/usr/share/pyshared/PyTrilinos/NOX/Abstract.py is in python-pytrilinos 10.4.0.dfsg-1ubuntu2.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 | # This file was automatically generated by SWIG (http://www.swig.org).
# Version 2.0.4
#
# Do not make changes to this file unless you know what you are doing--modify
# the SWIG interface file instead.
"""
PyTrilinos.NOX.Abstract is the python interface to namespace Abstract
of the Trilinos package NOX:
http://trilinos.sandia.gov/packages/nox
The purpose of NOX.Abstract is to provide base classes from which
concrete NOX interfaces can be derived. Currently, the only concrete
implementation is for Epetra, in the NOX.Epetra module.
NOX.Abstract provides the following user-level classes:
* Group - Class defining a collection of objects needed by NOX
* PrePostOperator - Pre- and post-iteration operators
* MultiVector - Multivector class
* Vector - Vector class
"""
from sys import version_info
if version_info >= (2,6,0):
def swig_import_helper():
from os.path import dirname
import imp
fp = None
try:
fp, pathname, description = imp.find_module('_Abstract', [dirname(__file__)])
except ImportError:
import _Abstract
return _Abstract
if fp is not None:
try:
_mod = imp.load_module('_Abstract', fp, pathname, description)
finally:
fp.close()
return _mod
_Abstract = swig_import_helper()
del swig_import_helper
else:
import _Abstract
del version_info
try:
_swig_property = property
except NameError:
pass # Python < 2.2 doesn't have 'property'.
def _swig_setattr_nondynamic(self,class_type,name,value,static=1):
if (name == "thisown"): return self.this.own(value)
if (name == "this"):
if type(value).__name__ == 'SwigPyObject':
self.__dict__[name] = value
return
method = class_type.__swig_setmethods__.get(name,None)
if method: return method(self,value)
if (not static):
self.__dict__[name] = value
else:
raise AttributeError("You cannot add attributes to %s" % self)
def _swig_setattr(self,class_type,name,value):
return _swig_setattr_nondynamic(self,class_type,name,value,0)
def _swig_getattr(self,class_type,name):
if (name == "thisown"): return self.this.own()
method = class_type.__swig_getmethods__.get(name,None)
if method: return method(self)
raise AttributeError(name)
def _swig_repr(self):
try: strthis = "proxy of " + self.this.__repr__()
except: strthis = ""
return "<%s.%s; %s >" % (self.__class__.__module__, self.__class__.__name__, strthis,)
try:
_object = object
_newclass = 1
except AttributeError:
class _object : pass
_newclass = 0
try:
import weakref
weakref_proxy = weakref.proxy
except:
weakref_proxy = lambda x: x
import PyTrilinos.Teuchos
class Group(_object):
"""
NOX pure abstract interface to a "group"; i.e., a solution vector
and the corresponding F-vector, Jacobian matrix, gradient vector, and
Newton vector.
This class is a member of the namespace NOX::Abstract.
The user should implement their own concrete implementation of this
class or use one of the implementations provided by us. Typically the
implementation is also tied to a particular NOX::Abstract::Vector
implementation.
The group may be implemented so that multiple groups can share
underlying memory space. This is particularly important when it comes
to the Jacobian, which is often to big to be replicated for every
group. Thus, we have included instructions on how shared data should
be treated for the operator=() and clone() functions.
C++ includes: NOX_Abstract_Group.H
"""
__swig_setmethods__ = {}
__setattr__ = lambda self, name, value: _swig_setattr(self, Group, name, value)
__swig_getmethods__ = {}
__getattr__ = lambda self, name: _swig_getattr(self, Group, name)
def __init__(self, *args, **kwargs): raise AttributeError("No constructor defined - class is abstract")
__repr__ = _swig_repr
Ok = _Abstract.Group_Ok
NotDefined = _Abstract.Group_NotDefined
BadDependency = _Abstract.Group_BadDependency
NotConverged = _Abstract.Group_NotConverged
Failed = _Abstract.Group_Failed
__swig_destroy__ = _Abstract.delete_Group
__del__ = lambda self : None;
def setX(self, *args):
"""
setX(self, Vector y)
virtual void
NOX::Abstract::Group::setX(const NOX::Abstract::Vector &y)=0
Set the solution vector x to y.
This should invalidate the function value, Jacobian, gradient, and
Newton direction.
Throw an error if the copy fails.
Reference to this object
"""
return _Abstract.Group_setX(self, *args)
def computeX(self, *args):
"""
computeX(self, Group grp, Vector d, double step)
virtual void
NOX::Abstract::Group::computeX(const NOX::Abstract::Group &grp, const
NOX::Abstract::Vector &d, double step)=0
Compute x = grp.x + step * d.
Let $x$ denote this group's solution vector. Let $\\hat x$ denote
the result of grp.getX(). Then set \\[ x = \\hat x +
\\mbox{step} \\; d. \\]
This should invalidate the function value, Jacobian, gradient, and
Newton direction.
Throw an error if the copy fails.
Reference to this object
"""
return _Abstract.Group_computeX(self, *args)
def computeF(self, *args):
"""
computeF(self) -> ReturnType
virtual
NOX::Abstract::Group::ReturnType NOX::Abstract::Group::computeF()=0
Compute and store F(x).
It's generally useful to also compute and store the 2-norm of F(x) at
this point for later access by the getNormF() function.
NOX::Abstract::Group::Failed - If the computation fails in any way
NOX::Abstract::Group::Ok - Otherwise
"""
return _Abstract.Group_computeF(self, *args)
def computeJacobian(self, *args):
"""
computeJacobian(self) -> ReturnType
NOX::Abstract::Group::ReturnType
NOX::Abstract::Group::computeJacobian()
Compute and store Jacobian.
Recall that \\[ F(x) = \\left[ \\begin{array}{c} F_1(x) \\\\
F_2(x) \\\\ \\vdots \\\\ F_n(x) \\\\ \\end{array}
\\right]. \\]
The Jacobian is denoted by $J$ and defined by \\[ J_{ij} =
\\frac{\\partial F_i}{\\partial x_j} (x). \\]
If this is a shared object, this group should taken ownership of the
Jacobian before it computes it.
NOX::Abstract::Group::NotDefined - Returned by default implementation
in NOX::Abstract::Group
NOX::Abstract::Group::Failed - If the computation fails in any other
way
NOX::Abstract::Group::Ok - Otherwise
"""
return _Abstract.Group_computeJacobian(self, *args)
def computeGradient(self, *args):
"""
computeGradient(self) -> ReturnType
NOX::Abstract::Group::ReturnType
NOX::Abstract::Group::computeGradient()
Compute and store gradient.
We can pose the nonlinear equation problem $F(x) = 0$ as an
optimization problem as follows: \\[ \\min f(x) \\equiv
\\frac{1}{2} \\|F(x)\\|_2^2. \\]
In that case, the gradient (of $f$) is defined as \\[ g \\equiv
J^T F. \\]
NOX::Abstract::Group::NotDefined - Returned by default implementation
in NOX::Abstract::Group
NOX::Abstract::Group::BadDependency - If either $F$ or $J$ has not
been computed
NOX::Abstract::Group::Failed - If the computation fails in any other
way
NOX::Abstract::Group::Ok - Otherwise
"""
return _Abstract.Group_computeGradient(self, *args)
def computeNewton(self, *args):
"""
computeNewton(self, ParameterList params) -> ReturnType
NOX::Abstract::Group::ReturnType
NOX::Abstract::Group::computeNewton(Teuchos::ParameterList ¶ms)
Compute the Newton direction, using parameters for the linear solve.
The Newton direction is the solution, s, of \\[ J s = -F. \\]
The parameters are from the "Linear %Solver" sublist of the
"Direction" sublist that is passed to solver during construction.
The "Tolerance" parameter may be added/modified in the sublist of
"Linear Solver" parameters that is passed into this function. The
solution should be such that \\[ \\frac{\\| J s - (-F)
\\|_2}{\\max \\{ 1, \\|F\\|_2\\} } < \\mbox{Tolerance}
\\]
NOX::Abstract::Group::NotDefined - Returned by default implementation
in NOX::Abstract::Group
NOX::Abstract::Group::BadDependency - If either $F$ or $J$ has not
been computed
NOX::Abstract::Group::NotConverged - If the linear solve fails to
satisfy the "Tolerance" specified in params
NOX::Abstract::Group::Failed - If the computation fails in any other
way
NOX::Abstract::Group::Ok - Otherwise
"""
return _Abstract.Group_computeNewton(self, *args)
def applyJacobian(self, *args):
"""
applyJacobian(self, Vector input, Vector result) -> ReturnType
NOX::Abstract::Group::ReturnType
NOX::Abstract::Group::applyJacobian(const NOX::Abstract::Vector
&input, NOX::Abstract::Vector &result) const
Applies Jacobian to the given input vector and puts the answer in the
result.
Computes \\[ v = J u, \\] where $J$ is the Jacobian, $u$ is the
input vector, and $v$ is the result vector.
NOX::Abstract::Group::NotDefined - Returned by default implementation
in NOX::Abstract::Group
NOX::Abstract::Group::BadDependency - If the Jacobian $J$ has not been
computed
NOX::Abstract::Group::Failed - If the computation fails
NOX::Abstract::Group::Ok - Otherwise
"""
return _Abstract.Group_applyJacobian(self, *args)
def applyJacobianTranspose(self, *args):
"""
applyJacobianTranspose(self, Vector input, Vector result) -> ReturnType
NOX::Abstract::Group::ReturnType
NOX::Abstract::Group::applyJacobianTranspose(const
NOX::Abstract::Vector &input, NOX::Abstract::Vector &result) const
Applies Jacobian-Transpose to the given input vector and puts the
answer in the result.
Computes \\[ v = J^T u, \\] where $J$ is the Jacobian, $u$ is the
input vector, and $v$ is the result vector.
NOX::Abstract::Group::NotDefined - Returned by default implementation
in NOX::Abstract::Group
NOX::Abstract::Group::BadDependency - If $J$ has not been computed
NOX::Abstract::Group::Failed - If the computation fails
NOX::Abstract::Group::Ok - Otherwise
"""
return _Abstract.Group_applyJacobianTranspose(self, *args)
def applyJacobianInverse(self, *args):
"""
applyJacobianInverse(self, ParameterList params, Vector input, Vector result) -> ReturnType
NOX::Abstract::Group::ReturnType
NOX::Abstract::Group::applyJacobianInverse(Teuchos::ParameterList
¶ms, const NOX::Abstract::Vector &input, NOX::Abstract::Vector
&result) const
Applies the inverse of the Jacobian matrix to the given input vector
and puts the answer in result.
Computes \\[ v = J^{-1} u, \\] where $J$ is the Jacobian, $u$ is
the input vector, and $v$ is the result vector.
The "Tolerance" parameter specifies that the solution should be such
that \\[ \\frac{\\| J v - u \\|_2}{\\max \\{ 1,
\\|u\\|_2\\} } < \\mbox{Tolerance} \\]
NOX::Abstract::Group::NotDefined - Returned by default implementation
in NOX::Abstract::Group
NOX::Abstract::Group::BadDependency - If $J$ has not been computed
NOX::Abstract::Group::NotConverged - If the linear solve fails to
satisfy the "Tolerance" specified in params
NOX::Abstract::Group::Failed - If the computation fails
NOX::Abstract::Group::Ok - Otherwise
The parameter "Tolerance" may be added/modified in the list of
parameters - this is the ideal solution tolerance for an iterative
linear solve.
"""
return _Abstract.Group_applyJacobianInverse(self, *args)
def applyRightPreconditioning(self, *args):
"""
applyRightPreconditioning(self, bool useTranspose, ParameterList params, Vector input,
Vector result) -> ReturnType
NOX::Abstract::Group::ReturnType
NOX::Abstract::Group::applyRightPreconditioning(bool useTranspose,
Teuchos::ParameterList ¶ms, const NOX::Abstract::Vector &input,
NOX::Abstract::Vector &result) const
Apply right preconditiong to the given input vector.
Let $M$ be a right preconditioner for the Jacobian $J$; in other
words, $M$ is a matrix such that \\[ JM \\approx I. \\]
Compute \\[ u = M^{-1} v, \\] where $u$ is the input vector and
$v$ is the result vector.
If useTranspose is true, then the transpose of the preconditioner is
applied: \\[ u = {M^{-1}}^T v, \\] The transpose preconditioner is
currently only required for Tensor methods.
The "Tolerance" parameter specifies that the solution should be such
that \\[ \\frac{\\| M v - u \\|_2}{\\max \\{ 1,
\\|u\\|_2\\} } < \\mbox{Tolerance} \\]
NOX::Abstract::Group::NotDefined - Returned by default implementation
in NOX::Abstract::Group
NOX::Abstract::Group::NotConverged - If the linear solve fails to
satisfy the "Tolerance" specified in params
NOX::Abstract::Group::Failed - If the computation fails
NOX::Abstract::Group::Ok - Otherwise
The parameters are from the "Linear %Solver" sublist of the
"Direction" sublist that is passed to solver during construction.
"""
return _Abstract.Group_applyRightPreconditioning(self, *args)
def applyJacobianMultiVector(self, *args):
"""
applyJacobianMultiVector(self, MultiVector input, MultiVector result) -> ReturnType
NOX::Abstract::Group::ReturnType
NOX::Abstract::Group::applyJacobianMultiVector(const
NOX::Abstract::MultiVector &input, NOX::Abstract::MultiVector &result)
const
applyJacobian for multiple right-hand sides
The default implementation here calls applyJacobian() for each right
hand side serially but should be overloaded if a block method is
available.
"""
return _Abstract.Group_applyJacobianMultiVector(self, *args)
def applyJacobianTransposeMultiVector(self, *args):
"""
applyJacobianTransposeMultiVector(self, MultiVector input, MultiVector result) -> ReturnType
NOX::Abstract::Group::ReturnType
NOX::Abstract::Group::applyJacobianTransposeMultiVector(const
NOX::Abstract::MultiVector &input, NOX::Abstract::MultiVector &result)
const
applyJacobianTranspose for multiple right-hand sides
The default implementation here calls applyJacobianTranspose() for
each right hand side serially but should be overloaded if a block
method is available.
"""
return _Abstract.Group_applyJacobianTransposeMultiVector(self, *args)
def applyJacobianInverseMultiVector(self, *args):
"""
applyJacobianInverseMultiVector(self, ParameterList params, MultiVector input, MultiVector result) -> ReturnType
NOX::Abstract::Group::ReturnType
NOX::Abstract::Group::applyJacobianInverseMultiVector(Teuchos::ParameterList
¶ms, const NOX::Abstract::MultiVector &input,
NOX::Abstract::MultiVector &result) const
applyJacobianInverse for multiple right-hand sides
The default implementation here calls applyJacobianInverse() for each
right hand side serially but should be overloaded if a block solver is
available.
"""
return _Abstract.Group_applyJacobianInverseMultiVector(self, *args)
def applyRightPreconditioningMultiVector(self, *args):
"""
applyRightPreconditioningMultiVector(self, bool useTranspose, ParameterList params, MultiVector input,
MultiVector result) -> ReturnType
NOX::Abstract::Group::ReturnType
NOX::Abstract::Group::applyRightPreconditioningMultiVector(bool
useTranspose, Teuchos::ParameterList ¶ms, const
NOX::Abstract::MultiVector &input, NOX::Abstract::MultiVector &result)
const
applyRightPreconditioning for multiple right-hand sides
The default implementation here calls applyRightPreconditioning() for
each right hand side serially but should be overloaded if a block
method is available.
"""
return _Abstract.Group_applyRightPreconditioningMultiVector(self, *args)
def isF(self, *args):
"""
isF(self) -> bool
virtual bool
NOX::Abstract::Group::isF() const =0
Return true if F is valid.
"""
return _Abstract.Group_isF(self, *args)
def isJacobian(self, *args):
"""
isJacobian(self) -> bool
bool
NOX::Abstract::Group::isJacobian() const
Return true if the Jacobian is valid.
Default implementation in NOX::Abstract::Group returns false.
"""
return _Abstract.Group_isJacobian(self, *args)
def isGradient(self, *args):
"""
isGradient(self) -> bool
bool
NOX::Abstract::Group::isGradient() const
Return true if the gradient is valid.
Default implementation in NOX::Abstract::Group returns false.
"""
return _Abstract.Group_isGradient(self, *args)
def isNewton(self, *args):
"""
isNewton(self) -> bool
bool
NOX::Abstract::Group::isNewton() const
Return true if the Newton direction is valid.
Default implementation in NOX::Abstract::Group returns false.
"""
return _Abstract.Group_isNewton(self, *args)
def getX(self, *args):
"""
getX(self) -> Vector
virtual const
NOX::Abstract::Vector& NOX::Abstract::Group::getX() const =0
Return solution vector.
"""
return _Abstract.Group_getX(self, *args)
def getF(self, *args):
"""
getF(self) -> Vector
virtual const
NOX::Abstract::Vector& NOX::Abstract::Group::getF() const =0
Return F(x).
"""
return _Abstract.Group_getF(self, *args)
def getNormF(self, *args):
"""
getNormF(self) -> double
virtual double
NOX::Abstract::Group::getNormF() const =0
Return 2-norm of F(x).
In other words, \\[ \\sqrt{\\sum_{i=1}^n F_i^2} \\]
"""
return _Abstract.Group_getNormF(self, *args)
def getGradient(self, *args):
"""
getGradient(self) -> Vector
virtual
const NOX::Abstract::Vector& NOX::Abstract::Group::getGradient() const
=0
Return gradient.
"""
return _Abstract.Group_getGradient(self, *args)
def getNewton(self, *args):
"""
getNewton(self) -> Vector
virtual const
NOX::Abstract::Vector& NOX::Abstract::Group::getNewton() const =0
Return Newton direction.
"""
return _Abstract.Group_getNewton(self, *args)
def getNormLastLinearSolveResidual(self, *args):
"""
getNormLastLinearSolveResidual(self, double residual) -> ReturnType
NOX::Abstract::Group::ReturnType
NOX::Abstract::Group::getNormLastLinearSolveResidual(double &residual)
const
Return the norm of the last linear solve residual as the result of
either a call to computeNewton() or applyJacobianInverse().
NOX::Abstract::Group::NotDefined - Returned by default implementation
in NOX::Abstract::Group
NOX::Abstract::Group::BadDependency - If no linear solve has been
calculated
NOX::Abstract::Group::Failed - Any other type of failure
NOX::Abstract::Group::Ok - Otherwise
"""
return _Abstract.Group_getNormLastLinearSolveResidual(self, *args)
def clone(self, *args):
"""
clone(self, CopyType type = DeepCopy) -> Teuchos::RCP<(NOX::Abstract::Group)>
virtual
Teuchos::RCP<NOX::Abstract::Group>
NOX::Abstract::Group::clone(NOX::CopyType type=NOX::DeepCopy) const =0
Create a new Group of the same derived type as this one by cloning
this one, and return a ref count pointer to the new group.
If type is NOX::DeepCopy, then we need to create an exact replica of
"this". Otherwise, if type is NOX::ShapeCopy, we need only replicate
the shape of "this" (only the memory is allocated, the values are
not copied into the vectors and Jacobian). Returns NULL if clone is
not supported.
Any shared data should have its ownership transfered to this group
from the source for a NOX::DeepCopy.
"""
return _Abstract.Group_clone(self, *args)
Group_swigregister = _Abstract.Group_swigregister
Group_swigregister(Group)
class PrePostOperator(_object):
"""
NOX's pure virtual class to allow users to insert pre and post
operations into nox's solvers (before and after the
NOX::Solver::Generic::iterate() and NOX::Solver::Generic::solve()
methods).
The user should implement their own concrete implementation of this
class and register it as a
Teuchos::RCP<NOX::Abstract::PrePostoperator> in the "Solver Options"
sublist.
To create and use a user defined pre/post operators:
Create a pre/post operator that derives from
NOX::Abstract::PrePostOperator. For example, the pre/post operator Foo
might be defined as shown below.
Create the appropriate entries in the parameter list, as follows.
Roger Pawlowski (SNL 9233)
C++ includes: NOX_Abstract_PrePostOperator.H
"""
__swig_setmethods__ = {}
__setattr__ = lambda self, name, value: _swig_setattr(self, PrePostOperator, name, value)
__swig_getmethods__ = {}
__getattr__ = lambda self, name: _swig_getattr(self, PrePostOperator, name)
__repr__ = _swig_repr
def __init__(self, *args):
"""
__init__(self) -> PrePostOperator
__init__(self, PrePostOperator source) -> PrePostOperator
NOX::Abstract::PrePostOperator::PrePostOperator(const
NOX::Abstract::PrePostOperator &source)
Copy constructor (doesnothing).
"""
if self.__class__ == PrePostOperator:
_self = None
else:
_self = self
this = _Abstract.new_PrePostOperator(_self, *args)
try: self.this.append(this)
except: self.this = this
__swig_destroy__ = _Abstract.delete_PrePostOperator
__del__ = lambda self : None;
def runPreIterate(self, *args):
"""
runPreIterate(self, Generic solver)
void NOX::Abstract::PrePostOperator::runPreIterate(const
NOX::Solver::Generic &solver)
User defined method that will be executed at the start of a call to
NOX::Solver::Generic::iterate().
"""
return _Abstract.PrePostOperator_runPreIterate(self, *args)
def runPostIterate(self, *args):
"""
runPostIterate(self, Generic solver)
void NOX::Abstract::PrePostOperator::runPostIterate(const
NOX::Solver::Generic &solver)
User defined method that will be executed at the end of a call to
NOX::Solver::Generic::iterate().
"""
return _Abstract.PrePostOperator_runPostIterate(self, *args)
def runPreSolve(self, *args):
"""
runPreSolve(self, Generic solver)
void NOX::Abstract::PrePostOperator::runPreSolve(const
NOX::Solver::Generic &solver)
User defined method that will be executed at the start of a call to
NOX::Solver::Generic::solve().
"""
return _Abstract.PrePostOperator_runPreSolve(self, *args)
def runPostSolve(self, *args):
"""
runPostSolve(self, Generic solver)
void NOX::Abstract::PrePostOperator::runPostSolve(const
NOX::Solver::Generic &solver)
User defined method that will be executed at the end of a call to
NOX::Solver::Generic::solve().
"""
return _Abstract.PrePostOperator_runPostSolve(self, *args)
def __disown__(self):
self.this.disown()
_Abstract.disown_PrePostOperator(self)
return weakref_proxy(self)
PrePostOperator_swigregister = _Abstract.PrePostOperator_swigregister
PrePostOperator_swigregister(PrePostOperator)
class MultiVector(_object):
"""
Abstract interface for multi-vectors used by NOX.
