/usr/share/pyshared/PyTrilinos/Epetra.py is in python-pytrilinos 10.4.0.dfsg-1ubuntu2.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815 4816 4817 4818 4819 4820 4821 4822 4823 4824 4825 4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836 4837 4838 4839 4840 4841 4842 4843 4844 4845 4846 4847 4848 4849 4850 4851 4852 4853 4854 4855 4856 4857 4858 4859 4860 4861 4862 4863 4864 4865 4866 4867 4868 4869 4870 4871 4872 4873 4874 4875 4876 4877 4878 4879 4880 4881 4882 4883 4884 4885 4886 4887 4888 4889 4890 4891 4892 4893 4894 4895 4896 4897 4898 4899 4900 4901 4902 4903 4904 4905 4906 4907 4908 4909 4910 4911 4912 4913 4914 4915 4916 4917 4918 4919 4920 4921 4922 4923 4924 4925 4926 4927 4928 4929 4930 4931 4932 4933 4934 4935 4936 4937 4938 4939 4940 4941 4942 4943 4944 4945 4946 4947 4948 4949 4950 4951 4952 4953 4954 4955 4956 4957 4958 4959 4960 4961 4962 4963 4964 4965 4966 4967 4968 4969 4970 4971 4972 4973 4974 4975 4976 4977 4978 4979 4980 4981 4982 4983 4984 4985 4986 4987 4988 4989 4990 4991 4992 4993 4994 4995 4996 4997 4998 4999 5000 5001 5002 5003 5004 5005 5006 5007 5008 5009 5010 5011 5012 5013 5014 5015 5016 5017 5018 5019 5020 5021 5022 5023 5024 5025 5026 5027 5028 5029 5030 5031 5032 5033 5034 5035 5036 5037 5038 5039 5040 5041 5042 5043 5044 5045 5046 5047 5048 5049 5050 5051 5052 5053 5054 5055 5056 5057 5058 5059 5060 5061 5062 5063 5064 5065 5066 5067 5068 5069 5070 5071 5072 5073 5074 5075 5076 5077 5078 5079 5080 5081 5082 5083 5084 5085 5086 5087 5088 5089 5090 5091 5092 5093 5094 5095 5096 5097 5098 5099 5100 5101 5102 5103 5104 5105 5106 5107 5108 5109 5110 5111 5112 5113 5114 5115 5116 5117 5118 5119 5120 5121 5122 5123 5124 5125 5126 5127 5128 5129 5130 5131 5132 5133 5134 5135 5136 5137 5138 5139 5140 5141 5142 5143 5144 5145 5146 5147 5148 5149 5150 5151 5152 5153 5154 5155 5156 5157 5158 5159 5160 5161 5162 5163 5164 5165 5166 5167 5168 5169 5170 5171 5172 5173 5174 5175 5176 5177 5178 5179 5180 5181 5182 5183 5184 5185 5186 5187 5188 5189 5190 5191 5192 5193 5194 5195 5196 5197 5198 5199 5200 5201 5202 5203 5204 5205 5206 5207 5208 5209 5210 5211 5212 5213 5214 5215 5216 5217 5218 5219 5220 5221 5222 5223 5224 5225 5226 5227 5228 5229 5230 5231 5232 5233 5234 5235 5236 5237 5238 5239 5240 5241 5242 5243 5244 5245 5246 5247 5248 5249 5250 5251 5252 5253 5254 5255 5256 5257 5258 5259 5260 5261 5262 5263 5264 5265 5266 5267 5268 5269 5270 5271 5272 5273 5274 5275 5276 5277 5278 5279 5280 5281 5282 5283 5284 5285 5286 5287 5288 5289 5290 5291 5292 5293 5294 5295 5296 5297 5298 5299 5300 5301 5302 5303 5304 5305 5306 5307 5308 5309 5310 5311 5312 5313 5314 5315 5316 5317 5318 5319 5320 5321 5322 5323 5324 5325 5326 5327 5328 5329 5330 5331 5332 5333 5334 5335 5336 5337 5338 5339 5340 5341 5342 5343 5344 5345 5346 5347 5348 5349 5350 5351 5352 5353 5354 5355 5356 5357 5358 5359 5360 5361 5362 5363 5364 5365 5366 5367 5368 5369 5370 5371 5372 5373 5374 5375 5376 5377 5378 5379 5380 5381 5382 5383 5384 5385 5386 5387 5388 5389 5390 5391 5392 5393 5394 5395 5396 5397 5398 5399 5400 5401 5402 5403 5404 5405 5406 5407 5408 5409 5410 5411 5412 5413 5414 5415 5416 5417 5418 5419 5420 5421 5422 5423 5424 5425 5426 5427 5428 5429 5430 5431 5432 5433 5434 5435 5436 5437 5438 5439 5440 5441 5442 5443 5444 5445 5446 5447 5448 5449 5450 5451 5452 5453 5454 5455 5456 5457 5458 5459 5460 5461 5462 5463 5464 5465 5466 5467 5468 5469 5470 5471 5472 5473 5474 5475 5476 5477 5478 5479 5480 5481 5482 5483 5484 5485 5486 5487 5488 5489 5490 5491 5492 5493 5494 5495 5496 5497 5498 5499 5500 5501 5502 5503 5504 5505 5506 5507 5508 5509 5510 5511 5512 5513 5514 5515 5516 5517 5518 5519 5520 5521 5522 5523 5524 5525 5526 5527 5528 5529 5530 5531 5532 5533 5534 5535 5536 5537 5538 5539 5540 5541 5542 5543 5544 5545 5546 5547 5548 5549 5550 5551 5552 5553 5554 5555 5556 5557 5558 5559 5560 5561 5562 5563 5564 5565 5566 5567 5568 5569 5570 5571 5572 5573 5574 5575 5576 5577 5578 5579 5580 5581 5582 5583 5584 5585 5586 5587 5588 5589 5590 5591 5592 5593 5594 5595 5596 5597 5598 5599 5600 5601 5602 5603 5604 5605 5606 5607 5608 5609 5610 5611 5612 5613 5614 5615 5616 5617 5618 5619 5620 5621 5622 5623 5624 5625 5626 5627 5628 5629 5630 5631 5632 5633 5634 5635 5636 5637 5638 5639 5640 5641 5642 5643 5644 5645 5646 5647 5648 5649 5650 5651 5652 5653 5654 5655 5656 5657 5658 5659 5660 5661 5662 5663 5664 5665 5666 5667 5668 5669 5670 5671 5672 5673 5674 5675 5676 5677 5678 5679 5680 5681 5682 5683 5684 5685 5686 5687 5688 5689 5690 5691 5692 5693 5694 5695 5696 5697 5698 5699 5700 5701 5702 5703 5704 5705 5706 5707 5708 5709 5710 5711 5712 5713 5714 5715 5716 5717 5718 5719 5720 5721 5722 5723 5724 5725 5726 5727 5728 5729 5730 5731 5732 5733 5734 5735 5736 5737 5738 5739 5740 5741 5742 5743 5744 5745 5746 5747 5748 5749 5750 5751 5752 5753 5754 5755 5756 5757 5758 5759 5760 5761 5762 5763 5764 5765 5766 5767 5768 5769 5770 5771 5772 5773 5774 5775 5776 5777 5778 5779 5780 5781 5782 5783 5784 5785 5786 5787 5788 5789 5790 5791 5792 5793 5794 5795 5796 5797 5798 5799 5800 5801 5802 5803 5804 5805 5806 5807 5808 5809 5810 5811 5812 5813 5814 5815 5816 5817 5818 5819 5820 5821 5822 5823 5824 5825 5826 5827 5828 5829 5830 5831 5832 5833 5834 5835 5836 5837 5838 5839 5840 5841 5842 5843 5844 5845 5846 5847 5848 5849 5850 5851 5852 5853 5854 5855 5856 5857 5858 5859 5860 5861 5862 5863 5864 5865 5866 5867 5868 5869 5870 5871 5872 5873 5874 5875 5876 5877 5878 5879 5880 5881 5882 5883 5884 5885 5886 5887 5888 5889 5890 5891 5892 5893 5894 5895 5896 5897 5898 5899 5900 5901 5902 5903 5904 5905 5906 5907 5908 5909 5910 5911 5912 5913 5914 5915 5916 5917 5918 5919 5920 5921 5922 5923 5924 5925 5926 5927 5928 5929 5930 5931 5932 5933 5934 5935 5936 5937 5938 5939 5940 5941 5942 5943 5944 5945 5946 5947 5948 5949 5950 5951 5952 5953 5954 5955 5956 5957 5958 5959 5960 5961 5962 5963 5964 5965 5966 5967 5968 5969 5970 5971 5972 5973 5974 5975 5976 5977 5978 5979 5980 5981 5982 5983 5984 5985 5986 5987 5988 5989 5990 5991 5992 5993 5994 5995 5996 5997 5998 5999 6000 6001 6002 6003 6004 6005 6006 6007 6008 6009 6010 6011 6012 6013 6014 6015 6016 6017 6018 6019 6020 6021 6022 6023 6024 6025 6026 6027 6028 6029 6030 6031 6032 6033 6034 6035 6036 6037 6038 6039 6040 6041 6042 6043 6044 6045 6046 6047 6048 6049 6050 6051 6052 6053 6054 6055 6056 6057 6058 6059 6060 6061 6062 6063 6064 6065 6066 6067 6068 6069 6070 6071 6072 6073 6074 6075 6076 6077 6078 6079 6080 6081 6082 6083 6084 6085 6086 6087 6088 6089 6090 6091 6092 6093 6094 6095 6096 6097 6098 6099 6100 6101 6102 6103 6104 6105 6106 6107 6108 6109 6110 6111 6112 6113 6114 6115 6116 6117 6118 6119 6120 6121 6122 6123 6124 6125 6126 6127 6128 6129 6130 6131 6132 6133 6134 6135 6136 6137 6138 6139 6140 6141 6142 6143 6144 6145 6146 6147 6148 6149 6150 6151 6152 6153 6154 6155 6156 6157 6158 6159 6160 6161 6162 6163 6164 6165 6166 6167 6168 6169 6170 6171 6172 6173 6174 6175 6176 6177 6178 6179 6180 6181 6182 6183 6184 6185 6186 6187 6188 6189 6190 6191 6192 6193 6194 6195 6196 6197 6198 6199 6200 6201 6202 6203 6204 6205 6206 6207 6208 6209 6210 6211 6212 6213 6214 6215 6216 6217 6218 6219 6220 6221 6222 6223 6224 6225 6226 6227 6228 6229 6230 6231 6232 6233 6234 6235 6236 6237 6238 6239 6240 6241 6242 6243 6244 6245 6246 6247 6248 6249 6250 6251 6252 6253 6254 6255 6256 6257 6258 6259 6260 6261 6262 6263 6264 6265 6266 6267 6268 6269 6270 6271 6272 6273 6274 6275 6276 6277 6278 6279 6280 6281 6282 6283 6284 6285 6286 6287 6288 6289 6290 6291 6292 6293 6294 6295 6296 6297 6298 6299 6300 6301 6302 6303 6304 6305 6306 6307 6308 6309 6310 6311 6312 6313 6314 6315 6316 6317 6318 6319 6320 6321 6322 6323 6324 6325 6326 6327 6328 6329 6330 6331 6332 6333 6334 6335 6336 6337 6338 6339 6340 6341 6342 6343 6344 6345 6346 6347 6348 6349 6350 6351 6352 6353 6354 6355 6356 6357 6358 6359 6360 6361 6362 6363 6364 6365 6366 6367 6368 6369 6370 6371 6372 6373 6374 6375 6376 6377 6378 6379 6380 6381 6382 6383 6384 6385 6386 6387 6388 6389 6390 6391 6392 6393 6394 6395 6396 6397 6398 6399 6400 6401 6402 6403 6404 6405 6406 6407 6408 6409 6410 6411 6412 6413 6414 6415 6416 6417 6418 6419 6420 6421 6422 6423 6424 6425 6426 6427 6428 6429 6430 6431 6432 6433 6434 6435 6436 6437 6438 6439 6440 6441 6442 6443 6444 6445 6446 6447 6448 6449 6450 6451 6452 6453 6454 6455 6456 6457 6458 6459 6460 6461 6462 6463 6464 6465 6466 6467 6468 6469 6470 6471 6472 6473 6474 6475 6476 6477 6478 6479 6480 6481 6482 6483 6484 6485 6486 6487 6488 6489 6490 6491 6492 6493 6494 6495 6496 6497 6498 6499 6500 6501 6502 6503 6504 6505 6506 6507 6508 6509 6510 6511 6512 6513 6514 6515 6516 6517 6518 6519 6520 6521 6522 6523 6524 6525 6526 6527 6528 6529 6530 6531 6532 6533 6534 6535 6536 6537 6538 6539 6540 6541 6542 6543 6544 6545 6546 6547 6548 6549 6550 6551 6552 6553 6554 6555 6556 6557 6558 6559 6560 6561 6562 6563 6564 6565 6566 6567 6568 6569 6570 6571 6572 6573 6574 6575 6576 