This file is indexed.

/usr/share/pyshared/PyTrilinos/Komplex.py is in python-pytrilinos 10.4.0.dfsg-1ubuntu2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
# This file was automatically generated by SWIG (http://www.swig.org).
# Version 2.0.4
#
# Do not make changes to this file unless you know what you are doing--modify
# the SWIG interface file instead.


"""

PyTrilinos.Komplex is the python interface to the Trilinos complex
linear algebra package Komplex:

    http://trilinos.sandia.gov/packages/komplex

The purpose of Komplex is to define complex (real + imaginary) linear
algebra problems using real-valued Epetra vectors and matrix
operators.  The python version of the Komplex package supports the
following class:

    * LinearProblem - Encapsulate all elements of a complex linear
                      algebra problem

"""


from sys import version_info
if version_info >= (2,6,0):
    def swig_import_helper():
        from os.path import dirname
        import imp
        fp = None
        try:
            fp, pathname, description = imp.find_module('_Komplex', [dirname(__file__)])
        except ImportError:
            import _Komplex
            return _Komplex
        if fp is not None:
            try:
                _mod = imp.load_module('_Komplex', fp, pathname, description)
            finally:
                fp.close()
            return _mod
    _Komplex = swig_import_helper()
    del swig_import_helper
else:
    import _Komplex
del version_info
try:
    _swig_property = property
except NameError:
    pass # Python < 2.2 doesn't have 'property'.
def _swig_setattr_nondynamic(self,class_type,name,value,static=1):
    if (name == "thisown"): return self.this.own(value)
    if (name == "this"):
        if type(value).__name__ == 'SwigPyObject':
            self.__dict__[name] = value
            return
    method = class_type.__swig_setmethods__.get(name,None)
    if method: return method(self,value)
    if (not static):
        self.__dict__[name] = value
    else:
        raise AttributeError("You cannot add attributes to %s" % self)

def _swig_setattr(self,class_type,name,value):
    return _swig_setattr_nondynamic(self,class_type,name,value,0)

def _swig_getattr(self,class_type,name):
    if (name == "thisown"): return self.this.own()
    method = class_type.__swig_getmethods__.get(name,None)
    if method: return method(self)
    raise AttributeError(name)

def _swig_repr(self):
    try: strthis = "proxy of " + self.this.__repr__()
    except: strthis = ""
    return "<%s.%s; %s >" % (self.__class__.__module__, self.__class__.__name__, strthis,)

try:
    _object = object
    _newclass = 1
except AttributeError:
    class _object : pass
    _newclass = 0


class SwigPyIterator(_object):
    """Proxy of C++ swig::SwigPyIterator class"""
    __swig_setmethods__ = {}
    __setattr__ = lambda self, name, value: _swig_setattr(self, SwigPyIterator, name, value)
    __swig_getmethods__ = {}
    __getattr__ = lambda self, name: _swig_getattr(self, SwigPyIterator, name)
    def __init__(self, *args, **kwargs): raise AttributeError("No constructor defined - class is abstract")
    __repr__ = _swig_repr
    __swig_destroy__ = _Komplex.delete_SwigPyIterator
    __del__ = lambda self : None;
    def value(self):
        """value(self) -> PyObject"""
        return _Komplex.SwigPyIterator_value(self)

    def incr(self, n = 1):
        """
        incr(self, size_t n = 1) -> SwigPyIterator
        incr(self) -> SwigPyIterator
        """
        return _Komplex.SwigPyIterator_incr(self, n)

    def decr(self, n = 1):
        """
        decr(self, size_t n = 1) -> SwigPyIterator
        decr(self) -> SwigPyIterator
        """
        return _Komplex.SwigPyIterator_decr(self, n)

    def distance(self, *args):
        """distance(self, SwigPyIterator x) -> ptrdiff_t"""
        return _Komplex.SwigPyIterator_distance(self, *args)

    def equal(self, *args):
        """equal(self, SwigPyIterator x) -> bool"""
        return _Komplex.SwigPyIterator_equal(self, *args)

    def copy(self):
        """copy(self) -> SwigPyIterator"""
        return _Komplex.SwigPyIterator_copy(self)

    def next(self):
        """next(self) -> PyObject"""
        return _Komplex.SwigPyIterator_next(self)

    def __next__(self):
        """__next__(self) -> PyObject"""
        return _Komplex.SwigPyIterator___next__(self)

