/usr/share/pyshared/tables/file.py is in python-tables 2.3.1-2ubuntu3.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 | ########################################################################
#
# License: BSD
# Created: September 4, 2002
# Author: Francesc Alted - faltet@pytables.com
#
# $Id$
#
########################################################################
"""Create PyTables files and the object tree.
This module support importing generic HDF5 files, on top of which
PyTables files are created, read or extended. If a file exists, an
object tree mirroring their hierarchical structure is created in
memory. File class offer methods to traverse the tree, as well as to
create new nodes.
Classes:
File
Functions:
copyFile(srcfilename, dstfilename[, overwrite][, **kwargs])
openFile(name[, mode][, title][, rootUEP][, filters][, **kwargs])
Misc variables:
__version__
format_version
compatible_formats
"""
import warnings
import time
import os, os.path
import sys
import weakref
import numexpr
import tables.misc.proxydict
from tables import hdf5Extension
from tables import utilsExtension
from tables import parameters
from tables.exceptions import \
ClosedFileError, FileModeError, \
NodeError, NoSuchNodeError, UndoRedoError, \
UndoRedoWarning, PerformanceWarning, Incompat16Warning
from tables.registry import getClassByName
from tables.path import joinPath, splitPath, isVisiblePath
from tables import undoredo
from tables.description import IsDescription, UInt8Col, StringCol
from tables.filters import Filters
from tables.node import Node, NotLoggedMixin
from tables.group import Group, RootGroup
from tables.group import TransactionGroupG, TransactionG, MarkG
from tables.leaf import Leaf
from tables.array import Array
from tables.carray import CArray
from tables.earray import EArray
from tables.vlarray import VLArray
from tables.table import Table
from tables import linkExtension
from utils import detectNumberOfCores
try:
from tables import lrucacheExtension
except ImportError:
from tables.misc import lrucache
_LRUCache = lrucache.LRUCache
else:
_LRUCache = lrucacheExtension.NodeCache
from tables.link import SoftLink
try:
from tables.link import ExternalLink
except ImportError:
are_extlinks_available = False
else:
are_extlinks_available = True
__version__ = "$Revision$"
#format_version = "1.0" # Initial format
#format_version = "1.1" # Changes in ucl compression
#format_version = "1.2" # Support for enlargeable arrays and VLA's
# # 1.2 was introduced in PyTables 0.8
#format_version = "1.3" # Support for indexes in Tables
# # 1.3 was introduced in PyTables 0.9
#format_version = "1.4" # Support for multidimensional attributes
# # 1.4 was introduced in PyTables 1.1
#format_version = "1.5" # Support for persistent defaults in tables
# # 1.5 was introduced in PyTables 1.2
#format_version = "1.6" # Support for NumPy objects and new flavors for objects
# # 1.6 was introduced in pytables 1.3
format_version = "2.0" # Pickles are not used anymore in system attrs
# 2.0 was introduced in PyTables 2.0
compatible_formats = [] # Old format versions we can read
# Empty means that we support all the old formats
# Dict of opened files (keys are filenames and values filehandlers)
_open_files = {}
# Opcodes for do-undo actions
_opToCode = {
"MARK": 0,
"CREATE": 1,
"REMOVE": 2,
"MOVE": 3,
"ADDATTR": 4,
"DELATTR": 5,
}
_codeToOp = ["MARK", "CREATE", "REMOVE", "MOVE", "ADDATTR", "DELATTR"]
# Paths and names for hidden nodes related with transactions.
_transVersion = '1.0'
_transGroupParent = '/'
_transGroupName = '_p_transactions'
_transGroupPath = joinPath(_transGroupParent, _transGroupName)
_actionLogParent = _transGroupPath
_actionLogName = 'actionlog'
_actionLogPath = joinPath(_actionLogParent, _actionLogName)
_transParent = _transGroupPath
_transName = 't%d' # %d -> transaction number
_transPath = joinPath(_transParent, _transName)
_markParent = _transPath
_markName = 'm%d' # %d -> mark number
_markPath = joinPath(_markParent, _markName)
_shadowParent = _markPath
_shadowName = 'a%d' # %d -> action number
_shadowPath = joinPath(_shadowParent, _shadowName)
def _checkfilters(filters):
if not (filters is None or
isinstance(filters, Filters)):
raise TypeError, "filter parameter has to be None or a Filter instance and the passed type is: '%s'" % type(filters)
def copyFile(srcfilename, dstfilename, overwrite=False, **kwargs):
"""
An easy way of copying one PyTables file to another.
This function allows you to copy an existing PyTables file named
`srcfilename` to another file called `dstfilename`. The source file
must exist and be readable. The destination file can be overwritten
in place if existing by asserting the `overwrite` argument.
This function is a shorthand for the `File.copyFile()` method, which
acts on an already opened file. `kwargs` takes keyword arguments
used to customize the copying process. See the documentation of
`File.copyFile()` for a description of those arguments.
"""
# Open the source file.
srcFileh = openFile(srcfilename, mode="r")
try:
# Copy it to the destination file.
srcFileh.copyFile(dstfilename, overwrite=overwrite, **kwargs)
finally:
# Close the source file.
srcFileh.close()
def openFile(filename, mode="r", title="", rootUEP="/", filters=None,
**kwargs):
"""Open an HDF5 file and return a File object.
Arguments:
`filename` -- The name of the file (supports environment variable
expansion). It is suggested that file names have any of the
``.h5``, ``.hdf`` or ``.hdf5`` extensions, although this is not
mandatory.
`mode` -- The mode to open the file. It can be one of the
following:
``'r'``
Read-only; no data can be modified.
``'w``'
Write; a new file is created (an existing file with the same
name would be deleted).
``'a'``
Append; an existing file is opened for reading and writing,
and if the file does not exist it is created.
``'r+'``
It is similar to ``'a'``, but the file must already exist.
`title` -- If the file is to be created, a ``TITLE`` string
attribute will be set on the root group with the given value.
Otherwise, the title will be read from disk, and this will not
have any effect.
`rootUEP` -- The root User Entry Point. This is a group in the HDF5
hierarchy which will be taken as the starting point to create
the object tree. It can be whatever existing group in the file,
named by its HDF5 path. If it does not exist, an `HDF5ExtError`
is issued. Use this if you do not want to build the *entire*
object tree, but rather only a *subtree* of it.
`filters` -- An instance of the `Filters` class that provides
information about the desired I/O filters applicable to the
leaves that hang directly from the *root group*, unless other
filter properties are specified for these leaves. Besides, if
you do not specify filter properties for child groups, they will
inherit these ones, which will in turn propagate to child nodes.
In addition, it recognizes the names of parameters present in
``tables/parameters.py`` as additional keyword arguments. Check the
suitable appendix in User's Guide for a detailed info on the supported
parameters.
"""
# Get the list of already opened files
ofiles = [fname for fname in _open_files]
if filename in ofiles:
filehandle = _open_files[filename]
omode = filehandle.mode
# 'r' is incompatible with everything except 'r' itself
if mode == 'r' and omode != 'r':
raise ValueError(
"The file '%s' is already opened, but "
"not in read-only mode (as requested)." % filename)
# 'a' and 'r+' are compatible with everything except 'r'
elif mode in ('a', 'r+') and omode == 'r':
raise ValueError(
"The file '%s' is already opened, but "
"in read-only mode. Please close it before "
"reopening in append mode." % filename)
# 'w' means that we want to destroy existing contents
elif mode == 'w':
raise ValueError(
"The file '%s' is already opened. Please "
"close it before reopening in write mode." % filename)
else:
# The file is already open and modes are compatible
# Increase the number of openings for this file
filehandle._open_count += 1
return filehandle
# Finally, create the File instance, and return it
return File(filename, mode, title, rootUEP, filters, **kwargs)
class _AliveNodes(dict):
"""Stores strong or weak references to nodes in a transparent way."""
def __init__(self, nodeCacheSlots):
if nodeCacheSlots > 0:
self.hasdeadnodes = True
else:
self.hasdeadnodes = False
if nodeCacheSlots >= 0:
self.hassoftlinks = True
else:
self.hassoftlinks = False
self.nodeCacheSlots = nodeCacheSlots
super(_AliveNodes, self).__init__()
def __getitem__(self, key):
if self.hassoftlinks:
ref = super(_AliveNodes, self).__getitem__(key)()
else:
ref = super(_AliveNodes, self).__getitem__(key)
return ref
def __setitem__(self, key, value):
if self.hassoftlinks:
ref = weakref.ref(value)
else:
ref = value
# Check if we are running out of space
if self.nodeCacheSlots < 0 and len(self) > -self.nodeCacheSlots:
warnings.warn("""\
the dictionary of alive nodes is exceeding the recommended maximum number (%d); \
be ready to see PyTables asking for *lots* of memory and possibly slow I/O."""
% (-self.nodeCacheSlots),
PerformanceWarning)
super(_AliveNodes, self).__setitem__(key, ref)
class _DeadNodes(_LRUCache):
pass
# A dumb class that doesn't keep nothing at all
class _NoDeadNodes(object):
def __len__(self):
return 0
def __contains__(self, key):
return False
def __iter__(self):
return iter([])
class _NodeDict(tables.misc.proxydict.ProxyDict):
"""
A proxy dictionary which is able to delegate access to missing items
to the container object (a `File`).
"""
def _getValueFromContainer(self, container, key):
return container.getNode(key)
def _condition(self, node):
"""Nodes fulfilling the condition are considered to belong here."""
raise NotImplementedError
def __len__(self):
nnodes = 0
for nodePath in self.iterkeys():
nnodes += 1
return nnodes
class File(hdf5Extension.File, object):
"""
In-memory representation of a PyTables file.
An instance of this class is returned when a PyTables file is opened
with the `openFile()` function. It offers methods to manipulate
(create, rename, delete...) nodes and handle their attributes, as
well as methods to traverse the object tree. The *user entry point*
to the object tree attached to the HDF5 file is represented in the
``rootUEP`` attribute. Other attributes are available.
`File` objects support an *Undo/Redo mechanism* which can be enabled
with the `enableUndo()` method. Once the Undo/Redo mechanism is
enabled, explicit *marks* (with an optional unique name) can be set
on the state of the database using the `mark()` method. There are
two implicit marks which are always available: the initial mark (0)
and the final mark (-1). Both the identifier of a mark and its name
can be used in *undo* and *redo* operations.
Hierarchy manipulation operations (node creation, movement and
removal) and attribute handling operations (attribute setting and
deleting) made after a mark can be undone by using the `undo()`
method, which returns the database to the state of a past mark. If
`undo()` is not followed by operations that modify the hierarchy or
attributes, the `redo()` method can be used to return the database
to the state of a future mark. Else, future states of the database
are forgotten.
Please note that data handling operations can not be undone nor
redone by now. Also, hierarchy manipulation operations on nodes
that do not support the Undo/Redo mechanism issue an
`UndoRedoWarning` *before* changing the database.
The Undo/Redo mechanism is persistent between sessions and can only
be disabled by calling the `disableUndo()` method.
File objects can also act as context managers when using the
``with`` statement introduced in Python 2.5. When exiting a
context, the file is automatically closed.
Public instance variables
-------------------------
filename
The name of the opened file.
format_version
The PyTables version number of this file.
isopen
True if the underlying file is open, false otherwise.
mode
The mode in which the file was opened.
title
The title of the root group in the file.
rootUEP
The UEP (user entry point) group in the file (see the
`openFile()` function).
filters
Default filter properties for the root group (see the `Filters`
class).
root
The *root* of the object tree hierarchy (a `Group` instance).
Public methods -- file handling
-------------------------------
* close()
* copyFile(dstfilename[, overwrite][, **kwargs])
* flush()
* fileno()
* __enter__()
* __exit__([*exc_info])
* __str__()
* __repr__()
Public methods -- hierarchy manipulation
----------------------------------------
* copyChildren(srcgroup, dstgroup[, overwrite][, recursive]
[, **kwargs])
* copyNode(where, newparent, newname[, name][, overwrite]
[, recursive][, **kwargs])
* createArray(where, name, array[, title][, byteorder][, createparents])
* createCArray(where, name, atom, shape [, title][, filters]
[, chunkshape][, byteorder][, createparents])
* createEArray(where, name, atom, shape [, title][, filters]
[, expectedrows][, chunkshape][, byteorder]
[, createparents])
* createGroup(where, name[, title][, filters][, createparents])
* createTable(where, name, description[, title][, filters]
[, expectedrows][, chunkshape][, byteorder][, createparents])
* createVLArray(where, name, atom[, title][, filters]
[, expectedsizeinMB][, chunkshape][, byteorder]
[, createparents])
* moveNode(where, newparent, newname[, name][, overwrite])
* removeNode(where[, name][, recursive])
* renameNode(where, newname[, name][, overwrite])
Public methods -- tree traversal
--------------------------------
* getNode(where[, name][,classname])
* isVisibleNode(path)
* iterNodes(where[, classname])
* listNodes(where[, classname])
* walkGroups([where])
* walkNodes([where][, classname])
* __contains__(path)
* __iter__()
Public methods -- Undo/Redo support
-----------------------------------
* disableUndo()
* enableUndo([filters])
* getCurrentMark()
* goto(mark)
* isUndoEnabled()
* mark([name])
* redo([mark])
* undo([mark])
Public methods -- attribute handling
------------------------------------
* copyNodeAttrs(where, dstnode[, name])
* delNodeAttr(where, attrname[, name])
* getNodeAttr(where, attrname[, name])
* setNodeAttr(where, attrname, attrvalue[, name])
"""
## <class variables>
# The top level kinds. Group must go first!
_node_kinds = ('Group', 'Leaf', 'Link', 'Unknown')
## </class variables>
## <properties>
def _gettitle(self):
return self.root._v_title
def _settitle(self, title):
self.root._v_title = title
def _deltitle(self):
del self.root._v_title
title = property(
_gettitle, _settitle, _deltitle,
"The title of the root group in the file.")
def _getfilters(self):
return self.root._v_filters
def _setfilters(self, filters):
self.root._v_filters = filters
def _delfilters(self):
del self.root._v_filters
filters = property(
_getfilters, _setfilters, _delfilters,
"Default filter properties for the root group "
"(see the `Filters` class).")
open_count = property(
lambda self: self._open_count, None, None,
"The number of times this file has been opened currently.")
## </properties>
def __init__(self, filename, mode="r", title="",
rootUEP="/", filters=None, **kwargs):
"""Open an HDF5 file.
See `openFile()` for info about the parameters.
"""
self.filename = filename
self.mode = mode
# Expand the form '~user'
path = os.path.expanduser(filename)
# Expand the environment variables
path = os.path.expandvars(path)
# Get all the parameters in parameter file(s)
params = dict([(k, v) for k,v in parameters.__dict__.iteritems()
if k.isupper() and not k.startswith('_')])
# Update them with possible keyword arguments
params.update(kwargs)
# If MAX_THREADS is not set yet, set it to the number of cores
# on this machine.
if params['MAX_THREADS'] is None:
params['MAX_THREADS'] = detectNumberOfCores()
self.params = params
# Now, it is time to initialize the File extension
self._g_new(filename, mode, **params)
# Check filters and set PyTables format version for new files.
new = self._v_new
if new:
_checkfilters(filters)
self.format_version = format_version
# Nodes referenced by a variable are kept in `_aliveNodes`.
# When they are no longer referenced, they move themselves
# to `_deadNodes`, where they are kept until they are referenced again
# or they are preempted from it by other unreferenced nodes.
nodeCacheSlots = params['NODE_CACHE_SLOTS']
self._aliveNodes = _AliveNodes(nodeCacheSlots)
if nodeCacheSlots > 0:
self._deadNodes = _DeadNodes(nodeCacheSlots)
else:
self._deadNodes = _NoDeadNodes()
# For the moment Undo/Redo is not enabled.
self._undoEnabled = False
# Set the flag to indicate that the file has been opened.
# It must be set before opening the root group
# to allow some basic access to its attributes.
self.isopen = 1
# Append the name of the file to the global dict of files opened.
_open_files[self.filename] = self
# Set the number of times this file has been opened to 1
self._open_count = 1
# Get the root group from this file
self.root = root = self.__getRootGroup(rootUEP, title, filters)
# Complete the creation of the root node
# (see the explanation in ``RootGroup.__init__()``.
root._g_postInitHook()
# Save the PyTables format version for this file.
if new:
if params['PYTABLES_SYS_ATTRS']:
root._v_attrs._g__setattr(
'PYTABLES_FORMAT_VERSION', format_version)
# If the file is old, and not opened in "read-only" mode,
# check if it has a transaction log
if not new and self.mode != "r" and _transGroupPath in self:
# It does. Enable the undo.
self.enableUndo()
# Set the maximum number of threads for Numexpr
numexpr.set_vml_num_threads(params['MAX_THREADS'])
def __getRootGroup(self, rootUEP, title, filters):
"""Returns a Group instance which will act as the root group
in the hierarchical tree. If file is opened in "r", "r+" or
"a" mode, and the file already exists, this method dynamically
builds a python object tree emulating the structure present on
file."""
