This file is indexed.

/usr/share/pyshared/PyTrilinos/ML.py is in python-pytrilinos 10.4.0.dfsg-1ubuntu2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
# This file was automatically generated by SWIG (http://www.swig.org).
# Version 2.0.4
#
# Do not make changes to this file unless you know what you are doing--modify
# the SWIG interface file instead.


"""

PyTrilinos.ML is the python interface to the Trilinos multi-level
preconditioner package ML/MLAPI:

    http://trilinos.sandia.gov/packages/ml

The purpose of ML is to provide multilevel preconditioners to
Trilinos.

ML provides the following user-level classes:

    * BaseObject                - Base class for MLAPI objects
    * CompObject                - FLOP counting base class
    * TimeObject                - Timing base class
    * MultiLevelPreconditioner  - Black-box multilevel preconditioner
    * EpetraBaseOperator        - Base class for interface to Epetra
    * BaseOperator              - Base class for all MLAPI operators
    * Space                     - Defines number of elements and their distribution
    * MultiVector               - MLAPI multivector class
    * Operator                  - MLAPI operator class
    * InverseOperator           - MLAPI inverse operator class
    * PyMatrix                  - Python interface to MLAPI operators

For examples of usage, please consult the following scripts in the
example subdirectory of the PyTrilinos package:

    * exMLAPI.py
    * exMLAPI_Simple.py
    * exMLAPI_AztecOO.py
    * exMLAPI_Iterate.py
    * exMLAPI_PyMatrix.py
    * exMLAPI_Smoother.py

"""


from sys import version_info
if version_info >= (2,6,0):
    def swig_import_helper():
        from os.path import dirname
        import imp
        fp = None
        try:
            fp, pathname, description = imp.find_module('_ML', [dirname(__file__)])
        except ImportError:
            import _ML
            return _ML
        if fp is not None:
            try:
                _mod = imp.load_module('_ML', fp, pathname, description)
            finally:
                fp.close()
            return _mod
    _ML = swig_import_helper()
    del swig_import_helper
else:
    import _ML
del version_info
try:
    _swig_property = property
except NameError:
    pass # Python < 2.2 doesn't have 'property'.
def _swig_setattr_nondynamic(self,class_type,name,value,static=1):
    if (name == "thisown"): return self.this.own(value)
    if (name == "this"):
        if type(value).__name__ == 'SwigPyObject':
            self.__dict__[name] = value
            return
    method = class_type.__swig_setmethods__.get(name,None)
    if method: return method(self,value)
    if (not static):
        self.__dict__[name] = value
    else:
        raise AttributeError("You cannot add attributes to %s" % self)

def _swig_setattr(self,class_type,name,value):
    return _swig_setattr_nondynamic(self,class_type,name,value,0)

def _swig_getattr(self,class_type,name):
    if (name == "thisown"): return self.this.own()
    method = class_type.__swig_getmethods__.get(name,None)
    if method: return method(self)
    raise AttributeError(name)

def _swig_repr(self):
    try: strthis = "proxy of " + self.this.__repr__()
    except: strthis = ""
    return "<%s.%s; %s >" % (self.__class__.__module__, self.__class__.__name__, strthis,)

try:
    _object = object
    _newclass = 1
except AttributeError:
    class _object : pass
    _newclass = 0


try:
    import weakref
    weakref_proxy = weakref.proxy
except:
    weakref_proxy = lambda x: x


import Teuchos
import Epetra
HAVE_INTTYPES_H = _ML.HAVE_INTTYPES_H
HAVE_STDINT_H = _ML.HAVE_STDINT_H

def GetML_Comm(*args):
  """
    GetML_Comm() -> ML_Comm

    ML_Comm*
    MLAPI::GetML_Comm()

    Returns a pointer to the ML_Comm object defined on MPI_COMM_WORLD. 
    """
  return _ML.GetML_Comm(*args)

def GetEpetra_Comm(*args):
  """
    GetEpetra_Comm() -> Comm

    Epetra_Comm&
    MLAPI::GetEpetra_Comm()

    Returns a reference to the Epetra_Comm object defined on
    MPI_COMM_WORLD. 
    """
  return _ML.GetEpetra_Comm(*args)

def Barrier(*args):
  """
    Barrier()

    void MLAPI::Barrier()

    Calls Mpi_Barrier() if MPI is enabled. 
    """
  return _ML.Barrier(*args)

def GetMyPID(*args):
  """
    GetMyPID() -> int

    int MLAPI::GetMyPID()

    Returns the ID of the calling process. 
    """
  return _ML.GetMyPID(*args)

def GetNumProcs(*args):
  """
    GetNumProcs() -> int

    int MLAPI::GetNumProcs()

    Returns the total number of processes in the computation. 
    """
  return _ML.GetNumProcs(*args)

def GetPrintLevel(*args):
  """
    GetPrintLevel() -> int

    int
    MLAPI::GetPrintLevel()

    Retutns the level of output (always 0 if MyPID() != 0). 
    """
  return _ML.GetPrintLevel(*args)

def SetPrintLevel(*args):
  """
    SetPrintLevel(int Level)

    void
    MLAPI::SetPrintLevel(int Level)

    Sets the level of output (from 0 to 10, 0 being verbose). 
    """
  return _ML.SetPrintLevel(*args)

def Init(*args):
  """
    Init()

    void MLAPI::Init()

    Initialize the MLAPI workspace. 
    """
  return _ML.Init(*args)

def Finalize(*args):
  """
    Finalize()

    void MLAPI::Finalize()

    Destroys the MLAPI workspace. 
    """
  return _ML.Finalize(*args)

def GetMatrixType(*args):
  """
    GetMatrixType() -> int

    int
    MLAPI::GetMatrixType() 
    """
  return _ML.GetMatrixType(*args)
class BaseObject(_object):
    """
    Basic class for MLAPI objects.

    BaseObject is the basic class for all MLAPI objects. Currently, it
    contains the label of the object and method Print().

    Marzio Sala, SNL 9214

    C++ includes: MLAPI_BaseObject.h 
    """
    __swig_setmethods__ = {}
    __setattr__ = lambda self, name, value: _swig_setattr(self, BaseObject, name, value)
    __swig_getmethods__ = {}
    __getattr__ = lambda self, name: _swig_getattr(self, BaseObject, name)
    def __init__(self, *args, **kwargs): raise AttributeError("No constructor defined - class is abstract")
    __repr__ = _swig_repr
    __swig_destroy__ = _ML.delete_BaseObject
    __del__ = lambda self : None;
    def SetLabel(self, *args):
        """
        SetLabel(self, string Label)

        void
        MLAPI::BaseObject::SetLabel(const string &Label)

        Sets the Label of this object to Label. 
        """
        return _ML.BaseObject_SetLabel(self, *args)

    def GetLabel(self, *args):
        """
        GetLabel(self) -> string

        const string&
        MLAPI::BaseObject::GetLabel() const

        Returns the Label of this object. 
        """
        return _ML.BaseObject_GetLabel(self, *args)

    def Print(self, *args):
        """
        Print(self, file=None)

        Print a description of the object to the given file object.  If no
        file object is provided, output is to stdout.
        """
        return _ML.BaseObject_Print(self, *args)

    def __str__(self, *args):
        """
        __str__(self) -> str

        Return the description of the object as a string.
        """
        return _ML.BaseObject___str__(self, *args)

BaseObject_swigregister = _ML.BaseObject_swigregister
BaseObject_swigregister(BaseObject)

def GetString(*args):
  """
    GetString(int x) -> string
    GetString(double x) -> string

    string
    MLAPI::GetString(const double &x) 
    """
  return _ML.GetString(*args)


def __lshift__(*args):
  """__lshift__( os, BaseObject obj)"""
  return _ML.__lshift__(*args)
class Space(BaseObject):
    """
    Specifies the number and distribution among processes of elements.

    Marzio Sala, SNL 9214

    C++ includes: MLAPI_Space.h 
    """
    __swig_setmethods__ = {}
    for _s in [BaseObject]: __swig_setmethods__.update(getattr(_s,'__swig_setmethods__',{}))
    __setattr__ = lambda self, name, value: _swig_setattr(self, Space, name, value)
    __swig_getmethods__ = {}
    for _s in [BaseObject]: __swig_getmethods__.update(getattr(_s,'__swig_getmethods__',{}))
    __getattr__ = lambda self, name: _swig_getattr(self, Space, name)
    __repr__ = _swig_repr
    def __init__(self, *args): 
        """
        __init__(self) -> Space
        __init__(self, int NumGlobalElements, int NumMyElements = -1) -> Space
        __init__(self, Map Map) -> Space
        __init__(self, int numGlobalElements, sequence myGlobalElements) -> Space
        __init__(self, Space RHS) -> Space

        MLAPI::Space::Space(const
        Space &RHS)

        Copy constructor. 
        """
        this = _ML.new_Space(*args)
        try: self.this.append(this)
        except: self.this = this
    __swig_destroy__ = _ML.delete_Space
    __del__ = lambda self : None;
    def Reshape(self, *args):
        """
        Reshape(self)
        Reshape(self, int NumGlobalElements, int NumMyElements = -1)
        Reshape(self, int NumGlobalElements, int NumMyElements)

        void
        MLAPI::Space::Reshape(const int NumGlobalElements, const int
        NumMyElements, const int *MyGlobalElements)

        Reset the dimension of the space by specifying the local number of
        elements and their global numbering (starting from 0). 
        """
        return _ML.Space_Reshape(self, *args)

    def __eq__(self, *args):
        """__eq__(self, Space RHS) -> bool"""
        return _ML.Space___eq__(self, *args)

    def __ne__(self, *args):
        """__ne__(self, Space RHS) -> bool"""
        return _ML.Space___ne__(self, *args)

    def __call__(self, *args):
        """__call__(self, int i) -> int"""
        return _ML.Space___call__(self, *args)

    def GetNumMyElements(self, *args):
        """
        GetNumMyElements(self) -> int

        int
        MLAPI::Space::GetNumMyElements() const

        Returns the local number of elements on the calling process. 
        """
        return _ML.Space_GetNumMyElements(self, *args)

    def GetNumGlobalElements(self, *args):
        """
        GetNumGlobalElements(self) -> int

        int
        MLAPI::Space::GetNumGlobalElements() const

        Returns the global number of elements. 
        """
        return _ML.Space_GetNumGlobalElements(self, *args)

    def GetOffset(self, *args):
        """
        GetOffset(self) -> int

        int
        MLAPI::Space::GetOffset() const

        Returns the global ID of the first element on the calling process (for
        linear distributions only). 
        """
        return _ML.Space_GetOffset(self, *args)

    def IsLinear(self, *args):
        """
        IsLinear(self) -> bool

        bool
        MLAPI::Space::IsLinear() const

        Returns true if the decomposition among processors is linear. 
        """
        return _ML.Space_IsLinear(self, *args)

    def GetMyGlobalElements(self, *args):
        """
        GetMyGlobalElements(self) -> Epetra.SerialDenseVector

        Return an Epetra.SerialDenseVector of global indexes representing the
        elements on this processor.  If the Space is distributed linearly,
        this method returns None.
        """
        return _ML.Space_GetMyGlobalElements(self, *args)

Space_swigregister = _ML.Space_swigregister
Space_swigregister(Space)

def Space_GetMyGlobalElements(*args):
    """
    GetMyGlobalElements(self) -> Epetra.SerialDenseVector

    Return an Epetra.SerialDenseVector of global indexes representing the
    elements on this processor.
    """
    result = _ML.Space_GetMyGlobalElements(*args)
    if result is None:
        offset = args[0].GetOffset()
        data   = range(offset, offset+args[0].GetNumMyElements())
        result = Epetra.IntSerialDenseVector(data)
    return result
Space.GetMyGlobalElements = Space_GetMyGlobalElements

class CompObject(_object):
    """
    Class to count flops.