6577 6578 6579 6580 6581 6582 6583 6584 6585 6586 6587 6588 6589 6590 6591 6592 6593 6594 6595 6596 6597 6598 6599 6600 6601 6602 6603 6604 6605 6606 6607 6608 6609 6610 6611 6612 6613 6614 6615 6616 6617 6618 6619 6620 6621 6622 6623 6624 6625 6626 6627 6628 6629 6630 6631 6632 6633 6634 6635 6636 6637 6638 6639 6640 6641 6642 6643 6644 6645 6646 6647 6648 6649 6650 6651 6652 6653 6654 6655 6656 6657 6658 6659 6660 6661 6662 6663 6664 6665 6666 6667 6668 6669 6670 6671 6672 6673 6674 6675 6676 6677 6678 6679 6680 6681 6682 6683 6684 6685 6686 6687 6688 6689 6690 6691 6692 6693 6694 6695 6696 6697 6698 6699 6700 6701 6702 6703 6704 6705 6706 6707 6708 6709 6710 6711 6712 6713 6714 6715 6716 6717 6718 6719 6720 6721 6722 6723 6724 6725 6726 6727 6728 6729 6730 6731 6732 6733 6734 6735 6736 6737 6738 6739 6740 6741 6742 6743 6744 6745 6746 6747 6748 6749 6750 6751 6752 6753 6754 6755 6756 6757 6758 6759 6760 6761 6762 6763 6764 6765 6766 6767 6768 6769 6770 6771 6772 6773 6774 6775 6776 6777 6778 6779 6780 6781 6782 6783 6784 6785 6786 6787 6788 6789 6790 6791 6792 6793 6794 6795 6796 6797 6798 6799 6800 6801 6802 6803 6804 6805 6806 6807 6808 6809 6810 6811 6812 6813 6814 6815 6816 6817 6818 6819 6820 6821 6822 6823 6824 6825 6826 6827 6828 6829 6830 6831 6832 6833 6834 6835 6836 6837 6838 6839 6840 6841 6842 6843 6844 6845 6846 6847 6848 6849 6850 6851 6852 6853 6854 6855 6856 6857 6858 6859 6860 6861 6862 6863 6864 6865 6866 6867 6868 6869 6870 6871 6872 6873 6874 6875 6876 6877 6878 6879 6880 6881 6882 6883 6884 6885 6886 6887 6888 6889 6890 6891 6892 6893 6894 6895 6896 6897 6898 6899 6900 6901 6902 6903 6904 6905 6906 6907 6908 6909 6910 6911 6912 6913 6914 6915 6916 6917 6918 6919 6920 6921 6922 6923 6924 6925 6926 6927 6928 6929 6930 6931 6932 6933 6934 6935 6936 6937 6938 6939 6940 6941 6942 6943 6944 6945 6946 6947 6948 6949 6950 6951 6952 6953 6954 6955 6956 6957 6958 6959 6960 6961 6962 6963 6964 6965 6966 6967 6968 6969 6970 6971 6972 6973 6974 6975 6976 6977 6978 6979 6980 6981 6982 6983 6984 6985 6986 6987 6988 6989 6990 6991 6992 6993 6994 6995 6996 6997 6998 6999 7000 7001 7002 7003 7004 7005 7006 7007 7008 7009 7010 7011 7012 7013 7014 7015 7016 7017 7018 7019 7020 7021 7022 7023 7024 7025 7026 7027 7028 7029 7030 7031 7032 7033 7034 7035 7036 7037 7038 7039 7040 7041 7042 7043 7044 7045 7046 7047 7048 7049 7050 7051 7052 7053 7054 7055 7056 7057 7058 7059 7060 7061 7062 7063 7064 7065 7066 7067 7068 7069 7070 7071 7072 7073 7074 7075 7076 7077 7078 7079 7080 7081 7082 7083 7084 7085 7086 7087 7088 7089 7090 7091 7092 7093 7094 7095 7096 7097 7098 7099 7100 7101 7102 7103 7104 7105 7106 7107 7108 7109 7110 7111 7112 7113 7114 7115 7116 7117 7118 7119 7120 7121 7122 7123 7124 7125 7126 7127 7128 7129 7130 7131 7132 7133 7134 7135 7136 7137 7138 7139 7140 7141 7142 7143 7144 7145 7146 7147 7148 7149 7150 7151 7152 7153 7154 7155 7156 7157 7158 7159 7160 7161 7162 7163 7164 7165 7166 7167 7168 7169 7170 7171 7172 7173 7174 7175 7176 7177 7178 7179 7180 7181 7182 7183 7184 7185 7186 7187 7188 7189 7190 7191 7192 7193 7194 7195 7196 7197 7198 7199 7200 7201 7202 7203 7204 7205 7206 7207 7208 7209 7210 7211 7212 7213 7214 7215 7216 7217 7218 7219 7220 7221 7222 7223 7224 7225 7226 7227 7228 7229 7230 7231 7232 7233 7234 7235 7236 7237 7238 7239 7240 7241 7242 7243 7244 7245 7246 7247 7248 7249 7250 7251 7252 7253 7254 7255 7256 7257 7258 7259 7260 7261 7262 7263 7264 7265 7266 7267 7268 7269 7270 7271 7272 7273 7274 7275 7276 7277 7278 7279 7280 7281 7282 7283 7284 7285 7286 7287 7288 7289 7290 7291 7292 7293 7294 7295 7296 7297 7298 7299 7300 7301 7302 7303 7304 7305 7306 7307 7308 7309 7310 7311 7312 7313 7314 7315 7316 7317 7318 7319 7320 7321 7322 7323 7324 7325 7326 7327 7328 7329 7330 7331 7332 7333 7334 7335 7336 7337 7338 7339 7340 7341 7342 7343 7344 7345 7346 7347 7348 7349 7350 7351 7352 7353 7354 7355 7356 7357 7358 7359 7360 7361 7362 7363 7364 7365 7366 7367 7368 7369 7370 7371 7372 7373 7374 7375 7376 7377 7378 7379 7380 7381 7382 7383 7384 7385 7386 7387 7388 7389 7390 7391 7392 7393 7394 7395 7396 7397 7398 7399 7400 7401 7402 7403 7404 7405 7406 7407 7408 7409 7410 7411 7412 7413 7414 7415 7416 7417 7418 7419 7420 7421 7422 7423 7424 7425 7426 7427 7428 7429 7430 7431 7432 7433 7434 7435 7436 7437 7438 7439 7440 7441 7442 7443 7444 7445 7446 7447 7448 7449 7450 7451 7452 7453 7454 7455 7456 7457 7458 7459 7460 7461 7462 7463 7464 7465 7466 7467 7468 7469 7470 7471 