This file is indexed.

/usr/share/pyshared/tables/earray.py is in python-tables 2.3.1-2ubuntu3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
########################################################################
#
#       License: BSD
#       Created: December 15, 2003
#       Author:  Francesc Alted - faltet@pytables.com
#
#       $Id$
#
########################################################################

"""Here is defined the EArray class.

See EArray class docstring for more info.

Classes:

    EArray

Functions:


Misc variables:

    __version__


"""

import sys

import numpy

from tables.utilsExtension import lrange
from tables.utils import convertToNPAtom, convertToNPAtom2, SizeType
from tables.atom import Atom, EnumAtom, split_type
from tables.leaf import Leaf
from tables.carray import CArray

__version__ = "$Revision$"


# default version for EARRAY objects
#obversion = "1.0"    # initial version
#obversion = "1.1"    # support for complex datatypes
#obversion = "1.2"    # This adds support for time datatypes.
obversion = "1.3"    # This adds support for enumerated datatypes.



class EArray(CArray):
    """
    This class represents extendible, homogeneous datasets in an HDF5 file.

    The main difference between an `EArray` and a `CArray`, from which
    it inherits, is that the former can be enlarged along one of its
    dimensions, the *enlargeable dimension*.  That means that the
    `Leaf.extdim` attribute of any `EArray` instance will always be
    non-negative.  Multiple enlargeable dimensions might be supported
    in the future.

    New rows can be added to the end of an enlargeable array by using
    the `EArray.append()` method.  The array can also be shrunken
    along its enlargeable dimension using the `EArray.truncate()`
    method.

    Public methods
    --------------

    append(sequence)
        Add a ``sequence`` of data to the end of the dataset.

    Example of use
    --------------

    See below a small example of the use of the `EArray` class.  The
    code is available in ``examples/earray1.py``::

        import tables
        import numpy

        fileh = tables.openFile('earray1.h5', mode='w')
        a = tables.StringAtom(itemsize=8)
        # Use ``a`` as the object type for the enlargeable array.
        array_c = fileh.createEArray(fileh.root, 'array_c', a, (0,), \"Chars\")
        array_c.append(numpy.array(['a'*2, 'b'*4], dtype='S8'))
        array_c.append(numpy.array(['a'*6, 'b'*8, 'c'*10], dtype='S8'))

        # Read the string ``EArray`` we have created on disk.
        for s in array_c:
            print 'array_c[%s] => %r' % (array_c.nrow, s)
        # Close the file.
        fileh.close()

    The output for the previous script is something like::

        array_c[0] => 'aa'
        array_c[1] => 'bbbb'
        array_c[2] => 'aaaaaa'
        array_c[3] => 'bbbbbbbb'
        array_c[4] => 'cccccccc'
    """

    # Class identifier.
    _c_classId = 'EARRAY'


    # Special methods
    # ~~~~~~~~~~~~~~~
    def __init__( self, parentNode, name,
                  atom=None, shape=None, title="",
                  filters=None, expectedrows=None,
                  chunkshape=None, byteorder=None,
                  _log=True ):
        """
        Create an `EArray` instance.

        `atom` -- An `Atom` instance representing the *type* and *shape*
            of the atomic objects to be saved.

        `shape` -- The shape of the new array.  One (and only one) of
            the shape dimensions *must* be 0.  The dimension being 0
            means that the resulting `EArray` object can be extended
            along it.  Multiple enlargeable dimensions are not supported
            right now.

        `title` -- A description for this node (it sets the ``TITLE``
            HDF5 attribute on disk).

        `filters` -- An instance of the `Filters` class that provides
            information about the desired I/O filters to be applied
            during the life of this object.

        `expectedrows` -- A user estimate about the number of row
            elements that will be added to the growable dimension in the
            `EArray` node.  If not provided, the default value is
            ``EXPECTED_ROWS_EARRAY`` (see ``tables/parameters.py``).  If
            you plan to create either a much smaller or a much bigger
            `EArray` try providing a guess; this will optimize the HDF5
            B-Tree creation and management process time and the amount
            of memory used.

        `chunkshape` -- The shape of the data chunk to be read or
            written in a single HDF5 I/O operation.  Filters are applied
            to those chunks of data.  The dimensionality of `chunkshape`
            must be the same as that of `shape` (beware: no dimension
            should be 0 this time!).  If ``None``, a sensible value is
            calculated based on the `expectedrows` parameter (which is
            recommended).