    Marzio Sala, SNL 9214

    C++ includes: MLAPI_CompObject.h 
    """
    __swig_setmethods__ = {}
    __setattr__ = lambda self, name, value: _swig_setattr(self, CompObject, name, value)
    __swig_getmethods__ = {}
    __getattr__ = lambda self, name: _swig_getattr(self, CompObject, name)
    __repr__ = _swig_repr
    def __init__(self, *args): 
        """
        __init__(self) -> CompObject

        MLAPI::CompObject::CompObject()

        Constructor, set counter to 0.0. 
        """
        this = _ML.new_CompObject(*args)
        try: self.this.append(this)
        except: self.this = this
    __swig_destroy__ = _ML.delete_CompObject
    __del__ = lambda self : None;
    def GetFlops(self, *args):
        """
        GetFlops(self) -> double

        double
        MLAPI::CompObject::GetFlops() const

        Returns the internal counter of flops. 
        """
        return _ML.CompObject_GetFlops(self, *args)

    def SetFlops(self, *args):
        """
        SetFlops(self, double Flops)

        void
        MLAPI::CompObject::SetFlops(double Flops) const

        Sets internal counter to Flops. 
        """
        return _ML.CompObject_SetFlops(self, *args)

    def UpdateFlops(self, *args):
        """
        UpdateFlops(self, double Flops)

        void
        MLAPI::CompObject::UpdateFlops(double Flops) const

        Updates internal counter by summing Flops. 
        """
        return _ML.CompObject_UpdateFlops(self, *args)

CompObject_swigregister = _ML.CompObject_swigregister
CompObject_swigregister(CompObject)

class TimeObject(_object):
    """
    Class to track time spent in an object.

    Marzio Sala, SNL 9214

    C++ includes: MLAPI_TimeObject.h 
    """
    __swig_setmethods__ = {}
    __setattr__ = lambda self, name, value: _swig_setattr(self, TimeObject, name, value)
    __swig_getmethods__ = {}
    __getattr__ = lambda self, name: _swig_getattr(self, TimeObject, name)
    __repr__ = _swig_repr
    def __init__(self, *args): 
        """
        __init__(self) -> TimeObject

        MLAPI::TimeObject::TimeObject()

        Constructor, set counter to 0.0. 
        """
        this = _ML.new_TimeObject(*args)
        try: self.this.append(this)
        except: self.this = this
    __swig_destroy__ = _ML.delete_TimeObject
    __del__ = lambda self : None;
    def ResetTimer(self, *args):
        """
        ResetTimer(self)

        void
        MLAPI::TimeObject::ResetTimer() const

        Resets the internal timer. 
        """
        return _ML.TimeObject_ResetTimer(self, *args)

    def UpdateTime(self, *args):
        """
        UpdateTime(self)
        UpdateTime(self, double t)

        void
        MLAPI::TimeObject::UpdateTime(double t) const

        Updates the internal timer with input value t. 
        """
        return _ML.TimeObject_UpdateTime(self, *args)

    def GetTime(self, *args):
        """
        GetTime(self) -> double

        double
        MLAPI::TimeObject::GetTime() const

        Returns the internally stored counter. 
        """
        return _ML.TimeObject_GetTime(self, *args)

TimeObject_swigregister = _ML.TimeObject_swigregister
TimeObject_swigregister(TimeObject)

class BaseOperator(BaseObject):
    """
    Base class for all MLAPI objects.

    Marzio Sala, SNL 9214.

    C++ includes: MLAPI_BaseOperator.h 
    """
    __swig_setmethods__ = {}
    for _s in [BaseObject]: __swig_setmethods__.update(getattr(_s,'__swig_setmethods__',{}))
    __setattr__ = lambda self, name, value: _swig_setattr(self, BaseOperator, name, value)
    __swig_getmethods__ = {}
    for _s in [BaseObject]: __swig_getmethods__.update(getattr(_s,'__swig_getmethods__',{}))
    __getattr__ = lambda self, name: _swig_getattr(self, BaseOperator, name)
    __repr__ = _swig_repr
    __swig_destroy__ = _ML.delete_BaseOperator
    __del__ = lambda self : None;
    def Apply(self, *args):
        """
        Apply(self, MultiVector LHS, MultiVector RHS) -> int

        virtual int
        MLAPI::BaseOperator::Apply(const MultiVector &LHS, MultiVector &RHS)
        const =0

        Applies the operator to X, using Y as starting solution. Returns the
        solution in Y. 
        """
        return _ML.BaseOperator_Apply(self, *args)

    def GetOperatorDomainSpace(self, *args):
        """
        GetOperatorDomainSpace(self) -> Space

        virtual const Space MLAPI::BaseOperator::GetOperatorDomainSpace()
        const =0

        Returns a copy of the domain space of this object. 
        """
        return _ML.BaseOperator_GetOperatorDomainSpace(self, *args)

    def GetOperatorRangeSpace(self, *args):
        """
        GetOperatorRangeSpace(self) -> Space

        virtual const Space MLAPI::BaseOperator::GetOperatorRangeSpace() const
        =0

        Returns a copy of the range space of this object. 
        """
        return _ML.BaseOperator_GetOperatorRangeSpace(self, *args)

    def __init__(self, *args): 
        """__init__(self) -> BaseOperator"""
        if self.__class__ == BaseOperator:
            _self = None
        else:
            _self = self
        this = _ML.new_BaseOperator(_self, *args)
        try: self.this.append(this)
        except: self.this = this
    def __disown__(self):
        self.this.disown()
        _ML.disown_BaseOperator(self)
        return weakref_proxy(self)
BaseOperator_swigregister = _ML.BaseOperator_swigregister
BaseOperator_swigregister(BaseOperator)

class DoubleVector(_object):
    """Proxy of C++ MLAPI::DoubleVector class"""
    __swig_setmethods__ = {}
    __setattr__ = lambda self, name, value: _swig_setattr(self, DoubleVector, name, value)
    __swig_getmethods__ = {}
    __getattr__ = lambda self, name: _swig_getattr(self, DoubleVector, name)
    __repr__ = _swig_repr
    def __init__(self, *args): 
        """
        __init__(self, int size) -> DoubleVector
        __init__(self, double ptr) -> DoubleVector

        MLAPI::DoubleVector::DoubleVector(double *ptr) 
        """
        this = _ML.new_DoubleVector(*args)
        try: self.this.append(this)
        except: self.this = this
    __swig_destroy__ = _ML.delete_DoubleVector
    __del__ = lambda self : None;
    def Values(self, *args):
        """
        Values(self) -> double
        Values(self) -> double

        const double*
        MLAPI::DoubleVector::Values() const 
        """
        return _ML.DoubleVector_Values(self, *args)

DoubleVector_swigregister = _ML.DoubleVector_swigregister
DoubleVector_swigregister(DoubleVector)

class MultiVector(BaseObject,CompObject,TimeObject):
    """
    Basic class for distributed double-precision vectors.

    Marzio Sala, SNL 9214.

    C++ includes: MLAPI_MultiVector.h 
    """
    __swig_setmethods__ = {}
    for _s in [BaseObject,CompObject,TimeObject]: __swig_setmethods__.update(getattr(_s,'__swig_setmethods__',{}))
    __setattr__ = lambda self, name, value: _swig_setattr(self, MultiVector, name, value)
    __swig_getmethods__ = {}
    for _s in [BaseObject,CompObject,TimeObject]: __swig_getmethods__.update(getattr(_s,'__swig_getmethods__',{}))
    __getattr__ = lambda self, name: _swig_getattr(self, MultiVector, name)
    __repr__ = _swig_repr
    __swig_destroy__ = _ML.delete_MultiVector
    __del__ = lambda self : None;
    def Reshape(self, *args):
        """
        Reshape(self)
        Reshape(self, Space S, int NumVectors = 1, bool SetToZero = True)

        void
        MLAPI::MultiVector::Reshape(const Space &S, const int NumVectors=1,
        const bool SetToZero=true)

        Sets the space of this vector. 
        """
        return _ML.MultiVector_Reshape(self, *args)

    def Append(self, *args):
        """
        Append(self, int NumVectors = 1, bool SetToZero = True)
        Append(self, MultiVector rhs)

        void
        MLAPI::MultiVector::Append(MultiVector rhs)

        Appends a new vector. 
        """
        return _ML.MultiVector_Append(self, *args)

    def Delete(self, *args):
        """
        Delete(self, int v)

        Deletes the v-th vector within the MultiVector.

        void
        MLAPI::MultiVector::Delete(const int v)

        Deletes the last vector. 
        """
        return _ML.MultiVector_Delete(self, *args)

    def GetVectorSpace(self, *args):
        """
        GetVectorSpace(self) -> Space
        GetVectorSpace(self) -> Space

        Space&
        MLAPI::MultiVector::GetVectorSpace()

        Returns the Space on which this vector is defined (non-const). 
        """
        return _ML.MultiVector_GetVectorSpace(self, *args)

    def GetNumVectors(self, *args):
        """
        GetNumVectors(self) -> int

        int
        MLAPI::MultiVector::GetNumVectors() const

        Returns the number of vectors. 
        """
        return _ML.MultiVector_GetNumVectors(self, *args)

    def GetMyLength(self, *args):
        """
        GetMyLength(self) -> int

        int
        MLAPI::MultiVector::GetMyLength() const

        Returns the local length of each vector. 
        """
        return _ML.MultiVector_GetMyLength(self, *args)

    def GetGlobalLength(self, *args):
        """
        GetGlobalLength(self) -> int

        int
        MLAPI::MultiVector::GetGlobalLength() const

        Returns the global length of each vector. 
        """
        return _ML.MultiVector_GetGlobalLength(self, *args)

    def GetValues(self, *args):
        """
        GetValues(self, int v) -> numpy.ndarray

        Returns a 1D numpy array representing the v-th vector in the
        MultiVector.

        const double*
        MLAPI::MultiVector::GetValues(const int v) const

        Returns a pointer to the double array (const version). 
        """
        return _ML.MultiVector_GetValues(self, *args)

    def Update(self, *args):
        """
        Update(self, double alpha, int v = -1)
        Update(self, MultiVector rhs)
        Update(self, double alpha, MultiVector rhs)
        Update(self, double alpha, MultiVector x, double beta, MultiVector y)
        Update(self, double alpha, MultiVector rhs, double beta)

        void
        MLAPI::MultiVector::Update(double alpha, const MultiVector &rhs,
        double beta)

        Sets this = alpha * rhs + beta * this. 
        """
        return _ML.MultiVector_Update(self, *args)

    def DotProduct(self, *args):
        """
        DotProduct(self, MultiVector rhs, int v = -1) -> double

        double
        MLAPI::MultiVector::DotProduct(const MultiVector &rhs, int v=-1) const

        Computes the dot product between this vector and rhs. 
        """
        return _ML.MultiVector_DotProduct(self, *args)

    def Norm2(self, *args):
        """
        Norm2(self, int v = -1) -> double

        double
        MLAPI::MultiVector::Norm2(int v=-1) const

        Computes the 2-norm of this vector. 
        """
        return _ML.MultiVector_Norm2(self, *args)

    def NormInf(self, *args):
        """
        NormInf(self, int v = -1) -> double

        double
        MLAPI::MultiVector::NormInf(int v=-1) const

        Computes the infinite norm of this vector. 
        """
        return _ML.MultiVector_NormInf(self, *args)

    def NormOne(self, *args):
        """
        NormOne(self, int v = -1) -> double

        double
        MLAPI::MultiVector::NormOne(int v=-1) const

        Computes the one norm of this vector. 
        """
        return _ML.MultiVector_NormOne(self, *args)

    def Reciprocal(self, *args):
        """
        Reciprocal(self, int v = -1)

        void
        MLAPI::MultiVector::Reciprocal(int v=-1)

        Replaces each element of the vector with its reciprocal. 
        """
        return _ML.MultiVector_Reciprocal(self, *args)

    def Scale(self, *args):
        """
        Scale(self, double Factor, int v = -1)

        void
        MLAPI::MultiVector::Scale(const double Factor, int v=-1)

        Scales each element by the specified factor. 
        """
        return _ML.MultiVector_Scale(self, *args)

    def Random(self, *args):
        """
        Random(self, int v = -1)

        void
        MLAPI::MultiVector::Random(int v=-1)

        Populates the vector with random elements. 
        """
        return _ML.MultiVector_Random(self, *args)

    def Sort(self, *args):
        """
        Sort(self, int v = -1, bool IsIncreasing = False)

        void
        MLAPI::MultiVector::Sort(int v=-1, const bool IsIncreasing=false)

        Sorts the component of the vector. 
        """
        return _ML.MultiVector_Sort(self, *args)

    def IsAlias(self, *args):
        """
        IsAlias(self, MultiVector rhs) -> bool

        bool
        MLAPI::MultiVector::IsAlias(const MultiVector &rhs) const 
        """
        return _ML.MultiVector_IsAlias(self, *args)

    def __init__(self, *args): 
        """
        __init__(self) -> MultiVector
        __init__(self, Space VectorSpace, int NumVectors = 1, bool SetToZero = True) -> MultiVector
        __init__(self, MultiVector rhs) -> MultiVector
        __init__(self, Space vectorSpace, PyObject pyValues) -> MultiVector

        MLAPI::MultiVector::MultiVector(const MultiVector &rhs)

        Copy constructor. 
        """
        this = _ML.new_MultiVector(*args)
        try: self.this.append(this)
        except: self.this = this
    def __add__(self, *args):
        """
        __add__(self, MultiVector rhs) -> MultiVector

        Element-wise addition operator.
        """
        return _ML.MultiVector___add__(self, *args)

    def __sub__(self, *args):
        """
        __sub__(self, MultiVector rhs) -> MultiVector

        Element-wise subtraction operator.
        """
        return _ML.MultiVector___sub__(self, *args)

    def __mul__(self, *args):
        """
        __mul__(self, MultiVector rhs) -> float

          Dot-product multiplication operator.

        __mul__(self, double rhs) -> MultiVector
        __mul__(self, int rhs) -> MultiVector

          Scalar multiplication operators.
        """
        return _ML.MultiVector___mul__(self, *args)

    def __rmul__(self, *args):
        """
        __rmul__(self, double lhs) -> MultiVector
        __rmul__(self, int lhs) -> MultiVector

        Scalar 'reverse' multiplication operators.
        """
        return _ML.MultiVector___rmul__(self, *args)

    def __setitem__(self, *args):
        """
        __setitem__(self, PyObject index, int v, PyObject value)

        Argument index can be an integer or slice index into a vector.
        Argument v must be an integer specifying the desired vector within the
        MultiVector.  The value argument must have a shape that matches the
        shape of the index.
        """
        return _ML.MultiVector___setitem__(self, *args)

    def __getitem__(self, *args):
        """
        __getitem__(self, PyObject index, int v) -> PyObject

        Argument index can be an integer or slice index into a vector.
        Argument v must be an integer specifying the desired vector within the
        MultiVector.  The returned PyObject will be either a scalar or an
        array with the same shape as the index.
        """
        return _ML.MultiVector___getitem__(self, *args)

    def __call__(self, *args):
        """
        __call__(self, int i, int v=0) -> float

        Returns the i-th element of the v-th vector.
        """
        return _ML.MultiVector___call__(self, *args)

MultiVector_swigregister = _ML.MultiVector_swigregister
MultiVector_swigregister(MultiVector)


def Extract(*args):
  """
    Extract(MultiVector y, int v) -> MultiVector

    MultiVector
    MLAPI::Extract(const MultiVector &y, const int v)

    Extracts a component from a vector. 
    """
  return _ML.Extract(*args)

def Redistribute(*args):
  """
    Redistribute(MultiVector y, int NumEquations) -> MultiVector

    MultiVector
    MLAPI::Redistribute(const MultiVector &y, const int NumEquations)

    Redistributes the entry of a vector as a multivector. 
    """
  return _ML.Redistribute(*args)
class Operator(BaseOperator,CompObject,TimeObject):
    """
    Operator: basic class to define operators within MLAPI.

    Marzio Sala, SNL 9214

    C++ includes: MLAPI_Operator.h 
    """
    __swig_setmethods__ = {}
    for _s in [BaseOperator,CompObject,TimeObject]: __swig_setmethods__.update(getattr(_s,'__swig_setmethods__',{}))
    __setattr__ = lambda self, name, value: _swig_setattr(self, Operator, name, value)
    __swig_getmethods__ = {}
    for _s in [BaseOperator,CompObject,TimeObject]: __swig_getmethods__.update(getattr(_s,'__swig_getmethods__',{}))
    __getattr__ = lambda self, name: _swig_getattr(self, Operator, name)
    __repr__ = _swig_repr
    def __init__(self, *args): 
        """
        __init__(self) -> Operator
        __init__(self, Space DomainSpace, Space RangeSpace, ML_Operator Op, 
            bool Ownership = True, Teuchos::RefCountPtr<(ML_Operator_Box)> AuxOp = Teuchos::null) -> Operator
        __init__(self, Space DomainSpace, Space RangeSpace, RowMatrix Matrix, 
            bool Ownership = True, Teuchos::RefCountPtr<(ML_Operator_Box)> AuxOp = Teuchos::null) -> Operator
        __init__(self, Operator RHS) -> Operator

        MLAPI::Operator::Operator(const Operator &RHS)

        Copy constructor. 
        """
        this = _ML.new_Operator(*args)
        try: self.this.append(this)
        except: self.this = this
    __swig_destroy__ = _ML.delete_Operator
    __del__ = lambda self : None;
    def Reshape(self, *args):
        """
        Reshape(self)
        Reshape(self, Space DomainSpace, Space RangeSpace, ML_Operator Op, 
            bool Ownership = True, Teuchos::RefCountPtr<(ML_Operator_Box)> AuxOp = Teuchos::null)
        Reshape(self, Space DomainSpace, Space RangeSpace, RowMatrix Matrix, 
            bool Ownership = True, Teuchos::RefCountPtr<(ML_Operator_Box)> AuxOp = Teuchos::null)

        void
        MLAPI::Operator::Reshape(const Space &DomainSpace, const Space
        &RangeSpace, Epetra_RowMatrix *Matrix, bool Ownership=true,
        Teuchos::RefCountPtr< ML_Operator_Box > AuxOp=Teuchos::null)

        Reshape with given already FillComplete()'d object. 
        """
        return _ML.Operator_Reshape(self, *args)

    def GetOperatorDomainSpace(self, *args):
        """
        GetOperatorDomainSpace(self) -> Space

        const
        Space MLAPI::Operator::GetOperatorDomainSpace() const

        Returns a reference to the internally stored domain space. 
        """
        return _ML.Operator_GetOperatorDomainSpace(self, *args)

    def GetOperatorRangeSpace(self, *args):
        """
        GetOperatorRangeSpace(self) -> Space

        const
        Space MLAPI::Operator::GetOperatorRangeSpace() const

        Returns a reference to the internally stored range space. 
        """
        return _ML.Operator_GetOperatorRangeSpace(self, *args)

    def GetDomainSpace(self, *args):
        """
        GetDomainSpace(self) -> Space

        const Space
        MLAPI::Operator::GetDomainSpace() const

        Returns a reference to the internally stored domain space. 
        """
        return _ML.Operator_GetDomainSpace(self, *args)

    def GetRangeSpace(self, *args):
        """
        GetRangeSpace(self) -> Space

        const Space
        MLAPI::Operator::GetRangeSpace() const

        Returns a reference to the internally stored range space. 
        """
        return _ML.Operator_GetRangeSpace(self, *args)

    def GetColumnSpace(self, *args):
        """
        GetColumnSpace(self) -> Space

        const Space
        MLAPI::Operator::GetColumnSpace() const

        Returns a reference to the internally stored column space. 
        """
        return _ML.Operator_GetColumnSpace(self, *args)

    def GetNumGlobalRows(self, *args):
        """
        GetNumGlobalRows(self) -> int

        int
        MLAPI::Operator::GetNumGlobalRows() const

        Returns the number of global rows. 
        """
        return _ML.Operator_GetNumGlobalRows(self, *args)

    def GetNumMyRows(self, *args):
        """
        GetNumMyRows(self) -> int

        int
        MLAPI::Operator::GetNumMyRows() const

        Returns the number of local rows. 
        """
        return _ML.Operator_GetNumMyRows(self, *args)

    def GetNumGlobalCols(self, *args):
        """
        GetNumGlobalCols(self) -> int

        int
        MLAPI::Operator::GetNumGlobalCols() const

        Returns the number of global columns. 
        """
        return _ML.Operator_GetNumGlobalCols(self, *args)

    def GetNumMyCols(self, *args):
        """
        GetNumMyCols(self) -> int

        int
        MLAPI::Operator::GetNumMyCols() const

        Returns the number of local columns. 
        """
        return _ML.Operator_GetNumMyCols(self, *args)

    def GetNumGlobalNonzeros(self, *args):
        """
        GetNumGlobalNonzeros(self) -> int

        int
        MLAPI::Operator::GetNumGlobalNonzeros() const

        Returns the global number of nonzeros. 
        """
        return _ML.Operator_GetNumGlobalNonzeros(self, *args)

    def GetNumMyNonzeros(self, *args):
        """
        GetNumMyNonzeros(self) -> int

        int
        MLAPI::Operator::GetNumMyNonzeros() const

        Returns the local number of nonzeros. 
        """
        return _ML.Operator_GetNumMyNonzeros(self, *args)

    def GetRowMatrix(self, *args):
        """
        GetRowMatrix(self) -> RowMatrix

        const
        Epetra_RowMatrix* MLAPI::Operator::GetRowMatrix() const

        Returns the RefCountPtr of OperatorBox_. 
        """
        return _ML.Operator_GetRowMatrix(self, *args)

    def GetML_Operator(self, *args):
        """
        GetML_Operator(self) -> ML_Operator

        ML_Operator*
        MLAPI::Operator::GetML_Operator() const

        Returns the RefCountPtr of OperatorBox_. 
        """
        return _ML.Operator_GetML_Operator(self, *args)

    def GetRCPOperatorBox(self, *args):
        """
        GetRCPOperatorBox(self) -> Teuchos::RefCountPtr<(ML_Operator_Box)>

        const
        Teuchos::RefCountPtr<ML_Operator_Box>&
        MLAPI::Operator::GetRCPOperatorBox() const

        Returns the RefCountPtr of OperatorBox_. 
        """
        return _ML.Operator_GetRCPOperatorBox(self, *args)

    def GetRCPAuxOperatorBox(self, *args):
        """
        GetRCPAuxOperatorBox(self) -> Teuchos::RefCountPtr<(ML_Operator_Box)>

        const
        Teuchos::RefCountPtr<ML_Operator_Box>&
        MLAPI::Operator::GetRCPAuxOperatorBox() const

        Returns the RefCountPtr of AuxOperatorBox_. 
        """
        return _ML.Operator_GetRCPAuxOperatorBox(self, *args)

    def GetRCPRowMatrix(self, *args):
        """
        GetRCPRowMatrix(self) -> Teuchos::RefCountPtr<(Epetra_RowMatrix)>

        const
        Teuchos::RefCountPtr<Epetra_RowMatrix>&
        MLAPI::Operator::GetRCPRowMatrix() const

        Returns the RefCountPtr of RowMatrix_. 
        """
        return _ML.Operator_GetRCPRowMatrix(self, *args)

    def GetGRID(self, *args):
        """
        GetGRID(self, int LRID) -> int

        int
        MLAPI::Operator::GetGRID(const int LRID) const

        Returns the global ID of local row ID LRID. 
        """
        return _ML.Operator_GetGRID(self, *args)

    def GetGCID(self, *args):
        """
        GetGCID(self, int LCID) -> int

        int
        MLAPI::Operator::GetGCID(const int LCID) const

        Returns the global ID of local column ID LCID. 
        """
        return _ML.Operator_GetGCID(self, *args)

    def Apply(self, *args):
        """
        Apply(self, MultiVector X, MultiVector Y) -> int

        int
        MLAPI::Operator::Apply(const MultiVector &X, MultiVector &Y) const

        Applies this operator to LHS, returns the result in RHS. 
        """
        return _ML.Operator_Apply(self, *args)

    def BuildColumnSpace(self, *args):
        """
        BuildColumnSpace(self)

        void
        MLAPI::Operator::BuildColumnSpace()

        Build the column space, by computing the GID of all local columns. 
        """
        return _ML.Operator_BuildColumnSpace(self, *args)

    def __getitem__(self, *args):
        """__getitem__(self, PyObject args) -> PyObject"""
        return _ML.Operator___getitem__(self, *args)

    def __add__(self, *args):
        """__add__(self, Operator rhs) -> Operator"""
        return _ML.Operator___add__(self, *args)

    def __sub__(self, *args):
        """__sub__(self, Operator rhs) -> Operator"""
        return _ML.Operator___sub__(self, *args)

    def __mul__(self, *args):
        """
        __mul__(self, MultiVector rhs) -> MultiVector
        __mul__(self, Operator rhs) -> Operator
        __mul__(self, double rhs) -> Operator
        """
        return _ML.Operator___mul__(self, *args)

    def __div__(self, *args):
        """__div__(self, double rhs) -> Operator"""
        return _ML.Operator___div__(self, *args)

Operator_swigregister = _ML.Operator_swigregister
Operator_swigregister(Operator)

class PyMatrix(Operator):
    """Proxy of C++ PyMatrix class"""
    __swig_setmethods__ = {}
    for _s in [Operator]: __swig_setmethods__.update(getattr(_s,'__swig_setmethods__',{}))
    __setattr__ = lambda self, name, value: _swig_setattr(self, PyMatrix, name, value)
    __swig_getmethods__ = {}
    for _s in [Operator]: __swig_getmethods__.update(getattr(_s,'__swig_getmethods__',{}))
    __getattr__ = lambda self, name: _swig_getattr(self, PyMatrix, name)
    __repr__ = _swig_repr
    def __init__(self, *args): 
        """__init__(self, Space RowSpace, Space ColSpace) -> PyMatrix"""
        this = _ML.new_PyMatrix(*args)
        try: self.this.append(this)
        except: self.this = this
    __swig_destroy__ = _ML.delete_PyMatrix
    __del__ = lambda self : None;
    def GetRowSpace(self, *args):
        """GetRowSpace(self) -> Space"""
        return _ML.PyMatrix_GetRowSpace(self, *args)

    def SetElement(self, *args):
        """SetElement(self, int row, int col, double value)"""
        return _ML.PyMatrix_SetElement(self, *args)

    def FillComplete(self, *args):
        """FillComplete(self)"""
        return _ML.PyMatrix_FillComplete(self, *args)

    def GetMatrix(self, *args):
        """GetMatrix(self) -> FECrsMatrix"""
        return _ML.PyMatrix_GetMatrix(self, *args)

    def __setitem__(self, *args):
        """__setitem__(self, PyObject args, double val) -> PyObject"""
        return _ML.PyMatrix___setitem__(self, *args)

    def __getitem__(self, *args):
        """__getitem__(self, PyObject args) -> PyObject"""
        return _ML.PyMatrix___getitem__(self, *args)

PyMatrix_swigregister = _ML.PyMatrix_swigregister
PyMatrix_swigregister(PyMatrix)

ML_MEM_SIZE = _ML.ML_MEM_SIZE
ML_MEM_INITIAL = _ML.ML_MEM_INITIAL
ML_MEM_FINAL = _ML.ML_MEM_FINAL
ML_MEM_SMOOTHER = _ML.ML_MEM_SMOOTHER
ML_MEM_COARSE = _ML.ML_MEM_COARSE
ML_MEM_HIERARCHY = _ML.ML_MEM_HIERARCHY
ML_MEM_PREC_FIRST = _ML.ML_MEM_PREC_FIRST
ML_MEM_PREC_OTHER = _ML.ML_MEM_PREC_OTHER
ML_MEM_TOT1 = _ML.ML_MEM_TOT1
ML_MEM_TOT2 = _ML.ML_MEM_TOT2
ML_MEM_INITIAL_MALLOC = _ML.ML_MEM_INITIAL_MALLOC
ML_MEM_FINAL_MALLOC = _ML.ML_MEM_FINAL_MALLOC
ML_MEM_SMOOTHER_MALLOC = _ML.ML_MEM_SMOOTHER_MALLOC
ML_MEM_COARSE_MALLOC = _ML.ML_MEM_COARSE_MALLOC
ML_MEM_HIERARCHY_MALLOC = _ML.ML_MEM_HIERARCHY_MALLOC
ML_MEM_PREC_FIRST_MALLOC = _ML.ML_MEM_PREC_FIRST_MALLOC
ML_MEM_PREC_OTHER_MALLOC = _ML.ML_MEM_PREC_OTHER_MALLOC
ML_MEM_TOT1_MALLOC = _ML.ML_MEM_TOT1_MALLOC
ML_MEM_TOT2_MALLOC = _ML.ML_MEM_TOT2_MALLOC

def SetDefaults(*args):
  """
    SetDefaults(string ProblemType, ParameterList List, int options = None, 
        double params = None, bool OverWrite = True) -> int
    """
  return _ML.SetDefaults(*args)

def SetDefaultsDD(*args):
  """
    SetDefaultsDD(ParameterList List, Teuchos::RCP<(std::vector<(int,std::allocator<(int)>)>)> options, 
        Teuchos::RCP<(std::vector<(double,std::allocator<(double)>)>)> params, 
        bool Overwrite = True) -> int
    """
  return _ML.SetDefaultsDD(*args)

def SetDefaultsDD_LU(*args):
  """
    SetDefaultsDD_LU(ParameterList List, Teuchos::RCP<(std::vector<(int,std::allocator<(int)>)>)> options, 
        Teuchos::RCP<(std::vector<(double,std::allocator<(double)>)>)> params, 
        bool Overwrite = True) -> int
    """
  return _ML.SetDefaultsDD_LU(*args)

def SetDefaultsDD_3Levels(*args):
  """
    SetDefaultsDD_3Levels(ParameterList List, Teuchos::RCP<(std::vector<(int,std::allocator<(int)>)>)> options, 
        Teuchos::RCP<(std::vector<(double,std::allocator<(double)>)>)> params, 
        bool Overwrite = True) -> int
    """
  return _ML.SetDefaultsDD_3Levels(*args)

def SetDefaultsDD_3Levels_LU(*args):
  """
    SetDefaultsDD_3Levels_LU(ParameterList List, Teuchos::RCP<(std::vector<(int,std::allocator<(int)>)>)> options, 
        Teuchos::RCP<(std::vector<(double,std::allocator<(double)>)>)> params, 
        bool Overwrite = True) -> int
    """
  return _ML.SetDefaultsDD_3Levels_LU(*args)

def SetDefaultsMaxwell(*args):
  """
    SetDefaultsMaxwell(ParameterList List, Teuchos::RCP<(std::vector<(int,std::allocator<(int)>)>)> options, 
        Teuchos::RCP<(std::vector<(double,std::allocator<(double)>)>)> params, 
        bool Overwrite = True) -> int
    """
  return _ML.SetDefaultsMaxwell(*args)

def SetDefaultsSA(*args):
  """
    SetDefaultsSA(ParameterList List, Teuchos::RCP<(std::vector<(int,std::allocator<(int)>)>)> options, 
        Teuchos::RCP<(std::vector<(double,std::allocator<(double)>)>)> params, 
        bool Overwrite = True) -> int
    """
  return _ML.SetDefaultsSA(*args)

def SetDefaultsNSSA(*args):
  """
    SetDefaultsNSSA(ParameterList List, Teuchos::RCP<(std::vector<(int,std::allocator<(int)>)>)> options, 
        Teuchos::RCP<(std::vector<(double,std::allocator<(double)>)>)> params, 
        bool Overwrite = True) -> int
    """
  return _ML.SetDefaultsNSSA(*args)

def ReadXML(*args):
  """ReadXML(string FileName, ParameterList List, Comm Comm) -> int"""
  return _ML.ReadXML(*args)
ML_SA_FAMILY = _ML.ML_SA_FAMILY
ML_MAXWELL = _ML.ML_MAXWELL
ML_COMPOSITE = _ML.ML_COMPOSITE
class MultiLevelPreconditioner(Epetra.Operator):
    """
    ML black-box preconditioner for Epetra_RowMatrix derived classes.

    C++ includes: ml_MultiLevelPreconditioner.h 
    """
    __swig_setmethods__ = {}
    for _s in [Epetra.Operator]: __swig_setmethods__.update(getattr(_s,'__swig_setmethods__',{}))
    __setattr__ = lambda self, name, value: _swig_setattr(self, MultiLevelPreconditioner, name, value)
    __swig_getmethods__ = {}
    for _s in [Epetra.Operator]: __swig_getmethods__.update(getattr(_s,'__swig_getmethods__',{}))
    __getattr__ = lambda self, name: _swig_getattr(self, MultiLevelPreconditioner, name)
    __repr__ = _swig_repr
    def __init__(self, *args): 
        """
        __init__(self, RowMatrix RowMatrix, bool ComputePrec = True) -> MultiLevelPreconditioner
        __init__(self, RowMatrix RowMatrix, ParameterList List, bool ComputePrec = True) -> MultiLevelPreconditioner
        __init__(self, ML_Operator Operator, ParameterList List, bool ComputePrec = True) -> MultiLevelPreconditioner
        __init__(self, ML_Operator Operator, ParameterList List, RowMatrix DiagOperators, 
            ParameterList DiagLists, int NBlocks = 1, 
            bool ComputePrec = True) -> MultiLevelPreconditioner
        __init__(self, RowMatrix EdgeMatrix, RowMatrix GradMatrix, RowMatrix NodeMatrix, 
            ParameterList List, bool ComputePrec = True, 
            bool UseNodeMatrixForSmoother = False) -> MultiLevelPreconditioner
        __init__(self, RowMatrix CurlCurlMatrix, RowMatrix MassMatrix, RowMatrix TMatrix, 
            RowMatrix NodeMatrix, ParameterList List, 
            bool ComputePrec = True) -> MultiLevelPreconditioner
        __init__(self, Epetra_MsrMatrix EdgeMatrix, ML_Operator GradMatrix, 
            AZ_MATRIX NodeMatrix, int proc_config, ParameterList List, 
            bool ComputePrec = True) -> MultiLevelPreconditioner

        ML black-box preconditioner for Epetra_RowMatrix derived classes.

        C++ includes: ml_MultiLevelPreconditioner.h 
        """
        this = _ML.new_MultiLevelPreconditioner(*args)
        try: self.this.append(this)
        except: self.this = this
    __swig_destroy__ = _ML.delete_MultiLevelPreconditioner
    __del__ = lambda self : None;
    def Label(self, *args):
        """
        Label(self) -> char

        virtual const char*
        Epetra_Operator::Label() const =0

        Returns a character string describing the operator. 
        """
        return _ML.MultiLevelPreconditioner_Label(self, *args)

    def PrintUnused(self, *args):
        """
        PrintUnused(self)
        PrintUnused(self,  os)
        PrintUnused(self, int MyPID)
        """
        return _ML.MultiLevelPreconditioner_PrintUnused(self, *args)

    def GetList(self, *args):
        """GetList(self) -> ParameterList"""
        return _ML.MultiLevelPreconditioner_GetList(self, *args)

    def GetOutputList(self, *args):
        """GetOutputList(self) -> ParameterList"""
        return _ML.MultiLevelPreconditioner_GetOutputList(self, *args)

    def PrintList(self, *args):
        """PrintList(self)"""
        return _ML.MultiLevelPreconditioner_PrintList(self, *args)

    def SetParameterList(self, *args):
        """SetParameterList(self, ParameterList List) -> int"""
        return _ML.MultiLevelPreconditioner_SetParameterList(self, *args)

    def Apply(self, *args):
        """
        Apply(self, MultiVector x, MultiVector y) -> int

        In C++, the Apply() method is pure virtual, thus intended to be
        overridden by derived classes.  In python, cross-language polymorphism
        is supported, and you are expected to derive classes from this base
        class and redefine the Apply() method.  C++ code (e.g., AztecOO
        solvers) can call back to your Apply() method as needed.  You must
        support two arguments, labeled here MultiVector x and MultiVector y.
        These will be converted from Epetra_MultiVector C++ objects to
        numpy-hybrid Epetra.MultiVector objects before they are passed to you.
        Thus, it is legal to use slice indexing and other numpy features to
        compute y from x.

        If application of your operator is successful, return 0; else return
        some non-zero error code.

        It is strongly suggested that you prevent Apply() from raising any
        exceptions.  Accidental errors can be prevented by wrapping your code
        in a try block:

            try:
                # Your code goes here...
            except Exception, e:
                print 'A python exception was raised by method Apply:'
                print e
                return -1

        By returning a -1, you inform the calling routine that Apply() was
        unsuccessful.


        virtual int
        Epetra_Operator::Apply(const Epetra_MultiVector &X, Epetra_MultiVector
        &Y) const =0

        Returns the result of a Epetra_Operator applied to a
        Epetra_MultiVector X in Y.

        Parameters:
        -----------

        In:  X - A Epetra_MultiVector of dimension NumVectors to multiply with
        matrix.

        Out:  Y -A Epetra_MultiVector of dimension NumVectors containing
        result.

        Integer error code, set to 0 if successful. 
        """
        return _ML.MultiLevelPreconditioner_Apply(self, *args)

    def ApplyInverse(self, *args):
        """
        ApplyInverse(self, MultiVector x, MultiVector y) -> int

        In C++, the ApplyInverse() method is pure virtual, thus intended to be
        overridden by derived classes.  In python, cross-language polymorphism
        is supported, and you are expected to derive classes from this base
        class and redefine the ApplyInverse() method.  C++ code (e.g., AztecOO
        solvers) can call back to your ApplyInverse() method as needed.  You
        must support two arguments, labeled here MultiVector x and MultiVector
        y.  These will be converted from Epetra_MultiVector C++ objects to
        numpy-hybrid Epetra.MultiVector objects before they are passed to you.
        Thus, it is legal to use slice indexing and other numpy features to
        compute y from x.

        If application of your operator is successful, return 0; else return
        some non-zero error code.

        It is strongly suggested that you prevent ApplyInverse() from raising
        any exceptions.  Accidental errors can be prevented by wrapping your
        code in a try block:

            try:
                # Your code goes here...
            except Exception, e:
                print 'A python exception was raised by method ApplyInverse:'
                print e
                return -1

        By returning a -1, you inform the calling routine that ApplyInverse()
        was unsuccessful.


        virtual int
        Epetra_Operator::ApplyInverse(const Epetra_MultiVector &X,
        Epetra_MultiVector &Y) const =0

        Returns the result of a Epetra_Operator inverse applied to an
        Epetra_MultiVector X in Y.

        Parameters:
        -----------

        In:  X - A Epetra_MultiVector of dimension NumVectors to solve for.

        Out:  Y -A Epetra_MultiVector of dimension NumVectors containing
        result.

        Integer error code, set to 0 if successful.

        WARNING:  In order to work with AztecOO, any implementation of this
        method must support the case where X and Y are the same object. 
        """
        return _ML.MultiLevelPreconditioner_ApplyInverse(self, *args)

    def ComputePreconditioner(self, *args):
        """ComputePreconditioner(self, bool CheckFiltering = False) -> int"""
        return _ML.MultiLevelPreconditioner_ComputePreconditioner(self, *args)

    def ReComputePreconditioner(self, *args):
        """ReComputePreconditioner(self) -> int"""
        return _ML.MultiLevelPreconditioner_ReComputePreconditioner(self, *args)

    def ComputeAdaptivePreconditioner(self, *args):
        """ComputeAdaptivePreconditioner(self, int TentativeNullSpaceSize, double TentativeNullSpace) -> int"""
        return _ML.MultiLevelPreconditioner_ComputeAdaptivePreconditioner(self, *args)

    def IsPreconditionerComputed(self, *args):
        """IsPreconditionerComputed(self) -> int"""
        return _ML.MultiLevelPreconditioner_IsPreconditionerComputed(self, *args)

    def SetOwnership(self, *args):
        """SetOwnership(self, bool ownership) -> int"""
        return _ML.MultiLevelPreconditioner_SetOwnership(self, *args)

    def SetUseTranspose(self, *args):
        """
        SetUseTranspose(self, bool UseTranspose) -> int

        virtual int
        Epetra_Operator::SetUseTranspose(bool UseTranspose)=0

        If set true, transpose of this operator will be applied.

        This flag allows the transpose of the given operator to be used
        implicitly. Setting this flag affects only the Apply() and
        ApplyInverse() methods. If the implementation of this interface does
        not support transpose use, this method should return a value of -1.

        Parameters:
        -----------

        In:  UseTranspose -If true, multiply by the transpose of operator,
        otherwise just use operator.

        Integer error code, set to 0 if successful. Set to -1 if this
        implementation does not support transpose. 
        """
        return _ML.MultiLevelPreconditioner_SetUseTranspose(self, *args)

    def NormInf(self, *args):
        """
        NormInf(self) -> double

        virtual double
        Epetra_Operator::NormInf() const =0

        Returns the infinity norm of the global matrix. 
        """
        return _ML.MultiLevelPreconditioner_NormInf(self, *args)

    def UseTranspose(self, *args):
        """
        UseTranspose(self) -> bool

        virtual bool
        Epetra_Operator::UseTranspose() const =0

        Returns the current UseTranspose setting. 
        """
        return _ML.MultiLevelPreconditioner_UseTranspose(self, *args)

    def HasNormInf(self, *args):
        """
        HasNormInf(self) -> bool

        virtual bool
        Epetra_Operator::HasNormInf() const =0

        Returns true if the this object can provide an approximate Inf-norm,
        false otherwise. 
        """
        return _ML.MultiLevelPreconditioner_HasNormInf(self, *args)

    def Comm(self, *args):
        """
        Comm(self) -> Comm

        virtual const
        Epetra_Comm& Epetra_Operator::Comm() const =0

        Returns a pointer to the Epetra_Comm communicator associated with this
        operator. 
        """
        return _ML.MultiLevelPreconditioner_Comm(self, *args)

    def OperatorDomainMap(self, *args):
        """
        OperatorDomainMap(self) -> Map

        virtual
        const Epetra_Map& Epetra_Operator::OperatorDomainMap() const =0

        Returns the Epetra_Map object associated with the domain of this
        operator. 
        """
        return _ML.MultiLevelPreconditioner_OperatorDomainMap(self, *args)

    def OperatorRangeMap(self, *args):
        """
        OperatorRangeMap(self) -> Map

        virtual
        const Epetra_Map& Epetra_Operator::OperatorRangeMap() const =0

        Returns the Epetra_Map object associated with the range of this
        operator. 
        """
        return _ML.MultiLevelPreconditioner_OperatorRangeMap(self, *args)

    def DestroyPreconditioner(self, *args):
        """DestroyPreconditioner(self) -> int"""
        return _ML.MultiLevelPreconditioner_DestroyPreconditioner(self, *args)

    def RowMatrix(self, *args):
        """RowMatrix(self) -> RowMatrix"""
        return _ML.MultiLevelPreconditioner_RowMatrix(self, *args)

    def Map(self, *args):
        """Map(self) -> BlockMap"""
        return _ML.MultiLevelPreconditioner_Map(self, *args)

    def NumGlobalRows(self, *args):
        """NumGlobalRows(self) -> int"""
        return _ML.MultiLevelPreconditioner_NumGlobalRows(self, *args)

    def NumGlobalCols(self, *args):
        """NumGlobalCols(self) -> int"""
        return _ML.MultiLevelPreconditioner_NumGlobalCols(self, *args)

    def NumMyRows(self, *args):
        """NumMyRows(self) -> int"""
        return _ML.MultiLevelPreconditioner_NumMyRows(self, *args)

    def NumMyCols(self, *args):
        """NumMyCols(self) -> int"""
        return _ML.MultiLevelPreconditioner_NumMyCols(self, *args)

    def PrintStencil2D(self, *args):
        """PrintStencil2D(self, int nx, int ny, int NodeID = -1, int EquationID = 0) -> int"""
        return _ML.MultiLevelPreconditioner_PrintStencil2D(self, *args)

    def AnalyzeHierarchy(self, *args):
        """
        AnalyzeHierarchy(self, bool AnalyzeMatrices, int PreCycles, int PostCycles, 
            int MLCycles) -> int
        """
        return _ML.MultiLevelPreconditioner_AnalyzeHierarchy(self, *args)

    def AnalyzeSmoothers(self, *args):
        """AnalyzeSmoothers(self, int NumPreCycles = 1, int NumPostCycles = 1) -> int"""
        return _ML.MultiLevelPreconditioner_AnalyzeSmoothers(self, *args)

    def AnalyzeCoarse(self, *args):
        """AnalyzeCoarse(self) -> int"""
        return _ML.MultiLevelPreconditioner_AnalyzeCoarse(self, *args)

    def AnalyzeCycle(self, *args):
        """AnalyzeCycle(self, int NumCycles = 1) -> int"""
        return _ML.MultiLevelPreconditioner_AnalyzeCycle(self, *args)

    def TestSmoothers(self, *args):
        """
        TestSmoothers(self, ParameterList InputList, bool IsSymmetric = False) -> int
        TestSmoothers(self, bool IsSymmetric = False) -> int
        """
        return _ML.MultiLevelPreconditioner_TestSmoothers(self, *args)

    def GetML(self, *args):
        """GetML(self, int WhichML = -1) -> ML"""
        return _ML.MultiLevelPreconditioner_GetML(self, *args)

    def GetML_Aggregate(self, *args):
        """GetML_Aggregate(self) -> ML_Aggregate"""
        return _ML.MultiLevelPreconditioner_GetML_Aggregate(self, *args)

    def Visualize(self, *args):
        """
        Visualize(self, bool VizAggre, bool VizPreSmoother, bool VizPostSmoother, 
            bool VizCycle, int NumApplPreSmoother, 
            int NumApplPostSmoother, int NumCycleSmoother) -> int
        """
        return _ML.MultiLevelPreconditioner_Visualize(self, *args)

    def VisualizeAggregates(self, *args):
        """VisualizeAggregates(self) -> int"""
        return _ML.MultiLevelPreconditioner_VisualizeAggregates(self, *args)

    def VisualizeSmoothers(self, *args):
        """VisualizeSmoothers(self, int NumPrecCycles = 1, int NumPostCycles = 1) -> int"""
        return _ML.MultiLevelPreconditioner_VisualizeSmoothers(self, *args)

    def VisualizeCycle(self, *args):
        """VisualizeCycle(self, int NumCycles = 1) -> int"""
        return _ML.MultiLevelPreconditioner_VisualizeCycle(self, *args)

    def CreateLabel(self, *args):
        """CreateLabel(self) -> int"""
        return _ML.MultiLevelPreconditioner_CreateLabel(self, *args)

    def ReportTime(self, *args):
        """ReportTime(self)"""
        return _ML.MultiLevelPreconditioner_ReportTime(self, *args)

    def SetParameterListAndNullSpace(self, *args):
        """SetParameterListAndNullSpace(self, PyObject obj, Epetra_MultiVector NullSpace) -> int"""
        return _ML.MultiLevelPreconditioner_SetParameterListAndNullSpace(self, *args)

MultiLevelPreconditioner_swigregister = _ML.MultiLevelPreconditioner_swigregister
MultiLevelPreconditioner_swigregister(MultiLevelPreconditioner)

class InverseOperator(BaseOperator,CompObject,TimeObject):
    """
    InverseOperator: basic class to define smoother and coarse solvers.

    Marzio Sala, D-INFK/ETHZ.

    C++ includes: MLAPI_InverseOperator.h 
    """
    __swig_setmethods__ = {}
    for _s in [BaseOperator,CompObject,TimeObject]: __swig_setmethods__.update(getattr(_s,'__swig_setmethods__',{}))
    __setattr__ = lambda self, name, value: _swig_setattr(self, InverseOperator, name, value)
    __swig_getmethods__ = {}
    for _s in [BaseOperator,CompObject,TimeObject]: __swig_getmethods__.update(getattr(_s,'__swig_getmethods__',{}))
    __getattr__ = lambda self, name: _swig_getattr(self, InverseOperator, name)
    __repr__ = _swig_repr
    def __init__(self, *args): 
        """
        __init__(self) -> InverseOperator
        __init__(self, Operator Op, string Type) -> InverseOperator
        __init__(self, Operator Op, string Type, ParameterList List) -> InverseOperator
        __init__(self, InverseOperator RHS) -> InverseOperator

        MLAPI::InverseOperator::InverseOperator(const InverseOperator &RHS)

        Copy constructor. 
        """
        this = _ML.new_InverseOperator(*args)
        try: self.this.append(this)
        except: self.this = this
    __swig_destroy__ = _ML.delete_InverseOperator
    __del__ = lambda self : None;
    def GetOperatorRangeSpace(self, *args):
        """
        GetOperatorRangeSpace(self) -> Space

        const Space MLAPI::InverseOperator::GetOperatorRangeSpace() const

        Returns a reference to the range space of this object. 
        """
        return _ML.InverseOperator_GetOperatorRangeSpace(self, *args)

    def GetOperatorDomainSpace(self, *args):
        """
        GetOperatorDomainSpace(self) -> Space

        const Space MLAPI::InverseOperator::GetOperatorDomainSpace() const

        Returns a reference to the domain space of this object. 
        """
        return _ML.InverseOperator_GetOperatorDomainSpace(self, *args)

    def GetRangeSpace(self, *args):
        """
        GetRangeSpace(self) -> Space

        const
        Space MLAPI::InverseOperator::GetRangeSpace() const

        Returns a reference to the range space of this object. 
        """
        return _ML.InverseOperator_GetRangeSpace(self, *args)

    def GetDomainSpace(self, *args):
        """
        GetDomainSpace(self) -> Space

        const
        Space MLAPI::InverseOperator::GetDomainSpace() const

        Returns a reference to the domain space of this object. 
        """
        return _ML.InverseOperator_GetDomainSpace(self, *args)

    def RCPRowMatrix(self, *args):
        """
        RCPRowMatrix(self) -> Teuchos::RefCountPtr<(Epetra_RowMatrix)>

        const
        Teuchos::RefCountPtr<Epetra_RowMatrix>
        MLAPI::InverseOperator::RCPRowMatrix() const

        Returns pointer of the internally stored ML_Epetra::RowMatrix object.

        """
        return _ML.InverseOperator_RCPRowMatrix(self, *args)

    def RowMatrix(self, *args):
        """
        RowMatrix(self) -> RowMatrix

        Epetra_RowMatrix* MLAPI::InverseOperator::RowMatrix() const

        Returns pointer of the internally stored ML_Epetra::RowMatrix object.