7472 7473 7474 7475 7476 7477 7478 7479 7480 7481 7482 7483 7484 7485 7486 7487 7488 7489 7490 7491 7492 7493 7494 7495 7496 7497 7498 7499 7500 7501 7502 7503 7504 7505 7506 7507 7508 7509 7510 7511 7512 7513 7514 7515 7516 7517 7518 7519 7520 7521 7522 7523 7524 7525 7526 7527 7528 7529 7530 7531 7532 7533 7534 7535 7536 7537 7538 7539 7540 7541 7542 7543 7544 7545 7546 7547 7548 7549 7550 7551 7552 7553 7554 7555 7556 7557 7558 7559 7560 7561 7562 7563 7564 7565 7566 7567 7568 7569 7570 7571 7572 7573 7574 7575 7576 7577 7578 7579 7580 7581 7582 7583 7584 7585 7586 7587 7588 7589 7590 7591 7592 7593 7594 7595 7596 7597 7598 7599 7600 7601 7602 7603 7604 7605 7606 7607 7608 7609 7610 7611 7612 7613 7614 7615 7616 7617 7618 7619 7620 7621 7622 7623 7624 7625 7626 7627 7628 7629 7630 7631 7632 7633 7634 7635 7636 7637 7638 7639 7640 7641 7642 7643 7644 7645 7646 7647 7648 7649 7650 7651 7652 7653 7654 7655 7656 7657 7658 7659 7660 7661 7662 7663 7664 7665 7666 7667 7668 7669 7670 7671 7672 7673 7674 7675 7676 7677 7678 7679 7680 7681 7682 7683 7684 7685 7686 7687 7688 7689 7690 7691 7692 7693 7694 7695 7696 7697 7698 7699 7700 7701 7702 7703 7704 7705 7706 7707 7708 7709 7710 7711 7712 7713 7714 7715 7716 7717 7718 7719 7720 7721 7722 7723 7724 7725 7726 7727 7728 7729 7730 7731 7732 7733 7734 7735 7736 7737 7738 7739 7740 7741 7742 7743 7744 7745 7746 7747 7748 7749 7750 7751 7752 7753 7754 7755 7756 7757 7758 7759 7760 7761 7762 7763 7764 7765 7766 7767 7768 7769 7770 7771 7772 7773 7774 7775 7776 7777 7778 7779 7780 7781 7782 7783 7784 7785 7786 7787 7788 7789 7790 7791 7792 7793 7794 7795 7796 7797 7798 7799 7800 7801 7802 7803 7804 7805 7806 7807 7808 7809 7810 7811 7812 7813 7814 7815 7816 7817 7818 7819 7820 7821 7822 7823 7824 7825 7826 7827 7828 7829 7830 7831 7832 7833 7834 7835 7836 7837 7838 7839 7840 7841 7842 7843 7844 7845 7846 7847 7848 7849 7850 7851 7852 7853 7854 7855 7856 7857 7858 7859 7860 7861 7862 7863 7864 7865 7866 7867 7868 7869 7870 7871 7872 7873 7874 7875 7876 7877 7878 7879 7880 7881 7882 7883 7884 7885 7886 7887 7888 7889 7890 7891 7892 7893 7894 7895 7896 7897 7898 7899 7900 7901 7902 7903 7904 7905 7906 7907 7908 7909 7910 7911 7912 7913 7914 7915 7916 7917 7918 7919 7920 7921 7922 7923 7924 7925 7926 7927 7928 7929 7930 7931 7932 7933 7934 7935 7936 7937 7938 7939 7940 7941 7942 7943 7944 7945 7946 7947 7948 7949 7950 7951 7952 7953 7954 7955 7956 7957 7958 7959 7960 7961 7962 7963 7964 7965 7966 7967 7968 7969 7970 7971 7972 7973 7974 7975 7976 7977 7978 7979 7980 7981 7982 7983 7984 7985 7986 7987 7988 7989 7990 7991 7992 7993 7994 7995 7996 7997 7998 7999 8000 8001 8002 8003 8004 8005 8006 8007 8008 8009 8010 8011 8012 8013 8014 8015 8016 8017 8018 8019 8020 8021 8022 8023 8024 8025 8026 8027 8028 8029 8030 8031 8032 8033 8034 8035 8036 8037 8038 8039 8040 8041 8042 8043 8044 8045 8046 8047 8048 8049 8050 8051 8052 8053 8054 8055 8056 8057 8058 8059 8060 8061 8062 8063 8064 8065 8066 8067 8068 8069 8070 8071 8072 8073 8074 8075 8076 8077 8078 8079 8080 8081 8082 8083 8084 8085 8086 8087 8088 8089 8090 8091 8092 8093 8094 8095 8096 8097 8098 8099 8100 8101 8102 8103 8104 8105 8106 8107 8108 8109 8110 8111 8112 8113 8114 8115 8116 8117 8118 8119 8120 8121 8122 8123 8124 8125 8126 8127 8128 8129 8130 8131 8132 8133 8134 8135 8136 8137 8138 8139 8140 8141 8142 8143 8144 8145 8146 8147 8148 8149 8150 8151 8152 8153 8154 8155 8156 8157 8158 8159 8160 8161 8162 8163 8164 8165 8166 8167 8168 8169 8170 8171 8172 8173 8174 8175 8176 8177 8178 8179 8180 8181 8182 8183 8184 8185 8186 8187 8188 8189 8190 8191 8192 8193 8194 8195 8196 8197 8198 8199 8200 8201 8202 8203 8204 8205 8206 8207 8208 8209 8210 8211 8212 8213 8214 8215 8216 8217 8218 8219 8220 8221 8222 8223 8224 8225 8226 8227 8228 8229 8230 8231 8232 8233 8234 8235 8236 8237 8238 8239 8240 8241 8242 8243 8244 8245 8246 8247 8248 8249 8250 8251 8252 8253 8254 8255 8256 8257 8258 8259 8260 8261 8262 8263 8264 8265 8266 8267 8268 8269 8270 8271 8272 8273 8274 8275 8276 8277 8278 8279 8280 8281 8282 8283 8284 8285 8286 8287 8288 8289 8290 8291 8292 8293 8294 8295 8296 8297 8298 8299 8300 8301 8302 8303 8304 8305 8306 8307 8308 8309 8310 8311 8312 8313 8314 8315 8316 8317 8318 8319 8320 8321 8322 8323 8324 8325 8326 8327 8328 8329 8330 8331 8332 8333 8334 8335 8336 8337 8338 8339 8340 8341 8342 8343 8344 8345 8346 8347 8348 8349 8350 8351 8352 8353 8354 8355 8356 8357 8358 8359 8360 8361 8362 8363 8364 8365 8366 8367 8368 8369 8370 8371 8372 8373 8374 8375 8376 8377 8378 8379 8380 8381 8382 8383 8384 8385 8386 8387 8388 8389 8390 8391 8392 8393 8394 8395 8396 8397 8398 8399 8400 8401 8402 8403 8404 8405 8406 8407 8408 8409 8410 8411 8412 8413 8414 8415 8416 8417 8418 8419 8420 8421 8422 8423 8424 8425 8426 8427 8428 8429 8430 8431 8432 8433 8434 8435 8436 8437 8438 8439 8440 8441 8442 8443 8444 8445 8446 8447 8448 8449 8450 8451 8452 8453 8454 8455 8456 8457 8458 8459 8460 8461 8462 8463 8464 8465 8466 8467 8468 8469 8470 8471 8472 8473 8474 8475 8476 8477 8478 8479 8480 8481 8482 8483 8484 8485 8486 8487 8488 8489 8490 8491 8492 8493 8494 8495 8496 8497 8498 8499 8500 8501 8502 8503 8504 8505 8506 8507 8508 8509 8510 8511 8512 8513 8514 8515 8516 8517 8518 8519 8520 8521 8522 8523 8524 8525 8526 8527 8528 8529 8530 8531 8532 8533 8534 8535 8536 8537 8538 8539 8540 8541 8542 8543 8544 8545 8546 8547 8548 8549 8550 8551 8552 8553 8554 8555 8556 8557 8558 8559 8560 8561 8562 8563 8564 8565 8566 8567 8568 8569 8570 8571 8572 8573 8574 8575 8576 8577 8578 8579 8580 8581 8582 8583 8584 8585 8586 8587 8588 8589 8590 8591 8592 8593 8594 8595 8596 8597 8598 8599 8600 8601 8602 8603 8604 8605 8606 8607 8608 8609 8610 8611 8612 8613 8614 8615 8616 8617 8618 8619 8620 8621 8622 8623 8624 8625 8626 8627 8628 8629 8630 8631 8632 8633 8634 8635 8636 8637 8638 8639 8640 8641 8642 8643 8644 8645 8646 8647 8648 8649 8650 8651 8652 8653 8654 8655 8656 8657 8658 8659 8660 8661 8662 8663 8664 8665 8666 8667 8668 8669 8670 8671 8672 8673 8674 8675 8676 8677 8678 8679 8680 8681 8682 8683 8684 8685 8686 8687 8688 8689 8690 8691 8692 8693 8694 8695 8696 8697 8698 8699 8700 8701 8702 8703 8704 8705 8706 8707 8708 8709 8710 8711 8712 8713 8714 8715 8716 8717 8718 8719 8720 8721 8722 8723 8724 8725 8726 8727 8728 8729 8730 8731 8732 8733 8734 8735 8736 8737 8738 8739 8740 8741 8742 8743 8744 8745 8746 8747 8748 8749 8750 8751 8752 8753 8754 8755 8756 8757 8758 8759 8760 8761 8762 8763 8764 8765 8766 8767 8768 8769 8770 8771 8772 8773 8774 8775 8776 8777 8778 8779 8780 8781 8782 8783 8784 8785 8786 8787 8788 8789 8790 8791 8792 8793 8794 8795 8796 8797 8798 8799 8800 8801 8802 8803 8804 8805 8806 8807 8808 8809 8810 8811 8812 8813 8814 8815 8816 8817 8818 8819 8820 8821 8822 8823 8824 8825 8826 8827 8828 8829 8830 8831 8832 8833 8834 8835 8836 8837 8838 8839 8840 8841 8842 8843 8844 8845 8846 8847 8848 8849 8850 8851 8852 8853 8854 8855 8856 8857 8858 8859 8860 8861 8862 8863 8864 8865 8866 8867 8868 8869 8870 8871 8872 8873 8874 8875 8876 8877 8878 8879 8880 8881 8882 8883 8884 8885 8886 8887 8888 8889 8890 8891 8892 8893 8894 8895 8896 8897 8898 8899 8900 8901 8902 8903 8904 8905 8906 8907 8908 8909 8910 8911 8912 8913 8914 8915 8916 8917 8918 8919 8920 8921 8922 8923 8924 8925 8926 8927 8928 8929 8930 8931 8932 8933 8934 8935 8936 8937 8938 8939 8940 8941 8942 8943 8944 8945 8946 8947 8948 8949 8950 8951 8952 8953 8954 8955 8956 8957 8958 8959 8960 8961 8962 8963 8964 8965 8966 8967 8968 8969 8970 8971 8972 8973 8974 8975 8976 8977 8978 8979 8980 8981 8982 8983 8984 8985 8986 8987 8988 8989 8990 8991 8992 8993 8994 8995 8996 8997 8998 8999 9000 9001 9002 9003 9004 9005 9006 9007 9008 9009 9010 9011 9012 9013 9014 9015 9016 9017 9018 9019 9020 9021 9022 9023 9024 9025 9026 9027 9028 9029 9030 9031 9032 9033 9034 9035 9036 9037 9038 9039 9040 9041 9042 9043 9044 9045 9046 9047 9048 9049 9050 9051 9052 9053 9054 9055 9056 9057 9058 9059 9060 9061 9062 9063 9064 9065 9066 9067 9068 9069 9070 9071 9072 9073 9074 9075 9076 9077 9078 9079 9080 9081 9082 9083 9084 9085 9086 9087 9088 9089 9090 9091 9092 9093 9094 9095 9096 9097 9098 9099 9100 9101 9102 9103 9104 9105 9106 9107 9108 9109 9110 9111 9112 9113 9114 9115 9116 9117 9118 9119 9120 9121 9122 9123 9124 9125 9126 9127 9128 9129 9130 9131 9132 9133 9134 9135 9136 9137 9138 9139 9140 9141 9142 9143 9144 9145 9146 9147 9148 9149 9150 9151 9152 9153 9154 9155 9156 9157 9158 9159 9160 9161 9162 9163 9164 9165 9166 9167 9168 9169 9170 9171 9172 9173 9174 9175 9176 9177 9178 9179 9180 9181 9182 9183 9184 9185 9186 9187 9188 9189 9190 9191 9192 9193 9194 9195 9196 9197 9198 9199 9200 9201 9202 9203 9204 9205 9206 9207 9208 9209 9210 9211 9212 9213 9214 9215 9216 9217 9218 9219 9220 9221 9222 9223 9224 9225 9226 9227 9228 9229 9230 9231 9232 9233 9234 9235 9236 9237 9238 9239 9240 9241 9242 9243 9244 9245 9246 9247 9248 9249 9250 9251 9252 9253 9254 9255 9256 9257 9258 9259 9260 9261 9262 9263 9264 9265 9266 9267 9268 9269 9270 9271 9272 9273 9274 9275 9276 9277 9278 9279 9280 9281 9282 9283 9284 9285 9286 9287 9288 9289 9290 9291 9292 9293 9294 9295 9296 9297 9298 9299 9300 9301 9302 9303 9304 9305 9306 9307 9308 9309 9310 9311 9312 9313 9314 9315 9316 9317 9318 9319 9320 9321 9322 9323 9324 9325 9326 9327 9328 9329 9330 9331 9332 9333 9334 9335 9336 9337 9338 9339 9340 9341 9342 9343 9344 9345 9346 9347 9348 9349 9350 9351 9352 9353 9354 9355 9356 9357 9358 9359 9360 9361 9362 9363 9364 9365 9366 9367 9368 9369 9370 9371 9372 9373 9374 9375 9376 9377 9378 9379 9380 9381 9382 9383 9384 9385 9386 9387 9388 9389 9390 9391 9392 9393 9394 9395 9396 9397 9398 9399 9400 9401 9402 9403 9404 9405 9406 9407 9408 9409 9410 9411 9412 9413 9414 9415 9416 9417 9418 9419 9420 9421 9422 9423 9424 9425 9426 9427 9428 9429 9430 9431 9432 9433 9434 9435 9436 9437 9438 9439 9440 9441 9442 9443 9444 9445 9446 9447 9448 9449 9450 9451 9452 9453 9454 9455 9456 9457 9458 9459 9460 9461 9462 9463 9464 9465 9466 9467 9468 9469 9470 9471 9472 9473 9474 9475 9476 9477 9478 9479 9480 9481 9482 9483 9484 9485 9486 9487 9488 9489 9490 9491 9492 9493 9494 9495 9496 9497 9498 9499 9500 9501 9502 9503 9504 9505 9506 9507 9508 9509 9510 9511 9512 9513 9514 9515 9516 9517 9518 9519 9520 9521 9522 9523 9524 9525 9526 9527 9528 9529 9530 9531 9532 9533 9534 9535 9536 9537 9538 9539 9540 9541 9542 9543 9544 9545 9546 9547 9548 9549 9550 9551 9552 9553 9554 9555 9556 9557 9558 9559 9560 9561 9562 9563 9564 9565 9566 9567 9568 9569 9570 9571 9572 9573 9574 9575 9576 9577 9578 9579 9580 9581 9582 9583 9584 9585 9586 9587 9588 9589 9590 9591 9592 9593 9594 9595 9596 9597 9598 9599 9600 9601 9602 9603 9604 9605 9606 9607 9608 9609 9610 9611 9612 9613 9614 9615 9616 9617 9618 9619 9620 9621 9622 9623 9624 9625 9626 9627 9628 9629 9630 9631 9632 9633 9634 9635 9636 9637 9638 9639 9640 9641 9642 9643 9644 9645 9646 9647 9648 9649 9650 9651 9652 9653 9654 9655 9656 9657 9658 9659 9660 9661 9662 9663 9664 9665 9666 9667 9668 9669 9670 9671 9672 9673 9674 9675 9676 9677 9678 9679 9680 9681 9682 9683 9684 9685 9686 9687 9688 9689 9690 9691 9692 9693 9694 9695 9696 9697 9698 9699 9700 9701 9702 9703 9704 9705 9706 9707 9708 9709 9710 9711 9712 9713 9714 9715 9716 9717 9718 9719 9720 9721 9722 9723 9724 9725 9726 9727 9728 9729 9730 9731 9732 9733 9734 9735 9736 9737 9738 9739 9740 9741 9742 9743 9744 9745 9746 9747 9748 9749 9750 9751 9752 9753 9754 9755 9756 9757 9758 9759 9760 9761 9762 9763 9764 9765 9766 9767 9768 9769 9770 9771 9772 9773 9774 9775 9776 9777 9778 9779 9780 9781 9782 9783 9784 9785 9786 9787 9788 9789 9790 9791 9792 9793 9794 9795 9796 9797 9798 9799 9800 9801 9802 9803 9804 9805 9806 9807 9808 9809 9810 9811 9812 9813 9814 9815 9816 9817 9818 9819 9820 9821 9822 9823 9824 9825 9826 9827 9828 9829 9830 9831 9832 9833 9834 9835 9836 9837 9838 9839 9840 9841 9842 9843 9844 9845 9846 9847 9848 9849 9850 9851 9852 9853 9854 9855 9856 9857 9858 9859 9860 9861 9862 9863 9864 9865 9866 9867 9868 9869 9870 9871 9872 9873 9874 9875 9876 9877 9878 9879 9880 9881 9882 9883 9884 9885 9886 9887 9888 9889 9890 9891 9892 9893 9894 9895 9896 9897 9898 9899 9900 9901 9902 9903 9904 9905 9906 9907 9908 9909 9910 9911 9912 9913 9914 9915 9916 9917 9918 9919 9920 9921 9922 9923 9924 9925 9926 9927 9928 9929 9930 9931 9932 9933 9934 9935 9936 9937 9938 9939 9940 9941 9942 9943 9944 9945 9946 9947 9948 9949 9950 9951 9952 9953 9954 9955 9956 9957 9958 9959 9960 9961 9962 9963 9964 9965 9966 9967 9968 9969 9970 9971 9972 9973 9974 9975 9976 9977 9978 9979 9980 9981 9982 9983 9984 9985 9986 9987 9988 9989 9990 9991 9992 9993 9994 9995 9996 9997 9998 9999 10000 10001 10002 10003 10004 10005 10006 10007 10008 10009 10010 10011 10012 10013 10014 10015 10016 10017 10018 10019 10020 10021 10022 10023 10024 10025 10026 10027 10028 10029 10030 10031 10032 10033 10034 10035 10036 10037 10038 10039 10040 10041 10042 10043 10044 10045 10046 10047 10048 10049 10050 10051 10052 10053 10054 10055 10056 10057 10058 10059 10060 10061 10062 10063 10064 10065 10066 10067 10068 10069 10070 10071 10072 10073 10074 10075 10076 10077 10078 10079 10080 10081 10082 10083 10084 10085 10086 10087 10088 10089 10090 10091 10092 10093 10094 10095 10096 10097 10098 10099 10100 10101 10102 10103 10104 10105 10106 10107 10108 10109 10110 10111 10112 10113 10114 10115 10116 10117 10118 10119 10120 10121 10122 10123 10124 10125 10126 10127 10128 10129 10130 10131 10132 10133 10134 10135 10136 10137 10138 10139 10140 10141 10142 10143 10144 10145 10146 10147 10148 10149 10150 10151 10152 10153 10154 10155 10156 10157 10158 10159 10160 10161 10162 10163 10164 10165 10166 10167 10168 10169 10170 10171 10172 10173 10174 10175 10176 10177 10178 10179 10180 10181 10182 10183 10184 10185 10186 10187 10188 10189 10190 10191 10192 10193 10194 10195 10196 10197 10198 10199 10200 10201 10202 10203 10204 10205 10206 10207 10208 10209 10210 10211 10212 10213 10214 10215 10216 10217 10218 10219 10220 10221 10222 10223 10224 10225 10226 10227 10228 10229 10230 10231 10232 10233 10234 10235 10236 10237 10238 10239 10240 10241 10242 10243 10244 10245 10246 10247 10248 10249 10250 10251 10252 10253 10254 10255 10256 10257 10258 10259 10260 10261 10262 10263 10264 10265 10266 10267 10268 10269 10270 10271 10272 10273 10274 10275 10276 10277 10278 10279 10280 10281 10282 10283 10284 10285 10286 10287 10288 10289 10290 10291 10292 10293 10294 10295 10296 10297 10298 10299 10300 10301 10302 10303 10304 10305 10306 10307 10308 10309 10310 10311 10312 10313 10314 10315 10316 10317 10318 10319 10320 10321 10322 10323 10324 10325 10326 10327 10328 10329 10330 10331 10332 10333 10334 10335 10336 10337 10338 10339 10340 10341 10342 10343 10344 10345 10346 10347 10348 10349 10350 10351 10352 10353 10354 10355 10356 10357 10358 10359 10360 10361 10362 10363 10364 10365 10366 10367 10368 10369 10370 10371 10372 10373 10374 10375 10376 10377 10378 10379 10380 10381 10382 10383 10384 10385 10386 10387 10388 10389 10390 10391 10392 10393 10394 10395 10396 10397 10398 10399 10400 10401 10402 10403 10404 10405 10406 10407 10408 10409 10410 10411 10412 10413 10414 10415 10416 10417 10418 10419 10420 10421 10422 10423 10424 10425 10426 10427 10428 10429 10430 10431 10432 10433 10434 10435 10436 10437 10438 10439 10440 10441 10442 10443 10444 10445 10446 10447 10448 10449 10450 10451 10452 10453 10454 10455 10456 10457 10458 10459 10460 10461 10462 10463 10464 10465 10466 10467 10468 10469 10470 10471 10472 10473 10474 10475 10476 10477 10478 10479 10480 10481 10482 10483 10484 10485 10486 10487 10488 10489 10490 10491 10492 10493 10494 10495 10496 10497 10498 10499 10500 10501 10502 10503 10504 10505 10506 10507 10508 10509 10510 10511 10512 10513 10514 10515 10516 10517 10518 10519 10520 10521 10522 10523 10524 10525 10526 10527 10528 10529 10530 10531 10532 10533 10534 10535 10536 10537 10538 10539 10540 10541 10542 10543 10544 10545 10546 10547 10548 10549 10550 10551 10552 10553 10554 10555 10556 10557 10558 10559 10560 10561 10562 10563 10564 10565 10566 10567 10568 10569 10570 10571 10572 10573 10574 10575 10576 10577 10578 10579 10580 10581 10582 10583 10584 10585 10586 10587 10588 10589 10590 10591 10592 10593 10594 10595 10596 10597 10598 10599 10600 10601 10602 10603 10604 10605 10606 10607 10608 10609 10610 10611 10612 10613 10614 10615 10616 10617 10618 10619 10620 10621 10622 10623 10624 10625 10626 10627 10628 10629 10630 10631 10632 10633 10634 10635 10636 10637 10638 10639 10640 10641 10642 10643 10644 10645 10646 10647 10648 10649 10650 10651 10652 10653 10654 10655 10656 10657 10658 10659 10660 10661 10662 10663 10664 10665 10666 10667 10668 10669 10670 10671 10672 10673 10674 10675 10676 10677 10678 10679 10680 10681 10682 10683 10684 10685 10686 10687 10688 10689 10690 10691 10692 10693 10694 10695 10696 10697 10698 10699 10700 10701 10702 10703 10704 10705 10706 10707 10708 10709 10710 10711 10712 10713 10714 10715 10716 10717 10718 10719 10720 10721 10722 10723 10724 10725 10726 10727 10728 10729 10730 10731 10732 10733 10734 10735 10736 10737 10738 10739 10740 10741 10742 10743 10744 10745 10746 10747 10748 10749 10750 10751 10752 10753 10754 10755 10756 10757 10758 10759 10760 10761 10762 10763 10764 10765 10766 10767 10768 10769 10770 10771 10772 10773 10774 10775 10776 10777 10778 10779 10780 10781 10782 10783 10784 10785 10786 10787 10788 10789 10790 10791 10792 10793 10794 10795 10796 10797 10798 10799 10800 10801 10802 10803 10804 10805 10806 10807 10808 10809 10810 10811 10812 10813 10814 10815 10816 10817 10818 10819 10820 10821 10822 10823 10824 10825 10826 10827 10828 10829 10830 10831 10832 10833 10834 10835 10836 10837 10838 10839 10840 10841 10842 10843 10844 10845 10846 10847 10848 10849 10850 10851 10852 10853 10854 10855 10856 10857 10858 10859 10860 10861 10862 10863 10864 10865 10866 10867 10868 10869 10870 10871 10872 10873 10874 10875 10876 