        `byteorder` -- The byteorder of the data *on disk*, specified as
            'little' or 'big'. If this is not specified, the byteorder
            is that of the platform.
        """
        # Specific of EArray
        if expectedrows is None:
            expectedrows = parentNode._v_file.params['EXPECTED_ROWS_EARRAY']
        self._v_expectedrows = expectedrows
        """The expected number of rows to be stored in the array."""

        # Call the parent (CArray) init code
        super(EArray, self).__init__(parentNode, name, atom, shape, title,
                                     filters, chunkshape, byteorder, _log)


    # Public and private methods
    # ~~~~~~~~~~~~~~~~~~~~~~~~~~
    def _g_create(self):
        """Create a new array in file (specific part)."""

        # Pre-conditions and extdim computation
        zerodims = numpy.sum(numpy.array(self.shape) == 0)
        if zerodims > 0:
            if zerodims == 1:
                self.extdim = list(self.shape).index(0)
            else:
                raise NotImplementedError(
                    "Multiple enlargeable (0-)dimensions are not "
                    "supported.")
        else:
            raise ValueError(
                "When creating EArrays, you need to set one of "
                "the dimensions of the Atom instance to zero.")

        # Finish the common part of the creation process
        return self._g_create_common(self._v_expectedrows)


    def _checkShapeAppend(self, nparr):
        "Test that nparr shape is consistent with underlying EArray."

        # The arrays conforms self expandibility?
        myrank = len(self.shape)
        narank = len(nparr.shape) - len(self.atom.shape)
        if myrank != narank:
            raise ValueError("""\
the ranks of the appended object (%d) and the ``%s`` EArray (%d) differ"""
                             % (narank, self._v_pathname, myrank))
        for i in range(myrank):
            if i != self.extdim and self.shape[i] != nparr.shape[i]:
                raise ValueError("""\
the shapes of the appended object and the ``%s`` EArray \
differ in non-enlargeable dimension %d""" % (self._v_pathname, i))


    def append(self, sequence):
        """
        Add a `sequence` of data to the end of the dataset.

        The sequence must have the same type as the array; otherwise a
        ``TypeError`` is raised.  In the same way, the dimensions of
        the `sequence` must conform to the shape of the array, that
        is, all dimensions must match, with the exception of the
        enlargeable dimension, which can be of any length (even 0!).
        If the shape of the `sequence` is invalid, a ``ValueError`` is
        raised.
        """

        self._v_file._checkWritable()

        # Convert the sequence into a NumPy object
        nparr = convertToNPAtom2(sequence, self.atom)
        # Check if it has a consistent shape with underlying EArray
        self._checkShapeAppend(nparr)
        # If the size of the nparr is zero, don't do anything else
        if nparr.size > 0:
            self._append(nparr)


    def _g_copyWithStats(self, group, name, start, stop, step,
                         title, filters, chunkshape, _log, **kwargs):
        "Private part of Leaf.copy() for each kind of leaf."
        (start, stop, step) = self._processRangeRead(start, stop, step)
        # Build the new EArray object
        maindim = self.maindim
        shape = list(self.shape)
        shape[maindim] = 0
        # The number of final rows
        nrows = lrange(start, stop, step).length
        # Build the new EArray object
        object = EArray(
            group, name, atom=self.atom, shape=shape, title=title,
            filters=filters, expectedrows=nrows, chunkshape=chunkshape,
            _log=_log)
        # Now, fill the new earray with values from source
        nrowsinbuf = self.nrowsinbuf
        # The slices parameter for self.__getitem__
        slices = [slice(0, dim, 1) for dim in self.shape]
        # This is a hack to prevent doing unnecessary conversions
        # when copying buffers
        self._v_convert = False
        # Start the copy itself
        for start2 in lrange(start, stop, step*nrowsinbuf):
            # Save the records on disk
            stop2 = start2+step*nrowsinbuf
            if stop2 > stop:
                stop2 = stop
            # Set the proper slice in the extensible dimension
            slices[maindim] = slice(start2, stop2, step)
            object._append(self.__getitem__(tuple(slices)))
        # Active the conversion again (default)
        self._v_convert = True
        nbytes = numpy.prod(self.shape, dtype=SizeType)*self.atom.itemsize

        return (object, nbytes)


## Local Variables:
## mode: python
## py-indent-offset: 4
## tab-width: 4
## fill-column: 72
## End: