in convkey:
        _numarray_deprecation()
    if 'numeric' in convkey:
        _numeric_deprecation()

    convfunc = converter_map[convkey]
    return convfunc(array)

def flavor_to_flavor(array, src_flavor, dst_flavor):
    """
    Get a version of the given `array` in a different flavor.

    The input `array` must be of the given `src_flavor`, and the
    returned array will be of the indicated `dst_flavor` (see below
    for an exception to this).  Both flavors may be the same, but it
    is not guaranteed that the returned array will be the same object
    as the input one in this case.

    If the conversion is not supported, a `FlavorWarning` is issued
    and the input `array` is returned as is.
    """
    try:
        return array_of_flavor2(array, src_flavor, dst_flavor)
    except FlavorError, fe:
        warnings.warn( "%s; returning an object of the ``%s`` flavor instead"
                       % (fe.args[0], src_flavor), FlavorWarning )
        return array

def internal_to_flavor(array, dst_flavor):
    """
    Get a version of the given `array` in a different `dst_flavor`.

    The input `array` must be of the internal flavor, and the returned
    array will be of the given `dst_flavor`.  See `flavor_to_flavor()`
    for more information.
    """
    return flavor_to_flavor(array, internal_flavor, dst_flavor)

def array_as_internal(array, src_flavor):
    """
    Get a version of the given `array` in the internal flavor.

    The input `array` must be of the given `src_flavor`, and the
    returned array will be of the internal flavor.

    If the conversion is not supported, a ``FlavorError`` is raised.
    """
    return array_of_flavor2(array, src_flavor, internal_flavor)

def flavor_of(array):
    """
    Identify the flavor of a given `array`.

    If the `array` can not be matched with any flavor, a ``TypeError``
    is raised.
    """
    for flavor in all_flavors:
        if identifier_map[flavor](array):
            if flavor == 'numeric':
                _numeric_deprecation()
            elif flavor == 'numarray':
                _numarray_deprecation()
            return flavor
    type_name = type(array).__name__
    supported_descs = "; ".join(description_map[fl] for fl in all_flavors)
    raise TypeError(
        "objects of type ``%s`` are not supported in this context, sorry; "
        "supported objects are: %s" % (type_name, supported_descs) )

def array_of_flavor(array, dst_flavor):
    """
    Get a version of the given `array` in a different `dst_flavor`.

    The flavor of the input `array` is guessed, and the returned array
    will be of the given `dst_flavor`.

    If the conversion is not supported, a ``FlavorError`` is raised.
    """
    return array_of_flavor2(array, flavor_of(array), dst_flavor)

def restrict_flavors(keep=['python']):
    """
    Disable all flavors except those in `keep`.

    Providing an empty `keep` sequence implies disabling all flavors
    (but the internal one).  If the sequence is not specified, only
    optional flavors are disabled.

    .. Important::
       Once you disable a flavor, it can not be enabled again.
    """
    keep = set(keep).union([internal_flavor])
    remove = set(all_flavors).difference(keep)
    for flavor in remove:
        _disable_flavor(flavor)


# Flavor registration
# ===================
#
# The order in which flavors appear in `all_flavors` determines the
# order in which they will be tested for by `flavor_of()`, so place
# most frequent flavors first.
import numpy
all_flavors.append('numpy')  # this is the internal flavor

all_flavors.append('python')  # this is always supported

try:
    import numarray
    import numarray.generic
    import numarray.strings
    import numarray.records
except ImportError:
    def _numarray_deprecation():
        pass
    pass
else:
    all_flavors.append('numarray')
    def _numarray_deprecation():
        msg = 'Support for "numarray" will be removed in future versions'
        warnings.warn(msg, DeprecationWarning, stacklevel=2)

try:
    import Numeric
except ImportError:
    def _numeric_deprecation():
        pass
    pass
else:
    all_flavors.append('numeric')
    def _numeric_deprecation():
        msg = 'Support for "Numeric" will be removed in future versions'
        warnings.warn(msg, DeprecationWarning, stacklevel=2)

def _register_aliases():
    """Register aliases of *available* flavors."""
    for flavor in all_flavors:
        aliases = eval('_%s_aliases' % flavor)
        for alias in aliases:
            alias_map[alias] = flavor

