This file is indexed.

/usr/share/pyshared/PyTrilinos/NOX/Abstract.py is in python-pytrilinos 10.4.0.dfsg-1ubuntu2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
# This file was automatically generated by SWIG (http://www.swig.org).
# Version 2.0.4
#
# Do not make changes to this file unless you know what you are doing--modify
# the SWIG interface file instead.


"""

PyTrilinos.NOX.Abstract is the python interface to namespace Abstract
of the Trilinos package NOX:

    http://trilinos.sandia.gov/packages/nox

The purpose of NOX.Abstract is to provide base classes from which
concrete NOX interfaces can be derived.  Currently, the only concrete
implementation is for Epetra, in the NOX.Epetra module.

NOX.Abstract provides the following user-level classes:

    * Group            - Class defining a collection of objects needed by NOX
    * PrePostOperator  - Pre- and post-iteration operators
    * MultiVector      - Multivector class
    * Vector           - Vector class

"""


from sys import version_info
if version_info >= (2,6,0):
    def swig_import_helper():
        from os.path import dirname
        import imp
        fp = None
        try:
            fp, pathname, description = imp.find_module('_Abstract', [dirname(__file__)])
        except ImportError:
            import _Abstract
            return _Abstract
        if fp is not None:
            try:
                _mod = imp.load_module('_Abstract', fp, pathname, description)
            finally:
                fp.close()
            return _mod
    _Abstract = swig_import_helper()
    del swig_import_helper
else:
    import _Abstract
del version_info
try:
    _swig_property = property
except NameError:
    pass # Python < 2.2 doesn't have 'property'.
def _swig_setattr_nondynamic(self,class_type,name,value,static=1):
    if (name == "thisown"): return self.this.own(value)
    if (name == "this"):
        if type(value).__name__ == 'SwigPyObject':
            self.__dict__[name] = value
            return
    method = class_type.__swig_setmethods__.get(name,None)
    if method: return method(self,value)
    if (not static):
        self.__dict__[name] = value
    else:
        raise AttributeError("You cannot add attributes to %s" % self)

def _swig_setattr(self,class_type,name,value):
    return _swig_setattr_nondynamic(self,class_type,name,value,0)

def _swig_getattr(self,class_type,name):
    if (name == "thisown"): return self.this.own()
    method = class_type.__swig_getmethods__.get(name,None)
    if method: return method(self)
    raise AttributeError(name)

def _swig_repr(self):
    try: strthis = "proxy of " + self.this.__repr__()
    except: strthis = ""
    return "<%s.%s; %s >" % (self.__class__.__module__, self.__class__.__name__, strthis,)

try:
    _object = object
    _newclass = 1
except AttributeError:
    class _object : pass
    _newclass = 0


try:
    import weakref
    weakref_proxy = weakref.proxy
except:
    weakref_proxy = lambda x: x


import PyTrilinos.Teuchos
class Group(_object):
    """
    NOX pure abstract interface to a "group"; i.e., a solution vector
    and the corresponding F-vector, Jacobian matrix, gradient vector, and
    Newton vector.

    This class is a member of the namespace NOX::Abstract.

    The user should implement their own concrete implementation of this
    class or use one of the implementations provided by us. Typically the
    implementation is also tied to a particular NOX::Abstract::Vector
    implementation.

    The group may be implemented so that multiple groups can share
    underlying memory space. This is particularly important when it comes
    to the Jacobian, which is often to big to be replicated for every
    group. Thus, we have included instructions on how shared data should
    be treated for the operator=() and clone() functions.

    C++ includes: NOX_Abstract_Group.H 
    """
    __swig_setmethods__ = {}
    __setattr__ = lambda self, name, value: _swig_setattr(self, Group, name, value)
    __swig_getmethods__ = {}
    __getattr__ = lambda self, name: _swig_getattr(self, Group, name)
    def __init__(self, *args, **kwargs): raise AttributeError("No constructor defined - class is abstract")
    __repr__ = _swig_repr
    Ok = _Abstract.Group_Ok
    NotDefined = _Abstract.Group_NotDefined
    BadDependency = _Abstract.Group_BadDependency
    NotConverged = _Abstract.Group_NotConverged
    Failed = _Abstract.Group_Failed
    __swig_destroy__ = _Abstract.delete_Group
    __del__ = lambda self : None;
    def setX(self, *args):
        """
        setX(self, Vector y)

        virtual void
        NOX::Abstract::Group::setX(const NOX::Abstract::Vector &y)=0

        Set the solution vector x to y.

        This should invalidate the function value, Jacobian, gradient, and
        Newton direction.

        Throw an error if the copy fails.

        Reference to this object 
        """
        return _Abstract.Group_setX(self, *args)

    def computeX(self, *args):
        """
        computeX(self, Group grp, Vector d, double step)

        virtual void
        NOX::Abstract::Group::computeX(const NOX::Abstract::Group &grp, const
        NOX::Abstract::Vector &d, double step)=0

        Compute x = grp.x + step * d.

        Let $x$ denote this group's solution vector. Let $\\hat x$ denote
        the result of grp.getX(). Then set \\[ x = \\hat x +
        \\mbox{step} \\; d. \\]

        This should invalidate the function value, Jacobian, gradient, and
        Newton direction.

        Throw an error if the copy fails.

        Reference to this object 
        """
        return _Abstract.Group_computeX(self, *args)

    def computeF(self, *args):
        """
        computeF(self) -> ReturnType

        virtual
        NOX::Abstract::Group::ReturnType NOX::Abstract::Group::computeF()=0

        Compute and store F(x).

        It's generally useful to also compute and store the 2-norm of F(x) at
        this point for later access by the getNormF() function.

        NOX::Abstract::Group::Failed - If the computation fails in any way

        NOX::Abstract::Group::Ok - Otherwise 
        """
        return _Abstract.Group_computeF(self, *args)

    def computeJacobian(self, *args):
        """
        computeJacobian(self) -> ReturnType

        NOX::Abstract::Group::ReturnType
        NOX::Abstract::Group::computeJacobian()

        Compute and store Jacobian.

        Recall that \\[ F(x) = \\left[ \\begin{array}{c} F_1(x) \\\\
        F_2(x) \\\\ \\vdots \\\\ F_n(x) \\\\ \\end{array}
        \\right]. \\]

        The Jacobian is denoted by $J$ and defined by \\[ J_{ij} =
        \\frac{\\partial F_i}{\\partial x_j} (x). \\]

        If this is a shared object, this group should taken ownership of the
        Jacobian before it computes it.

        NOX::Abstract::Group::NotDefined - Returned by default implementation
        in NOX::Abstract::Group

        NOX::Abstract::Group::Failed - If the computation fails in any other
        way

        NOX::Abstract::Group::Ok - Otherwise 
        """
        return _Abstract.Group_computeJacobian(self, *args)

    def computeGradient(self, *args):
        """
        computeGradient(self) -> ReturnType

        NOX::Abstract::Group::ReturnType
        NOX::Abstract::Group::computeGradient()

        Compute and store gradient.

        We can pose the nonlinear equation problem $F(x) = 0$ as an
        optimization problem as follows: \\[ \\min f(x) \\equiv
        \\frac{1}{2} \\|F(x)\\|_2^2. \\]

        In that case, the gradient (of $f$) is defined as \\[ g \\equiv
        J^T F. \\]

        NOX::Abstract::Group::NotDefined - Returned by default implementation
        in NOX::Abstract::Group

        NOX::Abstract::Group::BadDependency - If either $F$ or $J$ has not
        been computed

        NOX::Abstract::Group::Failed - If the computation fails in any other
        way

        NOX::Abstract::Group::Ok - Otherwise 
        """
        return _Abstract.Group_computeGradient(self, *args)

    def computeNewton(self, *args):
        """
        computeNewton(self, ParameterList params) -> ReturnType

        NOX::Abstract::Group::ReturnType
        NOX::Abstract::Group::computeNewton(Teuchos::ParameterList &params)

        Compute the Newton direction, using parameters for the linear solve.

        The Newton direction is the solution, s, of \\[ J s = -F. \\]

        The parameters are from the "Linear %Solver" sublist of the
        "Direction" sublist that is passed to solver during construction.

        The "Tolerance" parameter may be added/modified in the sublist of
        "Linear Solver" parameters that is passed into this function. The
        solution should be such that \\[ \\frac{\\| J s - (-F)
        \\|_2}{\\max \\{ 1, \\|F\\|_2\\} } < \\mbox{Tolerance}
        \\]

        NOX::Abstract::Group::NotDefined - Returned by default implementation
        in NOX::Abstract::Group

        NOX::Abstract::Group::BadDependency - If either $F$ or $J$ has not
        been computed

        NOX::Abstract::Group::NotConverged - If the linear solve fails to
        satisfy the "Tolerance" specified in params

        NOX::Abstract::Group::Failed - If the computation fails in any other
        way

        NOX::Abstract::Group::Ok - Otherwise 
        """
        return _Abstract.Group_computeNewton(self, *args)

    def applyJacobian(self, *args):
        """
        applyJacobian(self, Vector input, Vector result) -> ReturnType

        NOX::Abstract::Group::ReturnType
        NOX::Abstract::Group::applyJacobian(const NOX::Abstract::Vector
        &input, NOX::Abstract::Vector &result) const

        Applies Jacobian to the given input vector and puts the answer in the
        result.

        Computes \\[ v = J u, \\] where $J$ is the Jacobian, $u$ is the
        input vector, and $v$ is the result vector.

        NOX::Abstract::Group::NotDefined - Returned by default implementation
        in NOX::Abstract::Group

        NOX::Abstract::Group::BadDependency - If the Jacobian $J$ has not been
        computed

        NOX::Abstract::Group::Failed - If the computation fails

        NOX::Abstract::Group::Ok - Otherwise 
        """
        return _Abstract.Group_applyJacobian(self, *args)

    def applyJacobianTranspose(self, *args):
        """
        applyJacobianTranspose(self, Vector input, Vector result) -> ReturnType

        NOX::Abstract::Group::ReturnType
        NOX::Abstract::Group::applyJacobianTranspose(const
        NOX::Abstract::Vector &input, NOX::Abstract::Vector &result) const

        Applies Jacobian-Transpose to the given input vector and puts the
        answer in the result.

        Computes \\[ v = J^T u, \\] where $J$ is the Jacobian, $u$ is the
        input vector, and $v$ is the result vector.

        NOX::Abstract::Group::NotDefined - Returned by default implementation
        in NOX::Abstract::Group

        NOX::Abstract::Group::BadDependency - If $J$ has not been computed

        NOX::Abstract::Group::Failed - If the computation fails

        NOX::Abstract::Group::Ok - Otherwise 
        """
        return _Abstract.Group_applyJacobianTranspose(self, *args)

    def applyJacobianInverse(self, *args):
        """
        applyJacobianInverse(self, ParameterList params, Vector input, Vector result) -> ReturnType

        NOX::Abstract::Group::ReturnType
        NOX::Abstract::Group::applyJacobianInverse(Teuchos::ParameterList
        &params, const NOX::Abstract::Vector &input, NOX::Abstract::Vector
        &result) const

        Applies the inverse of the Jacobian matrix to the given input vector
        and puts the answer in result.

        Computes \\[ v = J^{-1} u, \\] where $J$ is the Jacobian, $u$ is
        the input vector, and $v$ is the result vector.

        The "Tolerance" parameter specifies that the solution should be such
        that \\[ \\frac{\\| J v - u \\|_2}{\\max \\{ 1,
        \\|u\\|_2\\} } < \\mbox{Tolerance} \\]

        NOX::Abstract::Group::NotDefined - Returned by default implementation
        in NOX::Abstract::Group

        NOX::Abstract::Group::BadDependency - If $J$ has not been computed

        NOX::Abstract::Group::NotConverged - If the linear solve fails to
        satisfy the "Tolerance" specified in params

        NOX::Abstract::Group::Failed - If the computation fails

        NOX::Abstract::Group::Ok - Otherwise

        The parameter "Tolerance" may be added/modified in the list of
        parameters - this is the ideal solution tolerance for an iterative
        linear solve. 
        """
        return _Abstract.Group_applyJacobianInverse(self, *args)

    def applyRightPreconditioning(self, *args):
        """
        applyRightPreconditioning(self, bool useTranspose, ParameterList params, Vector input, 
            Vector result) -> ReturnType

        NOX::Abstract::Group::ReturnType
        NOX::Abstract::Group::applyRightPreconditioning(bool useTranspose,
        Teuchos::ParameterList &params, const NOX::Abstract::Vector &input,
        NOX::Abstract::Vector &result) const

        Apply right preconditiong to the given input vector.

        Let $M$ be a right preconditioner for the Jacobian $J$; in other
        words, $M$ is a matrix such that \\[ JM \\approx I. \\]

        Compute \\[ u = M^{-1} v, \\] where $u$ is the input vector and
        $v$ is the result vector.

        If useTranspose is true, then the transpose of the preconditioner is
        applied: \\[ u = {M^{-1}}^T v, \\] The transpose preconditioner is
        currently only required for Tensor methods.

        The "Tolerance" parameter specifies that the solution should be such
        that \\[ \\frac{\\| M v - u \\|_2}{\\max \\{ 1,
        \\|u\\|_2\\} } < \\mbox{Tolerance} \\]

        NOX::Abstract::Group::NotDefined - Returned by default implementation
        in NOX::Abstract::Group

        NOX::Abstract::Group::NotConverged - If the linear solve fails to
        satisfy the "Tolerance" specified in params

        NOX::Abstract::Group::Failed - If the computation fails

        NOX::Abstract::Group::Ok - Otherwise

        The parameters are from the "Linear %Solver" sublist of the
        "Direction" sublist that is passed to solver during construction. 
        """
        return _Abstract.Group_applyRightPreconditioning(self, *args)

    def applyJacobianMultiVector(self, *args):
        """
        applyJacobianMultiVector(self, MultiVector input, MultiVector result) -> ReturnType

        NOX::Abstract::Group::ReturnType
        NOX::Abstract::Group::applyJacobianMultiVector(const
        NOX::Abstract::MultiVector &input, NOX::Abstract::MultiVector &result)
        const

        applyJacobian for multiple right-hand sides

        The default implementation here calls applyJacobian() for each right
        hand side serially but should be overloaded if a block method is
        available. 
        """
        return _Abstract.Group_applyJacobianMultiVector(self, *args)

    def applyJacobianTransposeMultiVector(self, *args):
        """
        applyJacobianTransposeMultiVector(self, MultiVector input, MultiVector result) -> ReturnType

        NOX::Abstract::Group::ReturnType
        NOX::Abstract::Group::applyJacobianTransposeMultiVector(const
        NOX::Abstract::MultiVector &input, NOX::Abstract::MultiVector &result)
        const

        applyJacobianTranspose for multiple right-hand sides

        The default implementation here calls applyJacobianTranspose() for
        each right hand side serially but should be overloaded if a block
        method is available. 
        """
        return _Abstract.Group_applyJacobianTransposeMultiVector(self, *args)

    def applyJacobianInverseMultiVector(self, *args):
        """
        applyJacobianInverseMultiVector(self, ParameterList params, MultiVector input, MultiVector result) -> ReturnType

        NOX::Abstract::Group::ReturnType
        NOX::Abstract::Group::applyJacobianInverseMultiVector(Teuchos::ParameterList
        &params, const NOX::Abstract::MultiVector &input,
        NOX::Abstract::MultiVector &result) const

        applyJacobianInverse for multiple right-hand sides

        The default implementation here calls applyJacobianInverse() for each
        right hand side serially but should be overloaded if a block solver is
        available. 
        """
        return _Abstract.Group_applyJacobianInverseMultiVector(self, *args)

    def applyRightPreconditioningMultiVector(self, *args):
        """
        applyRightPreconditioningMultiVector(self, bool useTranspose, ParameterList params, MultiVector input, 
            MultiVector result) -> ReturnType

        NOX::Abstract::Group::ReturnType
        NOX::Abstract::Group::applyRightPreconditioningMultiVector(bool
        useTranspose, Teuchos::ParameterList &params, const
        NOX::Abstract::MultiVector &input, NOX::Abstract::MultiVector &result)
        const

        applyRightPreconditioning for multiple right-hand sides

        The default implementation here calls applyRightPreconditioning() for
        each right hand side serially but should be overloaded if a block
        method is available. 
        """
        return _Abstract.Group_applyRightPreconditioningMultiVector(self, *args)

    def isF(self, *args):
        """
        isF(self) -> bool

        virtual bool
        NOX::Abstract::Group::isF() const =0

        Return true if F is valid. 
        """
        return _Abstract.Group_isF(self, *args)

    def isJacobian(self, *args):
        """
        isJacobian(self) -> bool

        bool
        NOX::Abstract::Group::isJacobian() const

        Return true if the Jacobian is valid.

        Default implementation in NOX::Abstract::Group returns false. 
        """
        return _Abstract.Group_isJacobian(self, *args)

    def isGradient(self, *args):
        """
        isGradient(self) -> bool

        bool
        NOX::Abstract::Group::isGradient() const

        Return true if the gradient is valid.

        Default implementation in NOX::Abstract::Group returns false. 
        """
        return _Abstract.Group_isGradient(self, *args)

    def isNewton(self, *args):
        """
        isNewton(self) -> bool

        bool
        NOX::Abstract::Group::isNewton() const

        Return true if the Newton direction is valid.

        Default implementation in NOX::Abstract::Group returns false. 
        """
        return _Abstract.Group_isNewton(self, *args)

    def getX(self, *args):
        """
        getX(self) -> Vector

        virtual const
        NOX::Abstract::Vector& NOX::Abstract::Group::getX() const =0

        Return solution vector. 
        """
        return _Abstract.Group_getX(self, *args)

    def getF(self, *args):
        """
        getF(self) -> Vector

        virtual const
        NOX::Abstract::Vector& NOX::Abstract::Group::getF() const =0

        Return F(x). 
        """
        return _Abstract.Group_getF(self, *args)

    def getNormF(self, *args):
        """
        getNormF(self) -> double

        virtual double
        NOX::Abstract::Group::getNormF() const =0

        Return 2-norm of F(x).

        In other words, \\[ \\sqrt{\\sum_{i=1}^n F_i^2} \\] 
        """
        return _Abstract.Group_getNormF(self, *args)

    def getGradient(self, *args):
        """
        getGradient(self) -> Vector

        virtual
        const NOX::Abstract::Vector& NOX::Abstract::Group::getGradient() const
        =0

        Return gradient. 
        """
        return _Abstract.Group_getGradient(self, *args)

    def getNewton(self, *args):
        """
        getNewton(self) -> Vector

        virtual const
        NOX::Abstract::Vector& NOX::Abstract::Group::getNewton() const =0

        Return Newton direction. 
        """
        return _Abstract.Group_getNewton(self, *args)

    def getNormLastLinearSolveResidual(self, *args):
        """
        getNormLastLinearSolveResidual(self, double residual) -> ReturnType

        NOX::Abstract::Group::ReturnType
        NOX::Abstract::Group::getNormLastLinearSolveResidual(double &residual)
        const

        Return the norm of the last linear solve residual as the result of
        either a call to computeNewton() or applyJacobianInverse().

        NOX::Abstract::Group::NotDefined - Returned by default implementation
        in NOX::Abstract::Group

        NOX::Abstract::Group::BadDependency - If no linear solve has been
        calculated

        NOX::Abstract::Group::Failed - Any other type of failure

        NOX::Abstract::Group::Ok - Otherwise 
        """
        return _Abstract.Group_getNormLastLinearSolveResidual(self, *args)

    def clone(self, *args):
        """
        clone(self, CopyType type = DeepCopy) -> Teuchos::RCP<(NOX::Abstract::Group)>

        virtual
        Teuchos::RCP<NOX::Abstract::Group>
        NOX::Abstract::Group::clone(NOX::CopyType type=NOX::DeepCopy) const =0

        Create a new Group of the same derived type as this one by cloning
        this one, and return a ref count pointer to the new group.

        If type is NOX::DeepCopy, then we need to create an exact replica of
        "this". Otherwise, if type is NOX::ShapeCopy, we need only replicate
        the shape of "this" (only the memory is allocated, the values are
        not copied into the vectors and Jacobian). Returns NULL if clone is
        not supported.

        Any shared data should have its ownership transfered to this group
        from the source for a NOX::DeepCopy. 
        """
        return _Abstract.Group_clone(self, *args)

Group_swigregister = _Abstract.Group_swigregister
Group_swigregister(Group)

class PrePostOperator(_object):
    """
    NOX's pure virtual class to allow users to insert pre and post
    operations into nox's solvers (before and after the
    NOX::Solver::Generic::iterate() and NOX::Solver::Generic::solve()
    methods).

    The user should implement their own concrete implementation of this
    class and register it as a
    Teuchos::RCP<NOX::Abstract::PrePostoperator> in the "Solver Options"
    sublist.

    To create and use a user defined pre/post operators:

    Create a pre/post operator that derives from
    NOX::Abstract::PrePostOperator. For example, the pre/post operator Foo
    might be defined as shown below.

    Create the appropriate entries in the parameter list, as follows.

    Roger Pawlowski (SNL 9233)

    C++ includes: NOX_Abstract_PrePostOperator.H 
    """
    __swig_setmethods__ = {}
    __setattr__ = lambda self, name, value: _swig_setattr(self, PrePostOperator, name, value)
    __swig_getmethods__ = {}
    __getattr__ = lambda self, name: _swig_getattr(self, PrePostOperator, name)
    __repr__ = _swig_repr
    def __init__(self, *args): 
        """
        __init__(self) -> PrePostOperator
        __init__(self, PrePostOperator source) -> PrePostOperator

        NOX::Abstract::PrePostOperator::PrePostOperator(const
        NOX::Abstract::PrePostOperator &source)

        Copy constructor (doesnothing). 
        """
        if self.__class__ == PrePostOperator:
            _self = None
        else:
            _self = self
        this = _Abstract.new_PrePostOperator(_self, *args)
        try: self.this.append(this)
        except: self.this = this
    __swig_destroy__ = _Abstract.delete_PrePostOperator
    __del__ = lambda self : None;
    def runPreIterate(self, *args):
        """
        runPreIterate(self, Generic solver)

        void NOX::Abstract::PrePostOperator::runPreIterate(const
        NOX::Solver::Generic &solver)

        User defined method that will be executed at the start of a call to
        NOX::Solver::Generic::iterate(). 
        """
        return _Abstract.PrePostOperator_runPreIterate(self, *args)

    def runPostIterate(self, *args):
        """
        runPostIterate(self, Generic solver)

        void NOX::Abstract::PrePostOperator::runPostIterate(const
        NOX::Solver::Generic &solver)

        User defined method that will be executed at the end of a call to
        NOX::Solver::Generic::iterate(). 
        """
        return _Abstract.PrePostOperator_runPostIterate(self, *args)

    def runPreSolve(self, *args):
        """
        runPreSolve(self, Generic solver)

        void NOX::Abstract::PrePostOperator::runPreSolve(const
        NOX::Solver::Generic &solver)

        User defined method that will be executed at the start of a call to
        NOX::Solver::Generic::solve(). 
        """
        return _Abstract.PrePostOperator_runPreSolve(self, *args)

    def runPostSolve(self, *args):
        """
        runPostSolve(self, Generic solver)

        void NOX::Abstract::PrePostOperator::runPostSolve(const
        NOX::Solver::Generic &solver)

        User defined method that will be executed at the end of a call to
        NOX::Solver::Generic::solve(). 
        """
        return _Abstract.PrePostOperator_runPostSolve(self, *args)

    def __disown__(self):
        self.this.disown()
        _Abstract.disown_PrePostOperator(self)
        return weakref_proxy(self)
PrePostOperator_swigregister = _Abstract.PrePostOperator_swigregister
PrePostOperator_swigregister(PrePostOperator)

class MultiVector(_object):
    """
    Abstract interface for multi-vectors used by NOX.

    C++ includes: NOX_Abstract_MultiVector.H 
    """
    __swig_setmethods__ = {}
    __setattr__ = lambda self, name, value: _swig_setattr(self, MultiVector, name, value)
    __swig_getmethods__ = {}
    __getattr__ = lambda self, name: _swig_getattr(self, MultiVector, name)
    def __init__(self, *args, **kwargs): raise AttributeError("No constructor defined - class is abstract")
    __repr__ = _swig_repr
    __swig_destroy__ = _Abstract.delete_MultiVector
    __del__ = lambda self : None;
    def init(self, *args):
        """
        init(self, double gamma) -> MultiVector

        virtual
        NOX::Abstract::MultiVector& NOX::Abstract::MultiVector::init(double
        gamma)=0

        Initialize every element of this multi-vector with gamma. 
        """
        return _Abstract.MultiVector_init(self, *args)

    def random(self, *args):
        """
        random(self, bool useSeed = False, int seed = 1) -> MultiVector

        virtual
        NOX::Abstract::MultiVector& NOX::Abstract::MultiVector::random(bool
        useSeed=false, int seed=1)=0

        Initialize each element of this multi-vector with a random value. 
        """
        return _Abstract.MultiVector_random(self, *args)

    def setBlock(self, *args):
        """
        setBlock(self, MultiVector source, vector<(int)> index) -> MultiVector

        virtual
        NOX::Abstract::MultiVector& NOX::Abstract::MultiVector::setBlock(const
        NOX::Abstract::MultiVector &source, const vector< int > &index)=0

        Copy the vectors in source to a set of vectors in *this. The
        index.size() vectors in source are copied to a subset of vectors in
        *this indicated by the indices given in index. 
        """
        return _Abstract.MultiVector_setBlock(self, *args)

    def augment(self, *args):
        """
        augment(self, MultiVector source) -> MultiVector

        virtual
        NOX::Abstract::MultiVector& NOX::Abstract::MultiVector::augment(const
        NOX::Abstract::MultiVector &source)=0

        Append the vectors in source to *this. 
        """
        return _Abstract.MultiVector_augment(self, *args)

    def scale(self, *args):
        """
        scale(self, double gamma) -> MultiVector

        virtual
        NOX::Abstract::MultiVector& NOX::Abstract::MultiVector::scale(double
        gamma)=0

        Scale each element of this multivector by gamma. 
        """
        return _Abstract.MultiVector_scale(self, *args)

    def update(self, *args):
        """
        update(self, double alpha, MultiVector a, double gamma = 0.0) -> MultiVector
        update(self, double alpha, MultiVector a, double beta, MultiVector b, 
            double gamma = 0.0) -> MultiVector
        update(self, Teuchos::ETransp transb, double alpha, MultiVector a, 
            DenseMatrix b, double gamma = 0.0) -> MultiVector

        virtual
        NOX::Abstract::MultiVector&
        NOX::Abstract::MultiVector::update(Teuchos::ETransp transb, double
        alpha, const NOX::Abstract::MultiVector &a, const DenseMatrix &b,
        double gamma=0.0)=0

        Compute x = (alpha * a * op(b)) + (gamma * x) where a is a
        multivector, b is a dense matrix, x = *this, and op(b) = b if transb =
        Teuchos::NO_TRANS and op(b) is b transpose if transb = Teuchos::TRANS.

        """
        return _Abstract.MultiVector_update(self, *args)

    def clone(self, *args):
        """
        clone(self, CopyType type = DeepCopy) -> Teuchos::RCP<(NOX::Abstract::MultiVector)>

        virtual
        Teuchos::RCP<NOX::Abstract::MultiVector>
        NOX::Abstract::MultiVector::clone(int numvecs) const =0

        Creates a new multi-vector with numvecs columns. 
        """
        return _Abstract.MultiVector_clone(self, *args)

    def subCopy(self, *args):
        """
        subCopy(self, vector<(int)> index) -> Teuchos::RCP<(NOX::Abstract::MultiVector)>

        virtual
        Teuchos::RCP<NOX::Abstract::MultiVector>
        NOX::Abstract::MultiVector::subCopy(const vector< int > &index) const
        =0

        Creates a new multi-vector with index.size() columns whose columns are
        copies of the columns of *this given by index. 
        """
        return _Abstract.MultiVector_subCopy(self, *args)

    def subView(self, *args):
        """
        subView(self, vector<(int)> index) -> Teuchos::RCP<(NOX::Abstract::MultiVector)>

        virtual
        Teuchos::RCP<NOX::Abstract::MultiVector>
        NOX::Abstract::MultiVector::subView(const vector< int > &index) const
        =0

        Creates a new multi-vector with ndex.size() columns that shares the
        columns of *this given by index. 
        """
        return _Abstract.MultiVector_subView(self, *args)

    def norm(self, *args):
        """
        norm(self, vector<(double)> result, NormType type = TwoNorm)

        virtual void
        NOX::Abstract::MultiVector::norm(vector< double > &result,
        NOX::Abstract::Vector::NormType type=NOX::Abstract::Vector::TwoNorm)
        const =0

        Norm. 
        """
        return _Abstract.MultiVector_norm(self, *args)

    def multiply(self, *args):
        """
        multiply(self, double alpha, MultiVector y, DenseMatrix b)

        virtual
        void NOX::Abstract::MultiVector::multiply(double alpha, const
        NOX::Abstract::MultiVector &y, DenseMatrix &b) const =0

        Computes the matrix-matrix product $\\alpha * y^T * (*this)$. 
        """
        return _Abstract.MultiVector_multiply(self, *args)

    def length(self, *args):
        """
        length(self) -> int

        virtual
        int NOX::Abstract::MultiVector::length() const =0

        Return the length of multi-vector. 
        """
        return _Abstract.MultiVector_length(self, *args)

    def numVectors(self, *args):
        """
        numVectors(self) -> int

        virtual int NOX::Abstract::MultiVector::numVectors() const =0

        Return the number of vectors in the multi-vector. 
        """
        return _Abstract.MultiVector_numVectors(self, *args)

    def _print(self, *args):
        """
        _print(self, std::ostream stream)

        virtual
        void NOX::Abstract::MultiVector::print(std::ostream &stream) const =0

        Print the vector. This is meant for debugging purposes only. 
        """
        return _Abstract.MultiVector__print(self, *args)

MultiVector_swigregister = _Abstract.MultiVector_swigregister
MultiVector_swigregister(MultiVector)

DeepCopy = _Abstract.DeepCopy
ShapeCopy = _Abstract.ShapeCopy
class Vector(_object):
    """
    NOX's pure abstract vector interface for vectors that are used by the
    nonlinear solver.

    This class is a member of the namespace NOX::Abstract.

    The user should implement their own concrete implementation of this
    class or use one of the implementations provided by us.

    Tammy Kolda (SNL 8950), Roger Pawlowski (SNL 9233)

    C++ includes: NOX_Abstract_Vector.H 
    """
    __swig_setmethods__ = {}
    __setattr__ = lambda self, name, value: _swig_setattr(self, Vector, name, value)
    __swig_getmethods__ = {}
    __getattr__ = lambda self, name: _swig_getattr(self, Vector, name)
    def __init__(self, *args, **kwargs): raise AttributeError("No constructor defined - class is abstract")
    __repr__ = _swig_repr
    TwoNorm = _Abstract.Vector_TwoNorm
    OneNorm = _Abstract.Vector_OneNorm
    MaxNorm = _Abstract.Vector_MaxNorm
    __swig_destroy__ = _Abstract.delete_Vector
    __del__ = lambda self : None;
    def init(self, *args):
        """
        init(self, double gamma) -> Vector

        virtual
        NOX::Abstract::Vector& NOX::Abstract::Vector::init(double gamma)=0

        Initialize every element of this vector with gamma.

        Here x represents this vector, and we update it as \\[ x_i =
        \\gamma \\quad \\mbox{for } i=1,\\dots,n \\] Reference to
        this object 
        """
        return _Abstract.Vector_init(self, *args)

    def random(self, *args):
        """
        random(self, bool useSeed = False, int seed = 1) -> Vector

        NOX::Abstract::Vector & NOX::Abstract::Vector::random(bool
        useSeed=false, int seed=1)

        Initialize each element of this vector with a random value.

        If useSeed is true, uses the value of seed to seed the random number
        generator before filling the entries of this vector. So, if two calls
        are made where useSeed is true and seed is the same, then the vectors
        returned should be the same.

        Default implementation throw an error. Only referenced by LOCA
        methods.

        Reference to this object 
        """
        return _Abstract.Vector_random(self, *args)

    def abs(self, *args):
        """
        abs(self, Vector y) -> Vector

        virtual
        NOX::Abstract::Vector& NOX::Abstract::Vector::abs(const
        NOX::Abstract::Vector &y)=0

        Put element-wise absolute values of source vector y into this vector.

        Here x represents this vector, and we update it as \\[ x_i = | y_i |
        \\quad \\mbox{for } i=1,\\dots,n \\]

        Reference to this object 
        """
        return _Abstract.Vector_abs(self, *args)

    def reciprocal(self, *args):
        """
        reciprocal(self, Vector y) -> Vector

        virtual
        NOX::Abstract::Vector& NOX::Abstract::Vector::reciprocal(const
        NOX::Abstract::Vector &y)=0

        Put element-wise reciprocal of source vector y into this vector.

        Here x represents this vector, and we update it as \\[ x_i =
        \\frac{1}{y_i} \\quad \\mbox{for } i=1,\\dots,n \\]

        Reference to this object 
        """
        return _Abstract.Vector_reciprocal(self, *args)

    def scale(self, *args):
        """
        scale(self, double gamma) -> Vector
        scale(self, Vector a) -> Vector

        virtual
        NOX::Abstract::Vector& NOX::Abstract::Vector::scale(const
        NOX::Abstract::Vector &a)=0

        Scale this vector element-by-element by the vector a.

        Here x represents this vector, and we update it as \\[ x_i = x_i
        \\cdot a_i \\quad \\mbox{for } i=1,\\dots,n \\]

        Reference to this object 
        """
        return _Abstract.Vector_scale(self, *args)

    def update(self, *args):
        """
        update(self, double alpha, Vector a, double gamma = 0.0) -> Vector
        update(self, double alpha, Vector a, double beta, Vector b, double gamma = 0.0) -> Vector

        virtual
        NOX::Abstract::Vector& NOX::Abstract::Vector::update(double alpha,
        const NOX::Abstract::Vector &a, double beta, const
        NOX::Abstract::Vector &b, double gamma=0.0)=0

        Compute x = (alpha * a) + (beta * b) + (gamma * x) where x is this
        vector.

        Here x represents this vector, and we update it as \\[ x_i =
        \\alpha \\; a_i + \\beta \\; b_i + \\gamma \\; x_i
        \\quad \\mbox{for } i=1,\\dots,n \\]

        Reference to this object 
        """
        return _Abstract.Vector_update(self, *args)

    def clone(self, *args):
        """
        clone(self, CopyType type = DeepCopy) -> Teuchos::RCP<(NOX::Abstract::Vector)>

        virtual
        Teuchos::RCP<NOX::Abstract::Vector>
        NOX::Abstract::Vector::clone(NOX::CopyType type=NOX::DeepCopy) const
        =0

        Create a new Vector of the same underlying type by cloning "this",
        and return a pointer to the new vector.

        If type is NOX::DeepCopy, then we need to create an exact replica of
        "this". Otherwise, if type is NOX::ShapeCopy, we need only replicate
        the shape of "this" (the memory is allocated for the objects, but
        the current values are not copied into the vector). Note that there is
        no assumption that a vector created by ShapeCopy is initialized to
        zeros.

        Pointer to newly created vector or NULL if clone is not supported. 
        """
        return _Abstract.Vector_clone(self, *args)

    def createMultiVector(self, *args):
        """
        createMultiVector(self, Vector vecs, int numVecs, CopyType type = DeepCopy) -> Teuchos::RCP<(NOX::Abstract::MultiVector)>
        createMultiVector(self, int numVecs, CopyType type = DeepCopy) -> Teuchos::RCP<(NOX::Abstract::MultiVector)>

        Teuchos::RCP< NOX::Abstract::MultiVector >
        NOX::Abstract::Vector::createMultiVector(int numVecs, NOX::CopyType
        type=NOX::DeepCopy) const

        Create a MultiVector with numVecs columns.

        The default implementation creates a generic NOX::MultiVector with
        either Shape or Deep copies of the supplied vector. 
        """
        return _Abstract.Vector_createMultiVector(self, *args)

    def norm(self, *args):
        """
        norm(self, NormType type = TwoNorm) -> double
        norm(self, Vector weights) -> double

        virtual double
        NOX::Abstract::Vector::norm(const NOX::Abstract::Vector &weights)
        const =0

        Weighted 2-Norm.

        Here x represents this vector, and we compute its weighted norm as
        follows: \\[ \\|x\\|_w = \\sqrt{\\sum_{i=1}^{n} w_i \\;
        x_i^2} \\]  $ \\|x\\|_w $ 
        """
        return _Abstract.Vector_norm(self, *args)

    def innerProduct(self, *args):
        """
        innerProduct(self, Vector y) -> double

        virtual
        double NOX::Abstract::Vector::innerProduct(const NOX::Abstract::Vector
        &y) const =0

        Inner product with y.

        Here x represents this vector, and we compute its inner product with y
        as follows: \\[ \\langle x,y \\rangle = \\sum_{i=1}^n x_i y_i
        \\]  $\\langle x,y \\rangle$ 
        """
        return _Abstract.Vector_innerProduct(self, *args)

    def length(self, *args):
        """
        length(self) -> int

        virtual int
        NOX::Abstract::Vector::length() const =0

        Return the length of vector.

        The length of this vector

        Even if the vector is distributed across processors, this should
        return the  global length of the vector. 
        """
        return _Abstract.Vector_length(self, *args)

    def _print(self, *args):
        """
        _print(self, std::ostream stream)

        void
        NOX::Abstract::Vector::print(std::ostream &stream) const

        Print the vector. To be used for debugging only. 
        """
        return _Abstract.Vector__print(self, *args)

Vector_swigregister = _Abstract.Vector_swigregister
Vector_swigregister(Vector)

# This file is compatible with both classic and new-style classes.