        """
        return _ML.InverseOperator_RowMatrix(self, *args)

    def GetOperator(self, *args):
        """
        GetOperator(self) -> Operator

        const
        Operator& MLAPI::InverseOperator::GetOperator() const

        Returns a reference to the Operator of which this object defines the
        inverse. 
        """
        return _ML.InverseOperator_GetOperator(self, *args)

    def GetRCPData(self, *args):
        """
        GetRCPData(self) -> Teuchos::RefCountPtr<(Ifpack_Preconditioner)>
        GetRCPData(self) -> Teuchos::RefCountPtr<(Ifpack_Preconditioner)>

        const
        Teuchos::RefCountPtr<Ifpack_Preconditioner>&
        MLAPI::InverseOperator::GetRCPData() const

        Returns a pointer to the internally stored IFPACK preconditioner. 
        """
        return _ML.InverseOperator_GetRCPData(self, *args)

    def GetRCPMLPrec(self, *args):
        """
        GetRCPMLPrec(self) -> Teuchos::RefCountPtr<(ML_Epetra::MultiLevelPreconditioner)>
        GetRCPMLPrec(self) -> Teuchos::RefCountPtr<(ML_Epetra::MultiLevelPreconditioner)>

        const
        Teuchos::RefCountPtr<ML_Epetra::MultiLevelPreconditioner>&
        MLAPI::InverseOperator::GetRCPMLPrec() const

        Returns a pointer to the internally stored ML preconditioner. 
        """
        return _ML.InverseOperator_GetRCPMLPrec(self, *args)

    def Apply(self, *args):
        """
        Apply(self, MultiVector x, MultiVector y) -> int

        int
        MLAPI::InverseOperator::Apply(const MultiVector &x, MultiVector &y)
        const

        Applies this object to vector lhs, returns values in rhs. 
        """
        return _ML.InverseOperator_Apply(self, *args)

    def __call__(self, *args):
        """
        __call__(self, MultiVector LHS) -> MultiVector
        __call__(self, MultiVector LHS, MultiVector RHS) -> MultiVector
        """
        return _ML.InverseOperator___call__(self, *args)

    def __mul__(self, *args):
        """__mul__(self, MultiVector rhs) -> MultiVector"""
        return _ML.InverseOperator___mul__(self, *args)

    def Reshape(self, *args):
        """
        Reshape(self)
        Reshape(self, Operator Op, string Type)
        Reshape(self, Operator Op, string Type, ParameterList List, ParameterList pushlist = None)
        Reshape(self, Ifpack_Preconditioner prec, Operator Op, bool ownership)
        Reshape(self, Operator Op, string Type, PyObject obj) -> bool

        void
        MLAPI::InverseOperator::Reshape(Ifpack_Preconditioner *prec, const
        Operator &Op, const bool ownership)

        Reshape with preconstructed smoother as Ifpack_Preconditioner. 
        """
        return _ML.InverseOperator_Reshape(self, *args)

InverseOperator_swigregister = _ML.InverseOperator_swigregister
InverseOperator_swigregister(InverseOperator)


def GetRAP(*args):
  """
    GetRAP(Operator R, Operator A, Operator P) -> Operator

    Operator MLAPI::GetRAP(const
    Operator &R, const Operator &A, const Operator &P)

    Performs a triple matrix-matrix product, res = R * A *P. 
    """
  return _ML.GetRAP(*args)

def GetTranspose(*args):
  """
    GetTranspose(Operator A, bool byrow = True) -> Operator

    Operator
    MLAPI::GetTranspose(const Operator &A, const bool byrow=true)

    Returns a newly created transpose of A. 
    """
  return _ML.GetTranspose(*args)

def GetIdentity(*args):
  """
    GetIdentity(Space DomainSpace, Space RangeSpace) -> Operator

    Operator
    MLAPI::GetIdentity(const Space &DomainSpace, const Space &RangeSpace)

    Returns the identity matrix. 
    """
  return _ML.GetIdentity(*args)

def GetJacobiIterationOperator(*args):
  """
    GetJacobiIterationOperator(Operator Amat, double Damping) -> Operator

    Operator
    MLAPI::GetJacobiIterationOperator(const Operator &Amat, double
    Damping)

    Returns an operator defined as (I - Damping A). 
    """
  return _ML.GetJacobiIterationOperator(*args)

def GetPtent1D(*args):
  """
    GetPtent1D(MultiVector D, int offset = 0) -> Operator

    Operator
    MLAPI::GetPtent1D(const MultiVector &D, const int offset=0)

    Returns a newly created operator, containing D on the diagonal. 
    """
  return _ML.GetPtent1D(*args)

def ML_Operator_Add2(*args):
  """
    ML_Operator_Add2(ML_Operator A, ML_Operator B, ML_Operator C, int matrix_type, 
        double scalarA, double scalarB) -> int

    int
    MLAPI::ML_Operator_Add2(ML_Operator *A, ML_Operator *B, ML_Operator
    *C, int matrix_type, double scalarA, double scalarB) 
    """
  return _ML.ML_Operator_Add2(*args)

def AnalyzeCheap(*args):
  """
    AnalyzeCheap(Operator A)

    void
    MLAPI::AnalyzeCheap(const Operator &A)

    Performs a cheap analysis of the properties of the input operator. 
    """
  return _ML.AnalyzeCheap(*args)

def PrintSparsity(*args):
  """
    PrintSparsity(Operator A, int NumPDEEquations = 1)

    void
    MLAPI::PrintSparsity(const Operator &A, int NumPDEEquations=1)

    Prints on file the sparsity structure of input operator. 
    """
  return _ML.PrintSparsity(*args)

def GetScaledOperator(*args):
  """
    GetScaledOperator(Operator A, double alpha) -> Operator

    Operator
    MLAPI::GetScaledOperator(const Operator &A, const double alpha)

    Multiply A by a double value, alpha. 
    """
  return _ML.GetScaledOperator(*args)
class EpetraBaseOperator(Epetra.Operator):
    """
    Basic class to wrap MLAPI::InverseOperator into Epetra_Operator.

    Marzio Sala, SNL 9214.

    C++ includes: MLAPI_EpetraBaseOperator.h 
    """
    __swig_setmethods__ = {}
    for _s in [Epetra.Operator]: __swig_setmethods__.update(getattr(_s,'__swig_setmethods__',{}))
    __setattr__ = lambda self, name, value: _swig_setattr(self, EpetraBaseOperator, name, value)
    __swig_getmethods__ = {}
    for _s in [Epetra.Operator]: __swig_getmethods__.update(getattr(_s,'__swig_getmethods__',{}))
    __getattr__ = lambda self, name: _swig_getattr(self, EpetraBaseOperator, name)
    __repr__ = _swig_repr
    def __init__(self, *args): 
        """
        __init__(self, Map Map, BaseOperator Op) -> EpetraBaseOperator

        MLAPI::EpetraBaseOperator::EpetraBaseOperator(const Epetra_Map &Map,
        const BaseOperator &Op)

        Constructor. 
        """
        this = _ML.new_EpetraBaseOperator(*args)
        try: self.this.append(this)
        except: self.this = this
    __swig_destroy__ = _ML.delete_EpetraBaseOperator
    __del__ = lambda self : None;
    def ApplyInverse(self, *args):
        """
        ApplyInverse(self, Epetra_MultiVector X_Epetra, Epetra_MultiVector Y_Epetra) -> int

        int
        MLAPI::EpetraBaseOperator::ApplyInverse(const Epetra_MultiVector
        &X_Epetra, Epetra_MultiVector &Y_Epetra) const

        Applies the operator to X, returns the results in Y.

        Apply() and ApplyInverse() are the SAME function! 
        """
        return _ML.EpetraBaseOperator_ApplyInverse(self, *args)

    def SetUseTranspose(self, *args):
        """
        SetUseTranspose(self, bool UseTranspose) -> int

        virtual int MLAPI::EpetraBaseOperator::SetUseTranspose(bool
        UseTranspose)

        Sets the use of tranpose (NOT IMPLEMENTED). 
        """
        return _ML.EpetraBaseOperator_SetUseTranspose(self, *args)

    def Apply(self, *args):
        """
        Apply(self, Epetra_MultiVector X_Epetra, Epetra_MultiVector Y_Epetra) -> int

        virtual int
        MLAPI::EpetraBaseOperator::Apply(const Epetra_MultiVector &X_Epetra,
        Epetra_MultiVector &Y_Epetra) const

        Applies the operator to X, returns the results in Y. 
        """
        return _ML.EpetraBaseOperator_Apply(self, *args)

    def NormInf(self, *args):
        """
        NormInf(self) -> double

        virtual
        double MLAPI::EpetraBaseOperator::NormInf() const

        NOT IMPLEMENTED. 
        """
        return _ML.EpetraBaseOperator_NormInf(self, *args)

    def Label(self, *args):
        """
        Label(self) -> char

        virtual
        const char* MLAPI::EpetraBaseOperator::Label() const

        Returns the label of this object. 
        """
        return _ML.EpetraBaseOperator_Label(self, *args)

    def UseTranspose(self, *args):
        """
        UseTranspose(self) -> bool

        virtual bool MLAPI::EpetraBaseOperator::UseTranspose() const

        Returns false. 
        """
        return _ML.EpetraBaseOperator_UseTranspose(self, *args)

    def HasNormInf(self, *args):
        """
        HasNormInf(self) -> bool

        virtual
        bool MLAPI::EpetraBaseOperator::HasNormInf() const

        NOT IMPLEMENTED. 
        """
        return _ML.EpetraBaseOperator_HasNormInf(self, *args)

    def Comm(self, *args):
        """
        Comm(self) -> Comm

        virtual const
        Epetra_Comm& MLAPI::EpetraBaseOperator::Comm() const

        Returns a reference to the communicator object. 
        """
        return _ML.EpetraBaseOperator_Comm(self, *args)

    def OperatorDomainMap(self, *args):
        """
        OperatorDomainMap(self) -> Map

        virtual const Epetra_Map&
        MLAPI::EpetraBaseOperator::OperatorDomainMap() const

        Returns a reference to the OperatorDomainMap. 
        """
        return _ML.EpetraBaseOperator_OperatorDomainMap(self, *args)

    def OperatorRangeMap(self, *args):
        """
        OperatorRangeMap(self) -> Map

        virtual const Epetra_Map&
        MLAPI::EpetraBaseOperator::OperatorRangeMap() const

        Returns a reference to the OperatorRangeMap. 
        """
        return _ML.EpetraBaseOperator_OperatorRangeMap(self, *args)

    def Map(self, *args):
        """
        Map(self) -> Map

        virtual const
        Epetra_Map& MLAPI::EpetraBaseOperator::Map() const

        Returns a reference to the Map of this object. 
        """
        return _ML.EpetraBaseOperator_Map(self, *args)

    def GetBaseOperator(self, *args):
        """
        GetBaseOperator(self) -> BaseOperator

        const BaseOperator& MLAPI::EpetraBaseOperator::GetBaseOperator() const

        """
        return _ML.EpetraBaseOperator_GetBaseOperator(self, *args)

EpetraBaseOperator_swigregister = _ML.EpetraBaseOperator_swigregister
EpetraBaseOperator_swigregister(EpetraBaseOperator)

def GetDiagonal(*args):
  """
    GetDiagonal(Operator A) -> MultiVector
    GetDiagonal(Operator A, int offset) -> MultiVector
    GetDiagonal(MultiVector D) -> Operator

    Operator
    MLAPI::GetDiagonal(const MultiVector &D)

    Returns a newly created operator, containing D on the diagonal. 
    """
  return _ML.GetDiagonal(*args)

def Duplicate(*args):
  """
    Duplicate(MultiVector y) -> MultiVector
    Duplicate(MultiVector y, int v) -> MultiVector
    Duplicate(Operator A) -> Operator

    Operator
    MLAPI::Duplicate(const Operator &A)

    Duplicates a given operator. 
    """
  return _ML.Duplicate(*args)


def Krylov(*args):
  """
    Krylov(Operator A, MultiVector LHS, MultiVector RHS, BaseOperator Prec, 
        ParameterList List)

    void MLAPI::Krylov(const
    Operator &A, const MultiVector &LHS, const MultiVector &RHS, const
    BaseOperator &Prec, Teuchos::ParameterList &List) 
    """
  return _ML.Krylov(*args)

def GetAggregates(*args):
  """
    GetAggregates(RowMatrix A, ParameterList List, double thisns, Epetra_IntVector aggrinfo) -> int

    int
    MLAPI::GetAggregates(Epetra_RowMatrix &A, Teuchos::ParameterList
    &List, double *thisns, Epetra_IntVector &aggrinfo)

    Call ML aggregation on A according to parameters supplied in List.
    Return aggregates in aggrinfo.