def _register_descriptions():
    """Register descriptions of *available* flavors."""
    for flavor in all_flavors:
        description_map[flavor] = eval('_%s_desc' % flavor)

def _register_identifiers():
    """Register identifier functions of *available* flavors."""
    for flavor in all_flavors:
        identifier_map[flavor] = eval('_is_%s' % flavor)

def _register_converters():
    """Register converter functions between *available* flavors."""
    def identity(array):
        return array
    for src_flavor in all_flavors:
        for dst_flavor in all_flavors:
            # Converters with the same source and destination flavor
            # are used when available, since they may perform some
            # optimizations on the resulting array (e.g. making it
            # contiguous).  Otherwise, an identity function is used.
            convfunc = None
            try:
                convfunc = eval('_conv_%s_to_%s' % (src_flavor, dst_flavor))
            except NameError:
                if src_flavor == dst_flavor:
                    convfunc = identity
            if convfunc:
                converter_map[(src_flavor, dst_flavor)] = convfunc

def _register_all():
    """Register all *available* flavors."""
    _register_aliases()
    _register_descriptions()
    _register_identifiers()
    _register_converters()

def _deregister_aliases(flavor):
    """Deregister aliases of a given `flavor` (no checks)."""
    for (an_alias, a_flavor) in alias_map.items():
        if a_flavor == flavor:
            del alias_map[an_alias]

def _deregister_description(flavor):
    """Deregister description of a given `flavor` (no checks)."""
    del description_map[flavor]

def _deregister_identifier(flavor):
    """Deregister identifier function of a given `flavor` (no checks)."""
    del identifier_map[flavor]

def _deregister_converters(flavor):
    """Deregister converter functions of a given `flavor` (no checks)."""
    for flavor_pair in converter_map.keys():
        if flavor in flavor_pair:
            del converter_map[flavor_pair]

def _disable_flavor(flavor):
    """Completely disable the given `flavor` (no checks)."""
    _deregister_aliases(flavor)
    _deregister_description(flavor)
    _deregister_identifier(flavor)
    _deregister_converters(flavor)
    all_flavors.remove(flavor)


# Implementation of flavors
# =========================
_python_aliases = [
    'List', 'Tuple',
    'Int', 'Float', 'String',
    'VLString', 'Object' ]
_python_desc = ( "homogeneous list or tuple, "
                 "integer, float, complex or string" )
def _is_python(array):
    return isinstance(array, (tuple, list, int, float, complex, str))

_numpy_aliases = []
_numpy_desc = "NumPy array, record or scalar"
def _is_numpy(array):
    return isinstance(array, (numpy.ndarray, numpy.generic))

_numarray_aliases = ['NumArray', 'CharArray']
_numarray_desc = "numarray array or record"
def _is_numarray(array):
    na_array_or_record = (numarray.generic.NDArray, numarray.records.Record)
    ret = isinstance(array, na_array_or_record)
    if ret:
        _numarray_deprecation()
    return ret

_numeric_aliases = ['Numeric']
_numeric_desc = "Numeric array"
def _is_numeric(array):
    ret = isinstance(array, Numeric.ArrayType)
    if ret:
        _numeric_deprecation()
    return ret

def _numpy_contiguous(convfunc):
    """Decorate `convfunc` to return a *contiguous* NumPy array."""
    def conv_to_numpy(array):
        nparr = convfunc(array)
        if hasattr(nparr, 'flags') and not nparr.flags.contiguous:
            nparr = nparr.copy()  # copying the array makes it contiguous
        return nparr
    conv_to_numpy.__name__ = convfunc.__name__
    conv_to_numpy.__doc__ = convfunc.__doc__
    return conv_to_numpy

@_numpy_contiguous
def _conv_numpy_to_numpy(array):
    # Passes contiguous arrays through and converts scalars into
    # scalar arrays.
    return numpy.asarray(array)

@_numpy_contiguous
def _conv_numarray_to_numpy(array):
    _numarray_deprecation()
    # Homogeneous arrays.
    if isinstance(array, (numarray.NumArray, numarray.strings.CharArray)):
        return numpy.asarray(array)  # use the array protocol