    def previous(self):
        """previous(self) -> PyObject"""
        return _Komplex.SwigPyIterator_previous(self)

    def advance(self, *args):
        """advance(self, ptrdiff_t n) -> SwigPyIterator"""
        return _Komplex.SwigPyIterator_advance(self, *args)

    def __eq__(self, *args):
        """__eq__(self, SwigPyIterator x) -> bool"""
        return _Komplex.SwigPyIterator___eq__(self, *args)

    def __ne__(self, *args):
        """__ne__(self, SwigPyIterator x) -> bool"""
        return _Komplex.SwigPyIterator___ne__(self, *args)

    def __iadd__(self, *args):
        """__iadd__(self, ptrdiff_t n) -> SwigPyIterator"""
        return _Komplex.SwigPyIterator___iadd__(self, *args)

    def __isub__(self, *args):
        """__isub__(self, ptrdiff_t n) -> SwigPyIterator"""
        return _Komplex.SwigPyIterator___isub__(self, *args)

    def __add__(self, *args):
        """__add__(self, ptrdiff_t n) -> SwigPyIterator"""
        return _Komplex.SwigPyIterator___add__(self, *args)

    def __sub__(self, *args):
        """
        __sub__(self, ptrdiff_t n) -> SwigPyIterator
        __sub__(self, SwigPyIterator x) -> ptrdiff_t
        """
        return _Komplex.SwigPyIterator___sub__(self, *args)

    def __iter__(self): return self
SwigPyIterator_swigregister = _Komplex.SwigPyIterator_swigregister
SwigPyIterator_swigregister(SwigPyIterator)


def Version():
  """
    Version() -> string

    string Komplex_Version() 
    """
  return _Komplex.Version()
__version__ = Version().split()[2]

class Komplex_LinearProblem(_object):
    """
    Komplex_LinearProblem: A class for forming an equivalent real
    formulation of a complex valued problem.

    The Komplex_LinearProblem class takes a complex linear problem,
    separated into real and imaginary parts, and forms an equivalent real
    valued system of twice the dimension. The resulting system can then be
    solved with any Trilinos solver that understands Epetra objects.

    KOMPLEX solves a complex-valued linear system Ax = b by solving an
    equivalent real-valued system of twice the dimension. Specifically,
    writing in terms of real and imaginary parts, we have

    \\[ (A_r + i*A_i)*(x_r + i*x_i) = (b_r + i*b_i) \\]

    or by separating into real and imaginary equations we have

    \\[ \\left( \\begin{array}{rr} A_r & -A_i\\\\ A_i & A_r
    \\end{array} \\right) \\left( \\begin{array}{r} x_r\\\\
    x_i \\end{array} \\right) = \\left( \\begin{array}{r}
    b_r\\\\ b_i \\end{array} \\right) \\] which is a real-valued
    system of twice the size. If we find xr and xi, we can form the
    solution to the original system as x = xr +i*xi.

    KOMPLEX accepts the user linear system as two real-valued matrices
    with no assumption about the structure of the matrices, except that
    they have compatible RowMap, DomainMap and RangeMap distributions.
    Each matrix is multiplied by user-supplied complex constants.

    Although formally the system is a 2-by-2 block system, we actually
    apply the interleaving at the matrix entry level such that the real
    part of the first complex equation is followed by the imaginary part
    of the first complex equation, and so on. This approach is documented
    in:

    David Day and Michael A. Heroux. Solving complex-valued linear systems
    via equivalent real formulations. SIAM J. Sci. Comput., 23(2):480498,
    2001.

    C++ includes: Komplex_LinearProblem.h 
    """
    __swig_setmethods__ = {}
    __setattr__ = lambda self, name, value: _swig_setattr(self, Komplex_LinearProblem, name, value)
    __swig_getmethods__ = {}
    __getattr__ = lambda self, name: _swig_getattr(self, Komplex_LinearProblem, name)
    __repr__ = _swig_repr
    def __init__(self, *args): 
        """
        __init__(self, double c0r, double c0i, Epetra_RowMatrix A0, double c1r, 
            double c1i, Epetra_RowMatrix A1, Epetra_MultiVector Xr, 
            Epetra_MultiVector Xi, Epetra_MultiVector Br, 
            Epetra_MultiVector Bi) -> Komplex_LinearProblem

        Komplex_LinearProblem::Komplex_LinearProblem(double c0r, double c0i,
        const Epetra_RowMatrix &A0, double c1r, double c1i, const
        Epetra_RowMatrix &A1, const Epetra_MultiVector &Xr, const
        Epetra_MultiVector &Xi, const Epetra_MultiVector &Br, const
        Epetra_MultiVector &Bi)

        Komplex_LinearProblem constructor.

        Constructs the Komplex operator from the user definition of the
        complex-valued matrix C = (c0r+i*c0i)*A0 +(c1r+i*c1i)*A1. Using this
        general expression for the complex matrix allows easy formulation of a
        variety of common complex problems.

        Parameters:
        -----------

        c0r:  (In) The real part of the complex coefficient multiplying A0.

        c0i:  (In) The imag part of the complex coefficient multiplying A0.

        A0:  (In) An Epetra_RowMatrix that is one of the matrices used to
        define the true complex operator.

        c1r:  (In) The real part of the complex coefficient multiplying A1.

        c1i:  (In) The imag part of the complex coefficient multiplying A1.

        A1:  (In) An Epetra_RowMatrix that is the second of the matrices used
        to define the true complex operator.

        Xr:  (In) The real part of the complex valued LHS.

        Xi:  (In) The imag part of the complex valued LHS.

        Br:  (In) The real part of the complex valued RHS.

        Bi:  (In) The imag part of the complex valued RHS. 
        """
        this = _Komplex.new_Komplex_LinearProblem(*args)
        try: self.this.append(this)
        except: self.this = this
    __swig_destroy__ = _Komplex.delete_Komplex_LinearProblem
    __del__ = lambda self : None;
    def UpdateValues(self, *args):
        """
        UpdateValues(self, double c0r, double c0i, Epetra_RowMatrix A0, double c1r, 
            double c1i, Epetra_RowMatrix A1, Epetra_MultiVector Xr, 
            Epetra_MultiVector Xi, Epetra_MultiVector Br, 
            Epetra_MultiVector Bi) -> int

        int
        Komplex_LinearProblem::UpdateValues(double c0r, double c0i, const
        Epetra_RowMatrix &A0, double c1r, double c1i, const Epetra_RowMatrix
        &A1, const Epetra_MultiVector &Xr, const Epetra_MultiVector &Xi, const
        Epetra_MultiVector &Br, const Epetra_MultiVector &Bi)

        Update the values of the equivalent real valued system.

        This method allows the values of an existing Komplex_LinearProblem
        object to be updated. Note that the update that there is no change to
        the pattern of the matrices.

        Error code, set to 0 if no error. 
        """
        return _Komplex.Komplex_LinearProblem_UpdateValues(self, *args)

    def ExtractSolution(self, *args):
        """
        ExtractSolution(self, Epetra_MultiVector Xr, Epetra_MultiVector Xi) -> int

        int
        Komplex_LinearProblem::ExtractSolution(Epetra_MultiVector &Xr,
        Epetra_MultiVector &Xi)

        Extrac a solution for the original complex-valued problem using the
        solution of the Komplex problem.

        After solving the komplex linear system, this method can be called to
        extract the solution of the original problem, assuming the solution
        for the komplex system is valid.

        Parameters:
        -----------

        Xr:  (Out) An existing Epetra_MultiVector. On exit it will contain the
        real part of the complex valued solution.

        Xi:  (Out) An existing Epetra_MultiVector. On exit it will contain the
        imag part of the complex valued solution. 
        """
        return _Komplex.Komplex_LinearProblem_ExtractSolution(self, *args)

    def KomplexProblem(self):
        """
        KomplexProblem(self) -> Epetra_LinearProblem

        Epetra_LinearProblem* Komplex_LinearProblem::KomplexProblem() const

        Returns pointer to the Epetra_LinearProblem object that defines the
        Komplex formulation.

        The pointer returned from this method will contain the address of a
        fully-constructed Epetra_LinearProblem instance that can be used with
        any Trilinos preconditioner or solver. 
        """
        return _Komplex.Komplex_LinearProblem_KomplexProblem(self)

Komplex_LinearProblem_swigregister = _Komplex.Komplex_LinearProblem_swigregister
Komplex_LinearProblem_swigregister(Komplex_LinearProblem)

LinearProblem = Komplex_LinearProblem

# This file is compatible with both classic and new-style classes.