self._v_objectID = self._getFileId()
if rootUEP in [None, ""]:
rootUEP = "/"
# Save the User Entry Point in a variable class
self.rootUEP=rootUEP
new = self._v_new
# Get format version *before* getting the object tree
if not new:
# Firstly, get the PyTables format version for this file
self.format_version = utilsExtension.read_f_attr(
self._v_objectID, 'PYTABLES_FORMAT_VERSION')
if not self.format_version:
# PYTABLES_FORMAT_VERSION attribute is not present
self.format_version = "unknown"
self._isPTFile = False
# Create new attributes for the root Group instance and
# create the object tree
return RootGroup(self, rootUEP, title=title, new=new, filters=filters)
def _getOrCreatePath(self, path, create):
"""
Get the given `path` or create it if `create` is true.
If `create` is true, `path` *must* be a string path and not a
node, otherwise a `TypeError`will be raised.
"""
if create:
return self._createPath(path)
else:
return self.getNode(path)
def _createPath(self, path):
"""
Create the groups needed for the `path` to exist.
The group associated with the given `path` is returned.
"""
if not hasattr(path, 'split'):
raise TypeError("when creating parents, parent must be a path")
if path == '/':
return self.root
parent, createGroup = self.root, self.createGroup
for pcomp in path.split('/')[1:]:
try:
child = parent._f_getChild(pcomp)
except NoSuchNodeError:
child = createGroup(parent, pcomp)
parent = child
return parent
def createGroup(self, where, name, title="", filters=None,
createparents=False):
"""
Create a new group with the given `name` in `where` location.
See the `Group` class for more information on groups.
`filters`
An instance of the `Filters` class that provides information
about the desired I/O filters applicable to the leaves that
hang directly from this new group (unless other filter
properties are specified for these leaves). Besides, if you
do not specify filter properties for its child groups, they
will inherit these ones.
See `File.createTable()` for more information on the rest of
parameters.
"""
parentNode = self._getOrCreatePath(where, createparents)
_checkfilters(filters)
return Group(parentNode, name,
title=title, new=True, filters=filters)
def createTable(self, where, name, description, title="",
filters=None, expectedrows=10000,
chunkshape=None, byteorder=None,
createparents=False):
"""
Create a new table with the given `name` in `where` location.
See the `Table` class for more information on tables.
`where`
The parent group where the new table will hang from. It can
be a path string (for example '/level1/leaf5'), or a `Group`
instance.
`name`
The name of the new table.
`description`
This is an object that describes the table, i.e. how many
columns it has, their names, types, shapes, etc. It can be
any of the following:
A user-defined class
This should inherit from the `IsDescription` class where
table fields are specified.
A dictionary
For example, when you do not know beforehand which
structure your table will have.
A `Description` instance
You can use the ``description`` attribute of another
table to create a new one with the same structure.
A NumPy dtype
A completely general structured NumPy dtype.
A NumPy (record) array
The dtype of this record array will be used as the
description. Also, in case the array has actual data,
it will be injected into the newly created table.
A ``RecArray`` instance
Object from the ``numarray`` package. This does not
give you the possibility to create a nested table.
Array data is injected into the new table.
A ``NestedRecArray`` instance
If you want to have nested columns in your table and you
are using ``numarray``, you can use this object. Array
data is injected into the new table.
`title`
A description for this node (it sets the ``TITLE`` HDF5
attribute on disk).
`filters`
An instance of the `Filters` class that provides information
about the desired I/O filters to be applied during the life
of this object.
`expectedrows`
A user estimate about the number of rows that will be in the
table. If not provided, the default value is appropriate
for tables up to 10 MB in size (more or less). If you plan
to create a bigger table try providing a guess; this will
optimize the HDF5 B-Tree creation and management process
time and the amount of memory used. If you want to specify
your own chunk size for I/O purposes, see also the
`chunkshape` parameter below.
`chunkshape`
The shape of the data chunk to be read or written in a
single HDF5 I/O operation. Filters are applied to those
chunks of data. The rank of the `chunkshape` for tables
must be 1. If ``None``, a sensible value is calculated
(which is recommended).
`byteorder`
The byteorder of data *on disk*, specified as 'little' or
'big'. If this is not specified, the byteorder is that of
the platform, unless you passed an array as the
`description`, in which case its byteorder will be used.
`createparents`
Whether to create the needed groups for the parent path to
exist (not done by default).
"""
parentNode = self._getOrCreatePath(where, createparents)
if description is None:
raise ValueError("invalid table description: None")
_checkfilters(filters)
return Table(parentNode, name,
description=description, title=title,
filters=filters, expectedrows=expectedrows,
chunkshape=chunkshape, byteorder=byteorder)
def createArray(self, where, name, object, title="",
byteorder=None, createparents=False):
"""
Create a new array with the given `name` in `where` location.
See the `Array` class for more information on arrays.
`object`
The array or scalar to be saved. Accepted types are NumPy
arrays and scalars, ``numarray`` arrays and string arrays,
Numeric arrays and scalars, as well as native Python
sequences and scalars, provided that values are regular
(i.e. they are not like ``[[1,2],2]``) and homogeneous
(i.e. all the elements are of the same type).
Also, objects that have some of their dimensions equal to 0
are not supported (use an `EArray` node if you want to store
an array with one of its dimensions equal to 0).
`byteorder`
The byteorder of the data *on disk*, specified as 'little'
or 'big'. If this is not specified, the byteorder is that
of the given `object`.
See `File.createTable()` for more information on the rest of
parameters.
"""
parentNode = self._getOrCreatePath(where, createparents)
return Array(parentNode, name,
object=object, title=title, byteorder=byteorder)
def createCArray(self, where, name, atom, shape, title="",
filters=None, chunkshape=None,
byteorder=None, createparents=False):
"""
Create a new chunked array with the given `name` in `where`
location. See the `CArray` class for more information on
chunked arrays.
`atom`
An `Atom` instance representing the *type* and *shape* of
the atomic objects to be saved.
`shape`
The shape of the new array.
`chunkshape`
The shape of the data chunk to be read or written in a
single HDF5 I/O operation. Filters are applied to those
chunks of data. The dimensionality of `chunkshape` must be
the same as that of `shape`. If ``None``, a sensible value
is calculated (which is recommended).
See `File.createTable()` for more information on the rest of
parameters.
"""
parentNode = self._getOrCreatePath(where, createparents)
_checkfilters(filters)
return CArray(parentNode, name,
atom=atom, shape=shape, title=title, filters=filters,
chunkshape=chunkshape, byteorder=byteorder)
def createEArray(self, where, name, atom, shape, title="",
filters=None, expectedrows=1000,
chunkshape=None, byteorder=None,
createparents=False):
"""
Create a new enlargeable array with the given `name` in `where`
location. See the `EArray` class for more information on
enlargeable arrays.
`atom`
An `Atom` instance representing the *type* and *shape* of
the atomic objects to be saved.
`shape`
The shape of the new array. One (and only one) of the shape
dimensions *must* be 0. The dimension being 0 means that
the resulting `EArray` object can be extended along it.
Multiple enlargeable dimensions are not supported right now.
`expectedrows`
A user estimate about the number of row elements that will
be added to the growable dimension in the `EArray` node. If
not provided, the default value is 1000 rows. If you plan
to create either a much smaller or a much bigger array try
providing a guess; this will optimize the HDF5 B-Tree
creation and management process time and the amount of
memory used. If you want to specify your own chunk size for
I/O purposes, see also the `chunkshape` parameter below.
`chunkshape`
The shape of the data chunk to be read or written in a
single HDF5 I/O operation. Filters are applied to those
chunks of data. The dimensionality of `chunkshape` must be
the same as that of `shape` (beware: no dimension should be
0 this time!). If ``None``, a sensible value is calculated
(which is recommended).