    # Heterogeneous arrays and records.
    record = None
    if isinstance(array, numarray.records.Record):
        # Get a RecArray from a record
        record = array
        row = record.row
        array = record.array[row:row+1]
    if type(array) is numarray.records.RecArray:
        # Create a NestedRecArray array from the RecArray to easy the
        # conversion. This is sub-optimal and should be replaced by a
        # faster way to convert a plain RecArray into a numpy recarray.
        # F. Alted 2006-06-19
        array = nra.array(array)
    nparray = numpy.ndarray( buffer=array._data, shape=array.shape,
                             dtype=array.array_descr,
                             offset=array._byteoffset )
    if record:
        return nparray[row]  # get the NumPy record
    return nparray

@_numpy_contiguous
def _conv_numeric_to_numpy(array):
    # no need of Numeric in this case
    return numpy.asarray(array)  # use the array protocol

@_numpy_contiguous
def _conv_python_to_numpy(array):
    return numpy.array(array)

if 'numeric' in all_flavors:
    _numtype_from_nptype = {
        numpy.bool_: Numeric.UInt8,
        numpy.int8: Numeric.Int8,
        numpy.int16: Numeric.Int16,
        numpy.int32: Numeric.Int32,
        numpy.uint8: Numeric.UInt8,
        numpy.uint16: Numeric.UInt16,
        numpy.uint32: Numeric.UInt32,
        numpy.float32: Numeric.Float32,
        numpy.float64: Numeric.Float64,
        numpy.complex64: Numeric.Complex32,
        numpy.complex128: Numeric.Complex64 }
    if hasattr(Numeric, "Int64"):  # Only defined for 64-bit platforms
        _numtype_from_nptype[numpy.int64] = Numeric.Int64

def _conv_numpy_to_numeric(array):
    _numeric_deprecation()
    kind = array.dtype.kind
    if kind == 'V':
        raise FlavorError( "the ``numeric`` flavor does not support "
                           "heterogeneous arrays" )

    # It seems that the array protocol in Numeric does leak.  See
    # http://comments.gmane.org/gmane.comp.python.numeric.general/12563
    # for more info on this issue.
    ##if kind != 'S':
    ##    return Numeric.asarray(array)  # use the array protocol

    shape = array.shape
    if kind == 'S':
        if array.itemsize > 1:
            # Numeric does not support character arrays with elements
            # with a size > 1.  Simulate with an additional dimension.
            shape = shape + (array.itemsize,)
        typecode = 'c'
    else:
        # See the above note about the Numeric leak.
        typecode = _numtype_from_nptype[array.dtype.type]
    # Convert to a contiguous buffer (``tostring()`` is very efficient).
    arrstr = array.tostring()
    array = Numeric.fromstring(arrstr, typecode)
    array = Numeric.reshape(array, shape)
    return array

if 'numarray' in all_flavors:
    from tables import nra

def _conv_numpy_to_numarray(array):
    _numarray_deprecation()
    kind = array.dtype.kind
    if kind == 'S':  # homogeneous string array
        # We can't use the array protocol to do this conversion
        if array.shape == ():
            array = array.item()
        return numarray.strings.array( buffer=array, shape=array.shape,
                                       itemsize=array.itemsize, padc='\x00' )
    if kind != 'V':  # homogeneous array
        # NumPy scalars are mishandled by numarray, see #98.  This
        # case may be removed when the bug in numarray is fixed.
        if numpy.isscalar(array):
            # A problem with the ``item()`` conversion is the lose of
            # precise type information (see #125).
            natype = numpy.sctypeNA[type(array)]
            return numarray.array(array.item(), type=natype)
        # This works for regular homogeneous arrays and even for rank-0 arrays
        # Using asarray gives problems in some tests (I don't know exactly why)
        ##return numarray.asarray(array)  # use the array protocol
        return numarray.array(array)  # use the array protocol (with copy)

    # For the remaining heterogeneous arrays and records, leave the
    # task to ``nra``.
    return nra.fromnumpy(array)

def _conv_numpy_to_python(array):
    if array.shape != ():
        # Lists are the default for returning multidimensional objects
        array = array.tolist()
    else:
        # 0-dim or scalar case
        array = array.item()
    return array

# Now register everything related with *available* flavors.
_register_all()


# Main part
# =========
def _test():
    """Run ``doctest`` on this module."""
    import doctest
    doctest.testmod()

if __name__ == '__main__':
    _test()