C++ includes: NOX_Abstract_MultiVector.H
"""
__swig_setmethods__ = {}
__setattr__ = lambda self, name, value: _swig_setattr(self, MultiVector, name, value)
__swig_getmethods__ = {}
__getattr__ = lambda self, name: _swig_getattr(self, MultiVector, name)
def __init__(self, *args, **kwargs): raise AttributeError("No constructor defined - class is abstract")
__repr__ = _swig_repr
__swig_destroy__ = _Abstract.delete_MultiVector
__del__ = lambda self : None;
def init(self, *args):
"""
init(self, double gamma) -> MultiVector
virtual
NOX::Abstract::MultiVector& NOX::Abstract::MultiVector::init(double
gamma)=0
Initialize every element of this multi-vector with gamma.
"""
return _Abstract.MultiVector_init(self, *args)
def random(self, *args):
"""
random(self, bool useSeed = False, int seed = 1) -> MultiVector
virtual
NOX::Abstract::MultiVector& NOX::Abstract::MultiVector::random(bool
useSeed=false, int seed=1)=0
Initialize each element of this multi-vector with a random value.
"""
return _Abstract.MultiVector_random(self, *args)
def setBlock(self, *args):
"""
setBlock(self, MultiVector source, vector<(int)> index) -> MultiVector
virtual
NOX::Abstract::MultiVector& NOX::Abstract::MultiVector::setBlock(const
NOX::Abstract::MultiVector &source, const vector< int > &index)=0
Copy the vectors in source to a set of vectors in *this. The
index.size() vectors in source are copied to a subset of vectors in
*this indicated by the indices given in index.
"""
return _Abstract.MultiVector_setBlock(self, *args)
def augment(self, *args):
"""
augment(self, MultiVector source) -> MultiVector
virtual
NOX::Abstract::MultiVector& NOX::Abstract::MultiVector::augment(const
NOX::Abstract::MultiVector &source)=0
Append the vectors in source to *this.
"""
return _Abstract.MultiVector_augment(self, *args)
def scale(self, *args):
"""
scale(self, double gamma) -> MultiVector
virtual
NOX::Abstract::MultiVector& NOX::Abstract::MultiVector::scale(double
gamma)=0
Scale each element of this multivector by gamma.
"""
return _Abstract.MultiVector_scale(self, *args)
def update(self, *args):
"""
update(self, double alpha, MultiVector a, double gamma = 0.0) -> MultiVector
update(self, double alpha, MultiVector a, double beta, MultiVector b,
double gamma = 0.0) -> MultiVector
update(self, Teuchos::ETransp transb, double alpha, MultiVector a,
DenseMatrix b, double gamma = 0.0) -> MultiVector
virtual
NOX::Abstract::MultiVector&
NOX::Abstract::MultiVector::update(Teuchos::ETransp transb, double
alpha, const NOX::Abstract::MultiVector &a, const DenseMatrix &b,
double gamma=0.0)=0
Compute x = (alpha * a * op(b)) + (gamma * x) where a is a
multivector, b is a dense matrix, x = *this, and op(b) = b if transb =
Teuchos::NO_TRANS and op(b) is b transpose if transb = Teuchos::TRANS.
"""
return _Abstract.MultiVector_update(self, *args)
def clone(self, *args):
"""
clone(self, CopyType type = DeepCopy) -> Teuchos::RCP<(NOX::Abstract::MultiVector)>
virtual
Teuchos::RCP<NOX::Abstract::MultiVector>
NOX::Abstract::MultiVector::clone(int numvecs) const =0
Creates a new multi-vector with numvecs columns.
"""
return _Abstract.MultiVector_clone(self, *args)
def subCopy(self, *args):
"""
subCopy(self, vector<(int)> index) -> Teuchos::RCP<(NOX::Abstract::MultiVector)>
virtual
Teuchos::RCP<NOX::Abstract::MultiVector>
NOX::Abstract::MultiVector::subCopy(const vector< int > &index) const
=0
Creates a new multi-vector with index.size() columns whose columns are
copies of the columns of *this given by index.
"""
return _Abstract.MultiVector_subCopy(self, *args)
def subView(self, *args):
"""
subView(self, vector<(int)> index) -> Teuchos::RCP<(NOX::Abstract::MultiVector)>
virtual
Teuchos::RCP<NOX::Abstract::MultiVector>
NOX::Abstract::MultiVector::subView(const vector< int > &index) const
=0
Creates a new multi-vector with ndex.size() columns that shares the
columns of *this given by index.