    On input, map of aggrinfo has to map row map of A. On output,
    aggrinfo[i] contains number of aggregate the row belongs to, where
    aggregates are numbered starting from 0. Return value is the
    processor-local number of aggregates build. If aggrinfo[i] >= return-
    value, then i is a processor local row of a row that ML has detected
    to be on a Dirichlet BC.

    Parameters:
    -----------

    A:  (in): Matrix to be aggregated on

    List:  (in): ParameterList containing ML options

    thisns:  (in): nullspace

    aggrinfo(out):  ::  vector containing aggregation information

    Map of aggrinfo has to match rowmap of A on input.

    returns processor-local number of aggregates

    Michael Gee (gee@lnm.mw.tum.de) 
    """
  return _ML.GetAggregates(*args)

def GetGlobalAggregates(*args):
  """
    GetGlobalAggregates(RowMatrix A, ParameterList List, double thisns, Epetra_IntVector aggrinfo) -> int

    int
    MLAPI::GetGlobalAggregates(Epetra_RowMatrix &A, Teuchos::ParameterList
    &List, double *thisns, Epetra_IntVector &aggrinfo)

    Call ML aggregation on A according to parameters supplied in List.
    Return aggregates in aggrinfo.

    On input, map of aggrinfo has to map row map of A. On output,
    aggrinfo[i] contains number of global aggregate the row belongs to,
    where aggregates are numbered starting from 0 globally. Return value
    is the processor-local number of aggregates build. If aggrinfo[i] < 0,
    then i is a processor local row that ML has detected to be on a
    Dirichlet BC. if aggrinfo[i] >= 0, then i is a processor local row and
    aggrinfo[i] is a global aggregate id.

    Parameters:
    -----------

    A:  (in): Matrix to be aggregated on

    List:  (in): ParameterList containing ML options

    thisns:  (in): nullspace

    aggrinfo(out):  ::  vector containing aggregation information in
    global numbering

    Map of aggrinfo has to match rowmap of A on input.

    returns processor-local number of aggregates

    Michael Gee (gee@lnm.mw.tum.de) 
    """
  return _ML.GetGlobalAggregates(*args)

def MaxEigAnorm(*args):
  """
    MaxEigAnorm(Operator Op, bool DiagonalScaling = False) -> double

    double
    MLAPI::MaxEigAnorm(const Operator &Op, const bool
    DiagonalScaling=false)

    Computes the maximum eigenvalue of Op using the A-norm of the
    operator. 
    """
  return _ML.MaxEigAnorm(*args)

def MaxEigCG(*args):
  """
    MaxEigCG(Operator Op, bool DiagonalScaling = False) -> double

    double MLAPI::MaxEigCG(const
    Operator &Op, const bool DiagonalScaling=false)

    Computes the maximum eigenvalue of Op using the CG method. 
    """
  return _ML.MaxEigCG(*args)

def MaxEigPowerMethod(*args):
  """
    MaxEigPowerMethod(Operator Op, bool DiagonalScaling = False) -> double

    double
    MLAPI::MaxEigPowerMethod(const Operator &Op, const bool
    DiagonalScaling=false)

    Computes the maximum eigenvalue of Op using the power method. 
    """
  return _ML.MaxEigPowerMethod(*args)

def MaxEigAnasazi(*args):
  """
    MaxEigAnasazi(Operator Op, bool DiagonalScaling = False) -> double

    double
    MLAPI::MaxEigAnasazi(const Operator &Op, const bool
    DiagonalScaling=false)

    Computes the maximum eigenvalue of Op using Anasazi. 
    """
  return _ML.MaxEigAnasazi(*args)

def Eig(*args):
  """
    Eig(Operator Op, MultiVector ER, MultiVector EI)

    void MLAPI::Eig(const Operator
    &Op, MultiVector &ER, MultiVector &EI)

    Computes eigenvalues and eigenvectors using LAPACK (w/ one process
    only). 
    """
  return _ML.Eig(*args)

def Eigs(*args):
  """
    Eigs(Operator A, int NumEigenvalues, MultiVector ER, MultiVector EI)

    void MLAPI::Eigs(const Operator
    &A, int NumEigenvalues, MultiVector &ER, MultiVector &EI) 
    """
  return _ML.Eigs(*args)

def Gallery(*args):
  """
    Gallery(string ProblemType, Space MySpace) -> Operator

    Operator MLAPI::Gallery(const
    string ProblemType, const Space &MySpace)

    Creates a matrix using the TRIUTILS gallery. 
    """
  return _ML.Gallery(*args)

def GetShiftedLaplacian1D(*args):
  """
    GetShiftedLaplacian1D(int NX, double Factor = 0.99) -> Operator

    Operator
    MLAPI::GetShiftedLaplacian1D(const int NX, const double Factor=0.99)

    Creates a 1D shifted Laplacian. 
    """
  return _ML.GetShiftedLaplacian1D(*args)

def GetShiftedLaplacian2D(*args):
  """
    GetShiftedLaplacian2D(int NX, int NY, double Factor = 0.99, bool RandomScale = False) -> Operator

    Operator
    MLAPI::GetShiftedLaplacian2D(const int NX, const int NY, const double
    Factor=0.99, const bool RandomScale=false)

    Creates a 2D shifted Laplacian. 
    """
  return _ML.GetShiftedLaplacian2D(*args)

def ReadMatrix(*args):
  """
    ReadMatrix(char FileName) -> Operator

    Operator
    MLAPI::ReadMatrix(const char *FileName)

    Reads a matrix in MATLAB format. 
    """
  return _ML.ReadMatrix(*args)

def GetRecirc2D(*args):
  """
    GetRecirc2D(int NX, int NY, double conv, double diff) -> Operator

    Operator
    MLAPI::GetRecirc2D(const int NX, const int NY, const double conv,
    const double diff)

    Creates a recirculation problem in 2D. 
    """
  return _ML.GetRecirc2D(*args)

def ReadParameterList(*args):
  """
    ReadParameterList(char FileName) -> ParameterList

    Teuchos::ParameterList MLAPI::ReadParameterList(const char *FileName)

    Populates a list from specified file. 
    """
  return _ML.ReadParameterList(*args)

def GetPNonSmoothed(*args):
  """
    GetPNonSmoothed(Operator A, MultiVector ThisNS, MultiVector NextNS, 
        PyObject obj) -> Operator
    """
  return _ML.GetPNonSmoothed(*args)

def Iterate(*args):
  """
    Iterate(Operator A, MultiVector LHS, MultiVector RHS, BaseOperator Prec, 
        PyObject obj) -> bool
    """
  return _ML.Iterate(*args)
# This file is compatible with both classic and new-style classes.


def __add__(*args):
  """
    __add__(MultiVector x, MultiVector y) -> MultiVector
    __add__(MultiVector x, double alpha) -> MultiVector
    __add__(double alpha, MultiVector x) -> MultiVector
    __add__(Operator A, Operator B) -> Operator
    """
  return _ML.__add__(*args)

def __sub__(*args):
  """
    __sub__(MultiVector x, MultiVector y) -> MultiVector
    __sub__(MultiVector x, double alpha) -> MultiVector
    __sub__(double alpha, MultiVector x) -> MultiVector
    __sub__(Operator A, Operator B) -> Operator
    """
  return _ML.__sub__(*args)

def __div__(*args):
  """
    __div__(Operator A, double alpha) -> Operator
    __div__(MultiVector x, double alpha) -> MultiVector
    """
  return _ML.__div__(*args)

def __mul__(*args):
  """
    __mul__(Operator A, MultiVector y) -> MultiVector
    __mul__(Operator A, Operator B) -> Operator
    __mul__(Operator A, double alpha) -> Operator
    __mul__(double alpha, Operator A) -> Operator
    __mul__(MultiVector x, double alpha) -> MultiVector
    __mul__(double alpha, MultiVector x) -> MultiVector
    __mul__(BaseOperator A, MultiVector x) -> MultiVector
    __mul__(MultiVector x, MultiVector y) -> double
    """
  return _ML.__mul__(*args)

def GetPtent(*args):
  """
    GetPtent(Operator A, ParameterList List, MultiVector ThisNS, 
        Operator Ptent, MultiVector NextNS)
    GetPtent(Operator A, ParameterList List, Operator Ptent)
    GetPtent(RowMatrix A, ParameterList List, double thisns, Teuchos::RCP<(Epetra_CrsMatrix)> Ptent, 
        Teuchos::RCP<(Epetra_MultiVector)> NextNS, 
        int domainoffset = 0)
    GetPtent(RowMatrix A, ParameterList List, double thisns, Teuchos::RCP<(Epetra_CrsMatrix)> Ptent, 
        int domainoffset = 0)

    void MLAPI::GetPtent(const
    Epetra_RowMatrix &A, Teuchos::ParameterList &List, double *thisns,
    Teuchos::RCP< Epetra_CrsMatrix > &Ptent, const int domainoffset=0)

    Builds the tentative prolongator using aggregation.

    Build Ptent and NextNS as usual but as Epetra objects.

    Parameters:
    -----------

    A:  (in): Matrix to be aggregated on

    List:  (in): ParameterList containing ML options

    thisns:  (in): nullspace in format ML accepts

    Ptent(out):  ::  Matrix containing tentative prolongator

    domainoffset:  (in,optional): give an offset such that the domainmap
    of Ptent starts global numbering from domainoffset instead from zero.
    This is useful to create block matrices.

    Michael Gee (gee@lnm.mw.tum.de) 
    """
  return _ML.GetPtent(*args)