`byteorder`
The byteorder of the data *on disk*, specified as 'little'
or 'big'. If this is not specified, the byteorder is that
of the platform.
See `File.createTable()` for more information on the rest of
parameters.
"""
parentNode = self._getOrCreatePath(where, createparents)
_checkfilters(filters)
return EArray(parentNode, name,
atom=atom, shape=shape, title=title,
filters=filters, expectedrows=expectedrows,
chunkshape=chunkshape, byteorder=byteorder)
def createVLArray(self, where, name, atom, title="",
filters=None, expectedsizeinMB=1.0,
chunkshape=None, byteorder=None,
createparents=False):
"""
Create a new variable-length array with the given `name` in
`where` location. See the `VLArray` class for more information
on variable-length arrays.
`atom`
An `Atom` instance representing the *type* and *shape* of
the atomic objects to be saved.
`expectedsizeinMB`
An user estimate about the size (in MB) of the final
`VLArray` node. If not provided, the default value is 1 MB.
If you plan to create either a much smaller or a much bigger
array try providing a guess; this will optimize the HDF5
B-Tree creation and management process time and the amount
of memory used. If you want to specify your own chunk size
for I/O purposes, see also the `chunkshape` parameter below.
`chunkshape`
The shape of the data chunk to be read or written in a
single HDF5 I/O operation. Filters are applied to those
chunks of data. The dimensionality of `chunkshape` must be
1. If ``None``, a sensible value is calculated (which is
recommended).
See `File.createTable()` for more information on the rest of
parameters.
"""
parentNode = self._getOrCreatePath(where, createparents)
_checkfilters(filters)
return VLArray(parentNode, name,
atom=atom, title=title, filters=filters,
expectedsizeinMB=expectedsizeinMB,
chunkshape=chunkshape, byteorder=byteorder)
def createHardLink(self, where, name, target, createparents=False):
"""
Create a hard link to a `target` node with the given `name` in
`where` location. `target` can be a node object or a path
string. If `createparents` is true, the intermediate groups
required for reaching `where` are created (the default is not
doing so).
The returned node is a regular `Group` or `Leaf` instance.
"""
targetNode = self.getNode(target)
parentNode = self._getOrCreatePath(where, createparents)
linkExtension._g_createHardLink(parentNode, name, targetNode)
# Refresh children names in link's parent node
parentNode._g_addChildrenNames()
# Return the target node
return self.getNode(parentNode, name)
def createSoftLink(self, where, name, target, createparents=False):
"""
Create a soft link (aka symbolic link) to a `target` node with
the given `name` in `where` location. `target` can be a node
object or a path string. If `createparents` is true, the
intermediate groups required for reaching `where` are created
(the default is not doing so).
The returned node is a `SoftLink` instance. See the `SoftLink`
class for more information on soft links.
"""
if type(target) is not str:
if hasattr(target, '_v_pathname'): # quacks like a Node
target = target._v_pathname
else:
raise ValueError("`target` has to be a string or a node object")
parentNode = self._getOrCreatePath(where, createparents)
slink = SoftLink(parentNode, name, target)
# Refresh children names in link's parent node
parentNode._g_addChildrenNames()
return slink
def createExternalLink(self, where, name, target, createparents=False,
warn16incompat=True):
"""
Create an external link to a `target` node with the given `name`
in `where` location. `target` can be a node object in another
file or a path string in the form 'file:/path/to/node'. If
`createparents` is true, the intermediate groups required for
reaching `where` are created (the default is not doing so).
The purpose of the `warn16incompat` argument is to avoid an
`Incompat16Warning` (see below). The default is to issue the
warning.
The returned node is an `ExternalLink` instance. See the
`SoftLink` class for more information on external links.
.. Warning:: External links are only supported when PyTables is
compiled against HDF5 1.8.x series. When using PyTables with
HDF5 1.6.x, the *parent* group containing external link
objects will be mapped to an `Unknown` instance and you won't
be able to access *any* node hanging of this parent group.
It follows that if the parent group containing the external
link is the root group, you won't be able to read *any*
information contained in the file when using HDF5 1.6.x.
"""
if not are_extlinks_available:
raise NotImplementedError(
"External links are not available when using HDF5 1.6.x")
if warn16incompat:
warnings.warn("""\
external links are only supported when PyTables is compiled against HDF5 1.8.x series and they, and their parent groups, are unreadable with HDF5 1.6.x series. You can set `warn16incompat` argument to false to disable this warning.""",
Incompat16Warning)
if type(target) is not str:
if hasattr(target, '_v_pathname'): # quacks like a Node
target = target._v_file.filename+':'+target._v_pathname
else:
raise ValueError("`target` has to be a string or a node object")
elif target.find(':/') == -1:
raise ValueError(
"`target` must expressed as 'file:/path/to/node'")
parentNode = self._getOrCreatePath(where, createparents)
elink = ExternalLink(parentNode, name, target)
# Refresh children names in link's parent node
parentNode._g_addChildrenNames()
return elink
# There is another version of _getNode in Pyrex space, but only
# marginally faster (5% or less, but sometimes slower!) than this one.
# So I think it is worth to use this one instead (much easier to debug).
def _getNode(self, nodePath):
# The root node is always at hand.
if nodePath == '/':
return self.root
aliveNodes = self._aliveNodes
deadNodes = self._deadNodes
if nodePath in aliveNodes:
# The parent node is in memory and alive, so get it.
node = aliveNodes[nodePath]
assert node is not None, \
"stale weak reference to dead node ``%s``" % nodePath
return node
if nodePath in deadNodes:
# The parent node is in memory but dead, so revive it.
node = self._reviveNode(nodePath)
return node
# The node has not been found in alive or dead nodes.
# Open it directly from disk.
node = self.root._g_loadChild(nodePath)
return node
def getNode(self, where, name=None, classname=None):
"""
Get the node under `where` with the given `name`.
`where` can be a `Node` instance or a path string leading to a
node. If no `name` is specified, that node is returned.
If a `name` is specified, this must be a string with the name of
a node under `where`. In this case the `where` argument can
only lead to a `Group` instance (else a `TypeError` is raised).
The node called `name` under the group `where` is returned.
In both cases, if the node to be returned does not exist, a
`NoSuchNodeError` is raised. Please note that hidden nodes are
also considered.
If the `classname` argument is specified, it must be the name of
a class derived from `Node`. If the node is found but it is not
an instance of that class, a `NoSuchNodeError` is also raised.
"""
self._checkOpen()
# For compatibility with old default arguments.
if name == '':
name = None
# Get the parent path (and maybe the node itself).
if isinstance(where, Node):
node = where
node._g_checkOpen() # the node object must be open
nodePath = where._v_pathname
elif isinstance(where, basestring):
node = None
if where.startswith('/'):
nodePath = where
else:
raise NameError(
"``where`` must start with a slash ('/')")
else:
raise TypeError(
"``where`` is not a string nor a node: %r" % (where,))
# Get the name of the child node.
if name is not None:
node = None
nodePath = joinPath(nodePath, name)
assert node is None or node._v_pathname == nodePath
# Now we have the definitive node path, let us try to get the node.
if node is None:
node = self._getNode(nodePath)
# Finally, check whether the desired node is an instance
# of the expected class.
if classname:
class_ = getClassByName(classname)
if not isinstance(node, class_):
nPathname = node._v_pathname
nClassname = node.__class__.__name__
# This error message is right since it can never be shown
# for ``classname in [None, 'Node']``.
raise NoSuchNodeError(
"could not find a ``%s`` node at ``%s``; "
"instead, a ``%s`` node has been found there"
% (classname, nPathname, nClassname))
return node
def isVisibleNode(self, path):
"""
Is the node under `path` visible?
If the node does not exist, a ``NoSuchNodeError`` is raised.
"""
# ``util.isVisiblePath()`` is still recommended for internal use.
return self.getNode(path)._f_isVisible()
def renameNode(self, where, newname, name=None, overwrite=False):
"""
Change the name of the node specified by `where` and `name` to
`newname`.
`where`, `name`
These arguments work as in `File.getNode()`, referencing the
node to be acted upon.
`newname`
The new name to be assigned to the node (a string).
`overwrite`
Whether to recursively remove a node with the same `newname`
if it already exists (not done by default).
"""
obj = self.getNode(where, name=name)
obj._f_rename(newname, overwrite)
def moveNode(self, where, newparent=None, newname=None, name=None,
overwrite=False, createparents=False):
"""
Move the node specified by `where` and `name` to
``newparent/newname``.
`where`, `name`
These arguments work as in `File.getNode()`, referencing the
node to be acted upon.
`newparent`
The destination group that the node will be moved into (a
path name or a `Group` instance). If it is not specified or
``None``, the current parent group is chosen as the new
parent.
`newname`
The name to be assigned to the node in its destination (a
string). If it is not specified or ``None``, the current
name is chosen as the new name.
See `Node._f_move()` for further details on the semantics of
moving nodes.
"""
obj = self.getNode(where, name=name)
obj._f_move(newparent, newname, overwrite, createparents)
def copyNode(self, where, newparent=None, newname=None, name=None,
overwrite=False, recursive=False, createparents=False,
**kwargs):
"""
Copy the node specified by `where` and `name` to
``newparent/newname``.
`where`, `name`
These arguments work as in `File.getNode()`, referencing the
node to be acted upon.
`newparent`
The destination group that the node will be copied into (a
path name or a `Group` instance). If not specified or
``None``, the current parent group is chosen as the new
parent.
`newname`
The name to be assigned to the new copy in its destination
(a string). If it is not specified or ``None``, the current
name is chosen as the new name.
Additional keyword arguments may be passed to customize the
copying process. The supported arguments depend on the kind of
node being copied. See `Group._f_copy()` and `Leaf.copy()` for
more information on their allowed keyword arguments.
This method returns the newly created copy of the source node
(i.e. the destination node). See `Node._f_copy()` for further
details on the semantics of copying nodes.
"""
obj = self.getNode(where, name=name)
if obj._v_depth == 0 and newparent and not newname:
npobj = self.getNode(newparent)
if obj._v_file is not npobj._v_file:
# Special case for copying file1:/ --> file2:/path
self.root._f_copyChildren(npobj, overwrite=overwrite,
recursive=recursive, **kwargs)
return npobj
else:
raise IOError("You cannot copy a root group over the same file")
return obj._f_copy( newparent, newname,
overwrite, recursive, createparents, **kwargs )
def removeNode(self, where, name=None, recursive=False):
"""
Remove the object node `name` under `where` location.
`where`, `name`
These arguments work as in `File.getNode()`, referencing the
node to be acted upon.
`recursive`
If not supplied or false, the node will be removed only if
it has no children; if it does, a `NodeError` will be
raised. If supplied with a true value, the node and all its
descendants will be completely removed.
"""
obj = self.getNode(where, name=name)
obj._f_remove(recursive)
def getNodeAttr(self, where, attrname, name=None):
"""
Get a PyTables attribute from the given node.
`where`, `name`
These arguments work as in `File.getNode()`, referencing the
node to be acted upon.
`attrname`
The name of the attribute to retrieve. If the named
attribute does not exist, an `AttributeError` is raised.
"""
obj = self.getNode(where, name=name)
return obj._f_getAttr(attrname)
def setNodeAttr(self, where, attrname, attrvalue, name=None):
"""
Set a PyTables attribute for the given node.
`where`, `name`
These arguments work as in `File.getNode()`, referencing the
node to be acted upon.
`attrname`
The name of the attribute to set.
`attrvalue`
The value of the attribute to set. Any kind of Python
object (like strings, ints, floats, lists, tuples, dicts,
small NumPy/Numeric/numarray objects...) can be stored as an
attribute. However, if necessary, ``cPickle`` is
automatically used so as to serialize objects that you might
want to save. See the `AttributeSet` class for details.
If the node already has a large number of attributes, a
`PerformanceWarning` is issued.
The `where` and `name` arguments work as in `getNode()`,
referencing the node to be acted upon. The other arguments work
as in `Node._f_setAttr()`.
"""
obj = self.getNode(where, name=name)
obj._f_setAttr(attrname, attrvalue)
def delNodeAttr(self, where, attrname, name=None):
"""
Delete a PyTables attribute from the given node.
`where`, `name`
These arguments work as in `File.getNode()`, referencing the
node to be acted upon.
`attrname`
The name of the attribute to delete. If the named attribute
does not exist, an `AttributeError` is raised.
"""
obj = self.getNode(where, name=name)
obj._f_delAttr(attrname)
def copyNodeAttrs(self, where, dstnode, name=None):
"""
Copy PyTables attributes from one node to another.
`where`, `name`
These arguments work as in `File.getNode()`, referencing the
node to be acted upon.
`dstnode`
The destination node where the attributes will be copied to.
It can be a path string or a `Node` instance.
"""
srcObject = self.getNode(where, name=name)
dstObject = self.getNode(dstnode)
srcObject._v_attrs._f_copy(dstObject)
def copyChildren(self, srcgroup, dstgroup,
overwrite=False, recursive=False,
createparents=False, **kwargs):
"""
Copy the children of a group into another group.
This method copies the nodes hanging from the source group
`srcgroup` into the destination group `dstgroup`. Existing
destination nodes can be replaced by asserting the `overwrite`
argument. If the `recursive` argument is true, all descendant
nodes of `srcnode` are recursively copied. If `createparents`
is true, the needed groups for the given destination group path
to exist will be created.
`kwargs` takes keyword arguments used to customize the copying
process. See the documentation of `Group._f_copyChildren()` for
a description of those arguments.
"""
srcGroup = self.getNode(srcgroup) # Does the source node exist?
self._checkGroup(srcGroup) # Is it a group?
srcGroup._f_copyChildren(
dstgroup, overwrite, recursive, createparents, **kwargs )
def copyFile(self, dstfilename, overwrite=False, **kwargs):
"""
Copy the contents of this file to `dstfilename`.
`dstfilename` must be a path string indicating the name of the
destination file. If it already exists, the copy will fail with
an ``IOError``, unless the `overwrite` argument is true, in
which case the destination file will be overwritten in place.
In this last case, the destination file should be closed or ugly
errors will happen.
Additional keyword arguments may be passed to customize the
copying process. For instance, title and filters may be
changed, user attributes may be or may not be copied, data may
be subsampled, stats may be collected, etc. Arguments unknown
to nodes are simply ignored. Check the documentation for
copying operations of nodes to see which options they support.
In addition, it recognizes the names of parameters present in
``tables/parameters.py`` as additional keyword arguments. Check the
suitable appendix in User's Guide for a detailed info on the supported
parameters.
Copying a file usually has the beneficial side effect of
creating a more compact and cleaner version of the original
file.
"""
self._checkOpen()
# Check that we are not treading our own shoes
if os.path.abspath(self.filename) == os.path.abspath(dstfilename):
raise IOError("You cannot copy a file over itself")
# Compute default arguments.
# These are *not* passed on.
filters = kwargs.pop('filters', None)
if filters is None:
# By checking the HDF5 attribute, we avoid setting filters
# in the destination file if not explicitly set in the
# source file. Just by assigning ``self.filters`` we would
# not be able to tell.
filters = getattr(self.root._v_attrs, 'FILTERS', None)
copyuserattrs = kwargs.get('copyuserattrs', True)
title = kwargs.pop('title', self.title)
if os.path.isfile(dstfilename) and not overwrite:
raise IOError("""\
file ``%s`` already exists; \
you may want to use the ``overwrite`` argument""" % dstfilename)
# Create destination file, overwriting it.
dstFileh = openFile(
dstfilename, mode="w", title=title, filters=filters, **kwargs)
try:
# Maybe copy the user attributes of the root group.
if copyuserattrs:
self.root._v_attrs._f_copy(dstFileh.root)
# Copy the rest of the hierarchy.
self.root._f_copyChildren(dstFileh.root, recursive=True, **kwargs)
finally:
dstFileh.close()
def listNodes(self, where, classname=None):
"""
Return a *list* with children nodes hanging from `where`.
This is a list-returning version of `File.iterNodes()`.
"""
group = self.getNode(where) # Does the parent exist?
self._checkGroup(group) # Is it a group?
return group._f_listNodes(classname)
def iterNodes(self, where, classname=None):
"""
Iterate over children nodes hanging from `where`.
`where`
This argument works as in `File.getNode()`, referencing the
group to be acted upon.
`classname`
If the name of a class derived from `Node` is supplied, only
instances of that class (or subclasses of it) will be
returned.
The returned nodes are alphanumerically sorted by their name.
This is an iterator version of `File.listNodes()`.
"""
group = self.getNode(where) # Does the parent exist?
self._checkGroup(group) # Is it a group?
return group._f_iterNodes(classname)
def __contains__(self, path):
"""
Is there a node with that `path`?
Returns ``True`` if the file has a node with the given `path` (a
string), ``False`` otherwise.
"""
try:
self.getNode(path)
except NoSuchNodeError:
return False
else:
return True
def __iter__(self):
"""
Recursively iterate over the nodes in the tree.
This is equivalent to calling `File.walkNodes()` with no
arguments.
Example of use::
# Recursively list all the nodes in the object tree.
h5file = tables.openFile('vlarray1.h5')
print \"All nodes in the object tree:\"
for node in h5file:
print node
"""
return self.walkNodes('/')
def walkNodes(self, where="/", classname=None):
"""
Recursively iterate over nodes hanging from `where`.
`where`
If supplied, the iteration starts from (and includes) this
group. It can be a path string or a `Group` instance.
`classname`
If the name of a class derived from `Node` is supplied, only
instances of that class (or subclasses of it) will be
returned.
Example of use::
# Recursively print all the nodes hanging from '/detector'.
print \"Nodes hanging from group '/detector':\"
for node in h5file.walkNodes('/detector', classname='EArray'):
print node
Iterate over the nodes in the object tree.
If "where" supplied, the iteration starts from this group.
If "classname" is supplied, only instances of this class are
returned.
This version iterates over the leaves in the same group in order
to avoid having a list referencing to them and thus, preventing
the LRU cache to remove them after their use.
"""
class_ = getClassByName(classname)
if class_ is Group: # only groups
for group in self.walkGroups(where):
yield group
elif class_ is Node: # all nodes
yield self.getNode(where)
for group in self.walkGroups(where):
for leaf in self.iterNodes(group):
yield leaf
else: # only nodes of the named type
for group in self.walkGroups(where):
for leaf in self.iterNodes(group, classname):
yield leaf
def walkGroups(self, where = "/"):
"""
Recursively iterate over groups (not leaves) hanging from
`where`.
The `where` group itself is listed first (preorder), then each
of its child groups (following an alphanumerical order) is also
traversed, following the same procedure. If `where` is not
supplied, the root group is used.
The `where` argument can be a path string or a `Group` instance.
"""
group = self.getNode(where) # Does the parent exist?
self._checkGroup(group) # Is it a group?
return group._f_walkGroups()
def _checkOpen(self):
"""
Check the state of the file.
If the file is closed, a `ClosedFileError` is raised.
"""
if not self.isopen:
raise ClosedFileError("the file object is closed")
def _isWritable(self):
"""Is this file writable?"""
return self.mode in ('w', 'a', 'r+')
def _checkWritable(self):
"""Check whether the file is writable.
If the file is not writable, a `FileModeError` is raised.
"""
if not self._isWritable():
raise FileModeError("the file is not writable")
def _checkGroup(self, node):
# `node` must already be a node.
if not isinstance(node, Group):
raise TypeError("node ``%s`` is not a group" % (node._v_pathname,))
# <Undo/Redo support>
def isUndoEnabled(self):
"""
Is the Undo/Redo mechanism enabled?
Returns ``True`` if the Undo/Redo mechanism has been enabled for
this file, ``False`` otherwise. Please note that this mechanism
is persistent, so a newly opened PyTables file may already have
Undo/Redo support enabled.
"""
self._checkOpen()
return self._undoEnabled
def _checkUndoEnabled(self):
if not self._undoEnabled:
raise UndoRedoError("Undo/Redo feature is currently disabled!")
def _createTransactionGroup(self):
tgroup = TransactionGroupG(
self.root, _transGroupName,
"Transaction information container", new=True)
# The format of the transaction container.
tgroup._v_attrs._g__setattr('FORMATVERSION', _transVersion)
return tgroup
def _createTransaction(self, troot, tid):
return TransactionG(
troot, _transName % tid,
"Transaction number %d" % tid, new=True)
def _createMark(self, trans, mid):
return MarkG(
trans, _markName % mid,
"Mark number %d" % mid, new=True)
def enableUndo(self, filters=Filters(complevel=1)):
"""
Enable the Undo/Redo mechanism.
This operation prepares the database for undoing and redoing
modifications in the node hierarchy. This allows `File.mark()`,
`File.undo()`, `File.redo()` and other methods to be called.
The `filters` argument, when specified, must be an instance of
class `Filters` and is meant for setting the compression values
for the action log. The default is having compression enabled,
as the gains in terms of space can be considerable. You may
want to disable compression if you want maximum speed for
Undo/Redo operations.
Calling this method when the Undo/Redo mechanism is already
enabled raises an `UndoRedoError`.
"""
maxUndo = self.params['MAX_UNDO_PATH_LENGTH']
class ActionLog(NotLoggedMixin, Table):
pass
class ActionLogDesc(IsDescription):
opcode = UInt8Col(pos=0)
arg1 = StringCol(maxUndo, pos=1, dflt="")
arg2 = StringCol(maxUndo, pos=2, dflt="")
self._checkOpen()
# Enabling several times is not allowed to avoid the user having
# the illusion that a new implicit mark has been created
# when calling enableUndo for the second time.
if self.isUndoEnabled():
raise UndoRedoError, "Undo/Redo feature is already enabled!"
self._markers = {}
self._seqmarkers = []
self._nmarks = 0
self._curtransaction = 0
self._curmark = -1 # No marks yet
# Get the Group for keeping user actions
try:
tgroup = self.getNode(_transGroupPath)
except NodeError:
# The file is going to be changed.
self._checkWritable()
# A transaction log group does not exist. Create it
tgroup = self._createTransactionGroup()
# Create a transaction.
self._trans = self._createTransaction(
tgroup, self._curtransaction)
# Create an action log
self._actionlog = ActionLog(
tgroup, _actionLogName, ActionLogDesc, "Action log",
filters=filters)
# Create an implicit mark
#self._actionlog.append([(_opToCode["MARK"], str(0), '')])
# Use '\x00' to represent a NULL string. This is a bug
# in numarray and should be reported.
# F. Alted 2005-09-21
self._actionlog.append([(_opToCode["MARK"], str(0), '\x00')])
self._nmarks += 1
self._seqmarkers.append(0) # current action is 0
# Create a group for mark 0
self._createMark(self._trans, 0)
# Initialize the marker pointer
self._curmark = self._nmarks - 1
# Initialize the action pointer
self._curaction = self._actionlog.nrows - 1
else:
# The group seems to exist already
# Get the default transaction
self._trans = tgroup._f_getChild(
_transName % self._curtransaction)
# Open the action log and go to the end of it
self._actionlog = tgroup.actionlog
for row in self._actionlog:
if row["opcode"] == _opToCode["MARK"]:
name = row["arg2"]
self._markers[name] = self._nmarks
self._seqmarkers.append(row.nrow)
self._nmarks += 1
# Get the current mark and current action
self._curmark = self._actionlog.attrs.CURMARK
self._curaction = self._actionlog.attrs.CURACTION
# The Undo/Redo mechanism has been enabled.
self._undoEnabled = True
def disableUndo(self):
"""
Disable the Undo/Redo mechanism.
Disabling the Undo/Redo mechanism leaves the database in the
current state and forgets past and future database states. This
makes `File.mark()`, `File.undo()`, `File.redo()` and other
methods fail with an `UndoRedoError`.
Calling this method when the Undo/Redo mechanism is already
disabled raises an `UndoRedoError`.
"""
self._checkOpen()
if not self.isUndoEnabled():
raise UndoRedoError, "Undo/Redo feature is already disabled!"
# The file is going to be changed.
self._checkWritable()
del self._markers
del self._seqmarkers
del self._curmark
del self._curaction
del self._curtransaction
del self._nmarks
del self._actionlog
# Recursively delete the transaction group
tnode = self.getNode(_transGroupPath)
tnode._g_remove(recursive=1)
# The Undo/Redo mechanism has been disabled.
self._undoEnabled = False
def mark(self, name=None):
"""
Mark the state of the database.
Creates a mark for the current state of the database. A unique
(and immutable) identifier for the mark is returned. An
optional `name` (a string) can be assigned to the mark. Both
the identifier of a mark and its name can be used in
`File.undo()` and `File.redo()` operations. When the `name` has
already been used for another mark, an `UndoRedoError` is
raised.
This method can only be called when the Undo/Redo mechanism has
been enabled. Otherwise, an `UndoRedoError` is raised.
"""
self._checkOpen()
self._checkUndoEnabled()
if name is None:
name = ''
else:
if not isinstance(name, str):
raise TypeError, \
"Only strings are allowed as mark names. You passed object: '%s'" % name
if name in self._markers:
raise UndoRedoError, \
"Name '%s' is already used as a marker name. Try another one." % name
# The file is going to be changed.
self._checkWritable()
self._markers[name] = self._curmark + 1
# Create an explicit mark
# Insert the mark in the action log
self._log("MARK", str(self._curmark+1), name)
self._curmark += 1
self._nmarks = self._curmark + 1
self._seqmarkers.append(self._curaction)
# Create a group for the current mark
self._createMark(self._trans, self._curmark)
return self._curmark
def _log(self, action, *args):
"""
Log an action.
The `action` must be an all-uppercase string identifying it.
Arguments must also be strings.
This method should be called once the action has been completed.
This method can only be called when the Undo/Redo mechanism has
been enabled. Otherwise, an `UndoRedoError` is raised.
"""
assert self.isUndoEnabled()
maxUndo = self.params['MAX_UNDO_PATH_LENGTH']
# Check whether we are at the end of the action log or not
if self._curaction != self._actionlog.nrows - 1:
# We are not, so delete the trailing actions
self._actionlog.removeRows(self._curaction + 1,
self._actionlog.nrows)
# Reset the current marker group
mnode = self.getNode(_markPath % (self._curtransaction,
self._curmark))
mnode._g_reset()
# Delete the marker groups with backup objects
for mark in xrange(self._curmark+1, self._nmarks):
mnode = self.getNode(_markPath % (self._curtransaction, mark))
mnode._g_remove(recursive=1)
# Update the new number of marks
self._nmarks = self._curmark+1
self._seqmarkers = self._seqmarkers[:self._nmarks]
if action not in _opToCode: #INTERNAL
raise UndoRedoError, \
"Action ``%s`` not in ``_opToCode`` dictionary: %r" % \
(action, _opToCode)
arg1 = ""; arg2 = ""
if len(args) <= 1:
arg1 = args[0]
elif len(args) <= 2:
arg1 = args[0]
arg2 = args[1]
else: #INTERNAL
raise UndoRedoError, \
"Too many parameters for action log: %r", args
if (len(arg1) > maxUndo
or len(arg2) > maxUndo): #INTERNAL
raise UndoRedoError, \
"Parameter arg1 or arg2 is too long: (%r, %r)" % \
(arg1, arg2)
#print "Logging-->", (action, arg1, arg2)
self._actionlog.append([(_opToCode[action], arg1, arg2)])
self._curaction += 1
def _getMarkID(self, mark):
"Get an integer markid from a mark sequence number or name"
if isinstance(mark, int):
markid = mark
elif isinstance(mark, str):
if mark not in self._markers:
lmarkers = self._markers.keys()
lmarkers.sort()
raise UndoRedoError, \
"The mark that you have specified has not been found in the internal marker list: %r" % lmarkers
markid = self._markers[mark]
else:
raise TypeError, \
"Parameter mark can only be an integer or a string, and you passed a type <%s>" % type(mark)
#print "markid, self._nmarks:", markid, self._nmarks
return markid
def _getFinalAction(self, markid):
"Get the action to go. It does not touch the self private attributes"
if markid > self._nmarks - 1:
# The required mark is beyond the end of the action log
# The final action is the last row
return self._actionlog.nrows
elif markid <= 0:
# The required mark is the first one
# return the first row
return 0
return self._seqmarkers[markid]
def _doundo(self, finalaction, direction):
"Undo/Redo actions up to final action in the specificed direction"
if direction < 0:
actionlog = self._actionlog[finalaction+1:self._curaction+1][::-1]
else:
actionlog = self._actionlog[self._curaction:finalaction]
# Uncomment this for debugging
# print "curaction, finalaction, direction", \
# self._curaction, finalaction, direction
for i in xrange(len(actionlog)):
if actionlog['opcode'][i] != _opToCode["MARK"]:
# undo/redo the action
if direction > 0:
# Uncomment this for debugging
# print "redo-->", \
# _codeToOp[actionlog['opcode'][i]],\
# actionlog['arg1'][i],\
# actionlog['arg2'][i]
undoredo.redo(self,
#_codeToOp[actionlog['opcode'][i]],
# The next is a workaround for python < 2.5
_codeToOp[int(actionlog['opcode'][i])],
actionlog['arg1'][i],
actionlog['arg2'][i])
else:
# Uncomment this for debugging
# print "undo-->", \
# _codeToOp[actionlog['opcode'][i]],\
# actionlog['arg1'][i],\
# actionlog['arg2'][i]
undoredo.undo(self,
#_codeToOp[actionlog['opcode'][i]],
# The next is a workaround for python < 2.5
_codeToOp[int(actionlog['opcode'][i])],
actionlog['arg1'][i],
actionlog['arg2'][i])
else:
if direction > 0:
self._curmark = int(actionlog['arg1'][i])
else:
self._curmark = int(actionlog['arg1'][i]) - 1
# Protection against negative marks
if self._curmark < 0:
self._curmark = 0
self._curaction += direction
def undo(self, mark=None):
"""
Go to a past state of the database.
Returns the database to the state associated with the specified
`mark`. Both the identifier of a mark and its name can be used.
If the `mark` is omitted, the last created mark is used. If
there are no past marks, or the specified `mark` is not older
than the current one, an `UndoRedoError` is raised.
This method can only be called when the Undo/Redo mechanism has
been enabled. Otherwise, an `UndoRedoError` is raised.
"""
self._checkOpen()
self._checkUndoEnabled()
# print "(pre)UNDO: (curaction, curmark) = (%s,%s)" % \
# (self._curaction, self._curmark)
if mark is None:
markid = self._curmark
# Correction if we are settled on top of a mark
opcode = self._actionlog.cols.opcode
if opcode[self._curaction] == _opToCode["MARK"]:
markid -= 1
else:
# Get the mark ID number
markid = self._getMarkID(mark)
# Get the final action ID to go
finalaction = self._getFinalAction(markid)
if finalaction > self._curaction:
raise UndoRedoError("""\
Mark ``%s`` is newer than the current mark. Use `redo()` or `goto()` instead."""
% (mark,))
# The file is going to be changed.
self._checkWritable()
# Try to reach this mark by unwinding actions in the log
self._doundo(finalaction-1, -1)
if self._curaction < self._actionlog.nrows-1:
self._curaction += 1
self._curmark = int(self._actionlog.cols.arg1[self._curaction])
# print "(post)UNDO: (curaction, curmark) = (%s,%s)" % \
# (self._curaction, self._curmark)
def redo(self, mark=None):
"""
Go to a future state of the database.
Returns the database to the state associated with the specified
`mark`. Both the identifier of a mark and its name can be used.
If the `mark` is omitted, the next created mark is used. If
there are no future marks, or the specified `mark` is not newer
than the current one, an `UndoRedoError` is raised.
This method can only be called when the Undo/Redo mechanism has
been enabled. Otherwise, an `UndoRedoError` is raised.
"""
self._checkOpen()
self._checkUndoEnabled()
# print "(pre)REDO: (curaction, curmark) = (%s, %s)" % \
# (self._curaction, self._curmark)
if self._curaction >= self._actionlog.nrows - 1:
# We are at the end of log, so no action
return
if mark is None:
mark = self._curmark + 1
elif mark == -1:
mark = self._nmarks # Go beyond the mark bounds up to the end
# Get the mark ID number
markid = self._getMarkID(mark)
finalaction = self._getFinalAction(markid)
if finalaction < self._curaction + 1:
raise UndoRedoError("""\
Mark ``%s`` is older than the current mark. Use `redo()` or `goto()` instead."""
% (mark,))
# The file is going to be changed.
self._checkWritable()
# Get the final action ID to go
self._curaction += 1
# Try to reach this mark by redoing the actions in the log
self._doundo(finalaction, 1)
# Increment the current mark only if we are not at the end of marks
if self._curmark < self._nmarks - 1:
self._curmark += 1
if self._curaction > self._actionlog.nrows-1:
self._curaction = self._actionlog.nrows-1
# print "(post)REDO: (curaction, curmark) = (%s,%s)" % \
# (self._curaction, self._curmark)
def goto(self, mark):
"""
Go to a specific mark of the database.
Returns the database to the state associated with the specified
`mark`. Both the identifier of a mark and its name can be used.
This method can only be called when the Undo/Redo mechanism has
been enabled. Otherwise, an `UndoRedoError` is raised.
"""
self._checkOpen()
self._checkUndoEnabled()
if mark == -1: # Special case
mark = self._nmarks # Go beyond the mark bounds up to the end
# Get the mark ID number
markid = self._getMarkID(mark)
finalaction = self._getFinalAction(markid)
if finalaction < self._curaction:
self.undo(mark)
else:
self.redo(mark)
def getCurrentMark(self):
"""
Get the identifier of the current mark.
Returns the identifier of the current mark. This can be used to
know the state of a database after an application crash, or to
get the identifier of the initial implicit mark after a call to
`File.enableUndo()`.
This method can only be called when the Undo/Redo mechanism has
been enabled. Otherwise, an `UndoRedoError` is raised.
"""
self._checkOpen()
self._checkUndoEnabled()
return self._curmark
def _shadowName(self):
"""
Compute and return a shadow name.
Computes the current shadow name according to the current
transaction, mark and action. It returns a tuple with the
shadow parent node and the name of the shadow in it.
"""
parent = self.getNode(
_shadowParent % (self._curtransaction, self._curmark))
name = _shadowName % (self._curaction,)
return (parent, name)
# </Undo/Redo support>
def flush(self):
"""Flush all the alive leaves in the object tree."""
self._checkOpen()
# First, flush PyTables buffers on alive leaves.
# Leaves that are dead should have been flushed already (at least,
# users are directed to do this through a PerformanceWarning!)
for path, refnode in self._aliveNodes.iteritems():
if '/_i_' not in path: # Indexes are not necessary to be flushed
if (self._aliveNodes.hassoftlinks):
node = refnode()
else:
node = refnode
if isinstance(node, Leaf):
node.flush()
# Flush the cache to disk
self._flushFile(0) # 0 means local scope, 1 global (virtual) scope
def close(self):
"""Flush all the alive leaves in object tree and close the file."""
# If the file is already closed, return immediately
if not self.isopen:
return
# If this file has been opened more than once, decrease the
# counter and return
if self._open_count > 1:
self._open_count -= 1
return
filename = self.filename
if self._undoEnabled and self._isWritable():
# Save the current mark and current action
self._actionlog.attrs._g__setattr("CURMARK", self._curmark)
self._actionlog.attrs._g__setattr("CURACTION", self._curaction)
# Close all loaded nodes.
self.root._f_close()
# Post-conditions
assert len(self._deadNodes) == 0, \
("dead nodes remain after closing dead nodes: %s"
% [path for path in self._deadNodes])
# No other nodes should have been revived.
assert len(self._aliveNodes) == 0, \
("alive nodes remain after closing dead nodes: %s"
% [path for path in self._aliveNodes])
# Close the file
self._closeFile()
# After the objects are disconnected, destroy the
# object dictionary using the brute force ;-)
# This should help to the garbage collector
self.__dict__.clear()
# Set the flag to indicate that the file is closed
self.isopen = 0
# Delete the entry in the dictionary of opened files
del _open_files[filename]
def __enter__(self):
"""Enter a context and return the same file."""
return self
def __exit__(self, *exc_info):
"""Exit a context and close the file."""
self.close()
return False # do not hide exceptions
def __str__(self):
"""
Return a short string representation of the object tree.
>>> f = tables.openFile('data/test.h5')
>>> print f
data/test.h5 (File) 'Table Benchmark'
Last modif.: 'Mon Sep 20 12:40:47 2004'
Object Tree:
/ (Group) 'Table Benchmark'
/tuple0 (Table(100,)) 'This is the table title'
/group0 (Group) ''
/group0/tuple1 (Table(100,)) 'This is the table title'
/group0/group1 (Group) ''
/group0/group1/tuple2 (Table(100,)) 'This is the table title'
/group0/group1/group2 (Group) ''
"""
if not self.isopen:
return "<closed File>"
# Print all the nodes (Group and Leaf objects) on object tree
date = time.asctime(time.localtime(os.stat(self.filename)[8]))
astring = self.filename + ' (File) ' + repr(self.title) + '\n'
# astring += 'rootUEP :=' + repr(self.rootUEP) + '; '
# astring += 'format_version := ' + self.format_version + '\n'
# astring += 'filters :=' + repr(self.filters) + '\n'
astring += 'Last modif.: ' + repr(date) + '\n'
astring += 'Object Tree: \n'
for group in self.walkGroups("/"):
astring += str(group) + '\n'
for kind in self._node_kinds[1:]:
for node in self.listNodes(group, kind):
astring += str(node) + '\n'
return astring
def __repr__(self):
"""Return a detailed string representation of the object tree."""
if not self.isopen:
return "<closed File>"
# Print all the nodes (Group and Leaf objects) on object tree
astring = 'File(filename=' + str(self.filename) + \
', title=' + repr(self.title) + \
', mode=' + repr(self.mode) + \
', rootUEP=' + repr(self.rootUEP) + \
', filters=' + repr(self.filters) + \
')\n'
for group in self.walkGroups("/"):
astring += str(group) + '\n'
for kind in self._node_kinds[1:]:
for node in self.listNodes(group, kind):
astring += repr(node) + '\n'
return astring
def _refNode(self, node, nodePath):
"""
Register `node` as alive and insert references to it.
"""
if nodePath != '/':
# The root group does not participate in alive/dead stuff.
aliveNodes = self._aliveNodes
assert nodePath not in aliveNodes, \
"file already has a node with path ``%s``" % nodePath
# Add the node to the set of referenced ones.
aliveNodes[nodePath] = node
def _unrefNode(self, nodePath):
"""Unregister `node` as alive and remove references to it."""
if nodePath != '/':
# The root group does not participate in alive/dead stuff.
aliveNodes = self._aliveNodes
assert nodePath in aliveNodes, \
"file does not have a node with path ``%s``" % nodePath
# Remove the node from the set of referenced ones.
del aliveNodes[nodePath]
def _killNode(self, node):
"""
Kill the `node`.
Moves the `node` from the set of alive, referenced nodes to the
set of dead, unreferenced ones.
"""
nodePath = node._v_pathname
assert nodePath in self._aliveNodes, \
"trying to kill non-alive node ``%s``" % nodePath
node._g_preKillHook()
# Remove all references to the node.
self._unrefNode(nodePath)
# Save the dead node in the limbo.
if self._aliveNodes.hasdeadnodes:
self._deadNodes[nodePath] = node
else:
# We have not a cache for dead nodes,
# so follow the usual deletion procedure.
node._v__deleting = True
node._f_close()
def _reviveNode(self, nodePath):
"""
Revive the node under `nodePath` and return it.
Moves the node under `nodePath` from the set of dead,
unreferenced nodes to the set of alive, referenced ones.
"""
assert nodePath in self._deadNodes, \
"trying to revive non-dead node ``%s``" % nodePath
# Take the node out of the limbo.
node = self._deadNodes.pop(nodePath)
# Make references to the node.
self._refNode(node, nodePath)
node._g_postReviveHook()
return node
def _updateNodeLocations(self, oldPath, newPath):
"""
Update location information of nodes under `oldPath`.
This only affects *already loaded* nodes.
"""
oldPrefix = oldPath + '/' # root node can not be renamed, anyway
oldPrefixLen = len(oldPrefix)
# Update alive and dead descendents.
for cache in [self._aliveNodes, self._deadNodes]:
for nodePath in cache:
if nodePath.startswith(oldPrefix):
nodeSuffix = nodePath[oldPrefixLen:]
newNodePath = joinPath(newPath, nodeSuffix)
newNodePPath = splitPath(newNodePath)[0]
descendentNode = self._getNode(nodePath)
descendentNode._g_updateLocation(newNodePPath)
# If a user hits ^C during a run, it is wise to gracefully close the opened files.
def close_open_files():
are_open_files = len(_open_files) > 0
if are_open_files:
print >> sys.stderr, "Closing remaining open files:",
for fname, fileh in _open_files.items():
print >> sys.stderr, "%s..." % (fname,),
fileh.close()
print >> sys.stderr, "done",
if are_open_files:
print >> sys.stderr
import atexit
atexit.register(close_open_files)
## Local Variables:
## mode: python
## py-indent-offset: 4
## tab-width: 4
## fill-column: 72
## End:
|