"""
return _Abstract.MultiVector_subView(self, *args)
def norm(self, *args):
"""
norm(self, vector<(double)> result, NormType type = TwoNorm)
virtual void
NOX::Abstract::MultiVector::norm(vector< double > &result,
NOX::Abstract::Vector::NormType type=NOX::Abstract::Vector::TwoNorm)
const =0
Norm.
"""
return _Abstract.MultiVector_norm(self, *args)
def multiply(self, *args):
"""
multiply(self, double alpha, MultiVector y, DenseMatrix b)
virtual
void NOX::Abstract::MultiVector::multiply(double alpha, const
NOX::Abstract::MultiVector &y, DenseMatrix &b) const =0
Computes the matrix-matrix product $\\alpha * y^T * (*this)$.
"""
return _Abstract.MultiVector_multiply(self, *args)
def length(self, *args):
"""
length(self) -> int
virtual
int NOX::Abstract::MultiVector::length() const =0
Return the length of multi-vector.
"""
return _Abstract.MultiVector_length(self, *args)
def numVectors(self, *args):
"""
numVectors(self) -> int
virtual int NOX::Abstract::MultiVector::numVectors() const =0
Return the number of vectors in the multi-vector.
"""
return _Abstract.MultiVector_numVectors(self, *args)
def _print(self, *args):
"""
_print(self, std::ostream stream)
virtual
void NOX::Abstract::MultiVector::print(std::ostream &stream) const =0
Print the vector. This is meant for debugging purposes only.
"""
return _Abstract.MultiVector__print(self, *args)
MultiVector_swigregister = _Abstract.MultiVector_swigregister
MultiVector_swigregister(MultiVector)
DeepCopy = _Abstract.DeepCopy
ShapeCopy = _Abstract.ShapeCopy
class Vector(_object):
"""
NOX's pure abstract vector interface for vectors that are used by the
nonlinear solver.
This class is a member of the namespace NOX::Abstract.
The user should implement their own concrete implementation of this
class or use one of the implementations provided by us.
Tammy Kolda (SNL 8950), Roger Pawlowski (SNL 9233)
C++ includes: NOX_Abstract_Vector.H
"""
__swig_setmethods__ = {}
__setattr__ = lambda self, name, value: _swig_setattr(self, Vector, name, value)
__swig_getmethods__ = {}
__getattr__ = lambda self, name: _swig_getattr(self, Vector, name)
def __init__(self, *args, **kwargs): raise AttributeError("No constructor defined - class is abstract")
__repr__ = _swig_repr
TwoNorm = _Abstract.Vector_TwoNorm
OneNorm = _Abstract.Vector_OneNorm
MaxNorm = _Abstract.Vector_MaxNorm
__swig_destroy__ = _Abstract.delete_Vector
__del__ = lambda self : None;
def init(self, *args):
"""
init(self, double gamma) -> Vector
virtual
NOX::Abstract::Vector& NOX::Abstract::Vector::init(double gamma)=0
Initialize every element of this vector with gamma.
Here x represents this vector, and we update it as \\[ x_i =
\\gamma \\quad \\mbox{for } i=1,\\dots,n \\] Reference to
this object
"""
return _Abstract.Vector_init(self, *args)
def random(self, *args):
"""
random(self, bool useSeed = False, int seed = 1) -> Vector
NOX::Abstract::Vector & NOX::Abstract::Vector::random(bool
useSeed=false, int seed=1)
Initialize each element of this vector with a random value.
If useSeed is true, uses the value of seed to seed the random number
generator before filling the entries of this vector. So, if two calls
are made where useSeed is true and seed is the same, then the vectors
returned should be the same.
Default implementation throw an error. Only referenced by LOCA
methods.
Reference to this object
"""
return _Abstract.Vector_random(self, *args)
def abs(self, *args):
"""
abs(self, Vector y) -> Vector
virtual
NOX::Abstract::Vector& NOX::Abstract::Vector::abs(const
NOX::Abstract::Vector &y)=0
Put element-wise absolute values of source vector y into this vector.
Here x represents this vector, and we update it as \\[ x_i = | y_i |
\\quad \\mbox{for } i=1,\\dots,n \\]
Reference to this object
"""
return _Abstract.Vector_abs(self, *args)
def reciprocal(self, *args):
"""
reciprocal(self, Vector y) -> Vector
virtual
NOX::Abstract::Vector& NOX::Abstract::Vector::reciprocal(const
NOX::Abstract::Vector &y)=0
Put element-wise reciprocal of source vector y into this vector.
Here x represents this vector, and we update it as \\[ x_i =
\\frac{1}{y_i} \\quad \\mbox{for } i=1,\\dots,n \\]
Reference to this object
"""
return _Abstract.Vector_reciprocal(self, *args)
def scale(self, *args):
"""
scale(self, double gamma) -> Vector
scale(self, Vector a) -> Vector
virtual
NOX::Abstract::Vector& NOX::Abstract::Vector::scale(const
NOX::Abstract::Vector &a)=0
Scale this vector element-by-element by the vector a.
Here x represents this vector, and we update it as \\[ x_i = x_i
\\cdot a_i \\quad \\mbox{for } i=1,\\dots,n \\]
Reference to this object
"""
return _Abstract.Vector_scale(self, *args)
def update(self, *args):
"""
update(self, double alpha, Vector a, double gamma = 0.0) -> Vector
update(self, double alpha, Vector a, double beta, Vector b, double gamma = 0.0) -> Vector
virtual
NOX::Abstract::Vector& NOX::Abstract::Vector::update(double alpha,
const NOX::Abstract::Vector &a, double beta, const
NOX::Abstract::Vector &b, double gamma=0.0)=0
Compute x = (alpha * a) + (beta * b) + (gamma * x) where x is this
vector.
Here x represents this vector, and we update it as \\[ x_i =
\\alpha \\; a_i + \\beta \\; b_i + \\gamma \\; x_i
\\quad \\mbox{for } i=1,\\dots,n \\]
Reference to this object
"""
return _Abstract.Vector_update(self, *args)
def clone(self, *args):
"""
clone(self, CopyType type = DeepCopy) -> Teuchos::RCP<(NOX::Abstract::Vector)>
virtual
Teuchos::RCP<NOX::Abstract::Vector>
NOX::Abstract::Vector::clone(NOX::CopyType type=NOX::DeepCopy) const
=0
Create a new Vector of the same underlying type by cloning "this",
and return a pointer to the new vector.
If type is NOX::DeepCopy, then we need to create an exact replica of
"this". Otherwise, if type is NOX::ShapeCopy, we need only replicate
the shape of "this" (the memory is allocated for the objects, but
the current values are not copied into the vector). Note that there is
no assumption that a vector created by ShapeCopy is initialized to
zeros.
Pointer to newly created vector or NULL if clone is not supported.
"""
return _Abstract.Vector_clone(self, *args)
def createMultiVector(self, *args):
"""
createMultiVector(self, Vector vecs, int numVecs, CopyType type = DeepCopy) -> Teuchos::RCP<(NOX::Abstract::MultiVector)>
createMultiVector(self, int numVecs, CopyType type = DeepCopy) -> Teuchos::RCP<(NOX::Abstract::MultiVector)>
Teuchos::RCP< NOX::Abstract::MultiVector >
NOX::Abstract::Vector::createMultiVector(int numVecs, NOX::CopyType
type=NOX::DeepCopy) const
Create a MultiVector with numVecs columns.
The default implementation creates a generic NOX::MultiVector with
either Shape or Deep copies of the supplied vector.
"""
return _Abstract.Vector_createMultiVector(self, *args)
def norm(self, *args):
"""
norm(self, NormType type = TwoNorm) -> double
norm(self, Vector weights) -> double
virtual double
NOX::Abstract::Vector::norm(const NOX::Abstract::Vector &weights)
const =0
Weighted 2-Norm.
Here x represents this vector, and we compute its weighted norm as
follows: \\[ \\|x\\|_w = \\sqrt{\\sum_{i=1}^{n} w_i \\;
x_i^2} \\] $ \\|x\\|_w $
"""
return _Abstract.Vector_norm(self, *args)
def innerProduct(self, *args):
"""
innerProduct(self, Vector y) -> double
virtual
double NOX::Abstract::Vector::innerProduct(const NOX::Abstract::Vector
&y) const =0
Inner product with y.
Here x represents this vector, and we compute its inner product with y
as follows: \\[ \\langle x,y \\rangle = \\sum_{i=1}^n x_i y_i
\\] $\\langle x,y \\rangle$
"""
return _Abstract.Vector_innerProduct(self, *args)
def length(self, *args):
"""
length(self) -> int
virtual int
NOX::Abstract::Vector::length() const =0
Return the length of vector.
The length of this vector
Even if the vector is distributed across processors, this should
return the global length of the vector.
"""
return _Abstract.Vector_length(self, *args)
def _print(self, *args):
"""
_print(self, std::ostream stream)
void
NOX::Abstract::Vector::print(std::ostream &stream) const
Print the vector. To be used for debugging only.
"""
return _Abstract.Vector__print(self, *args)
Vector_swigregister = _Abstract.Vector_swigregister
Vector_swigregister(Vector)
# This file is compatible with both classic and new-style classes.
|