10877 10878 10879 10880 10881 10882 10883 10884 10885 10886 10887 10888 10889 10890 10891 10892 10893 10894 10895 10896 10897 10898 10899 10900 10901 10902 10903 10904 10905 10906 10907 10908 10909 10910 10911 10912 10913 10914 10915 10916 10917 10918 10919 10920 10921 10922 10923 10924 10925 10926 10927 10928 10929 10930 10931 10932 10933 10934 10935 10936 10937 10938 10939 10940 10941 10942 10943 10944 10945 10946 10947 10948 10949 10950 10951 10952 10953 10954 10955 10956 10957 10958 10959 10960 10961 10962 10963 10964 10965 10966 10967 10968 10969 10970 10971 10972 10973 10974 10975 10976 10977 10978 10979 10980 10981 10982 10983 10984 10985 10986 10987 10988 10989 10990 10991 10992 10993 10994 10995 10996 10997 10998 10999 11000 11001 11002 11003 11004 11005 11006 11007 11008 11009 11010 11011 11012 11013 11014 11015 11016 11017 11018 11019 11020 11021 11022 11023 11024 11025 11026 11027 11028 11029 11030 11031 11032 11033 11034 11035 11036 11037 11038 11039 11040 11041 11042 11043 11044 11045 11046 11047 11048 11049 11050 11051 11052 11053 11054 11055 11056 11057 11058 11059 11060 11061 11062 11063 11064 11065 11066 11067 11068 11069 11070 11071 11072 11073 11074 11075 11076 11077 11078 11079 11080 11081 11082 11083 11084 11085 11086 11087 11088 11089 11090 11091 11092 11093 11094 11095 11096 11097 11098 11099 11100 11101 11102 11103 11104 11105 11106 11107 11108 11109 11110 11111 11112 11113 11114 11115 11116 11117 11118 11119 11120 11121 11122 11123 11124 11125 11126 11127 11128 11129 11130 11131 11132 11133 11134 11135 11136 11137 11138 11139 11140 11141 11142 11143 11144 11145 11146 11147 11148 11149 11150 11151 11152 11153 11154 11155 11156 11157 11158 11159 11160 11161 11162 11163 11164 11165 11166 11167 11168 11169 11170 11171 11172 11173 11174 11175 11176 11177 11178 11179 11180 11181 11182 11183 11184 11185 11186 11187 11188 11189 11190 11191 11192 11193 11194 11195 11196 11197 11198 11199 11200 11201 11202 11203 11204 11205 11206 11207 11208 11209 11210 11211 11212 11213 11214 11215 11216 11217 11218 11219 11220 11221 11222 11223 11224 11225 11226 11227 11228 11229 11230 11231 11232 11233 11234 11235 11236 11237 11238 11239 11240 11241 11242 11243 11244 11245 11246 11247 11248 11249 11250 11251 11252 11253 11254 11255 11256 11257 11258 11259 11260 11261 11262 11263 11264 11265 11266 11267 11268 11269 11270 11271 11272 11273 11274 11275 11276 11277 11278 11279 11280 11281 11282 11283 11284 11285 11286 11287 11288 11289 11290 11291 11292 11293 11294 11295 11296 11297 11298 11299 11300 11301 11302 11303 11304 11305 11306 11307 11308 11309 11310 11311 11312 11313 11314 11315 11316 11317 11318 11319 11320 11321 11322 11323 11324 11325 11326 11327 11328 11329 11330 11331 11332 11333 11334 11335 11336 11337 11338 11339 11340 11341 11342 11343 11344 11345 11346 11347 11348 11349 11350 11351 11352 11353 11354 11355 11356 11357 11358 11359 11360 11361 11362 11363 11364 11365 11366 11367 11368 11369 11370 11371 11372 11373 11374 11375 11376 11377 11378 11379 11380 11381 11382 11383 11384 11385 11386 11387 11388 11389 11390 11391 11392 11393 11394 11395 11396 11397 11398 11399 11400 11401 11402 11403 11404 11405 11406 11407 11408 11409 11410 11411 11412 11413 11414 11415 11416 11417 11418 11419 11420 11421 11422 11423 11424 11425 11426 11427 11428 11429 11430 11431 11432 11433 11434 11435 11436 11437 11438 11439 11440 11441 11442 11443 11444 11445 11446 11447 11448 11449 11450 11451 11452 11453 11454 11455 11456 11457 11458 11459 11460 11461 11462 11463 11464 11465 11466 11467 11468 11469 11470 11471 11472 11473 11474 11475 11476 11477 11478 11479 11480 11481 11482 11483 11484 11485 11486 11487 11488 11489 11490 11491 11492 11493 11494 11495 11496 11497 11498 11499 11500 11501 11502 11503 11504 11505 11506 11507 11508 11509 11510 11511 11512 11513 11514 11515 11516 11517 11518 11519 11520 11521 11522 11523 11524 11525 11526 11527 11528 11529 11530 11531 11532 11533 11534 11535 11536 11537 11538 11539 11540 11541 11542 11543 11544 11545 11546 11547 11548 11549 11550 11551 11552 11553 11554 11555 11556 11557 11558 11559 11560 11561 11562 11563 11564 11565 11566 11567 11568 11569 11570 11571 11572 11573 11574 11575 11576 11577 11578 11579 11580 11581 11582 11583 11584 11585 11586 11587 11588 11589 11590 11591 11592 11593 11594 11595 11596 11597 11598 11599 11600 11601 11602 11603 11604 11605 11606 11607 11608 11609 11610 11611 11612 11613 11614 11615 11616 11617 11618 11619 11620 11621 11622 11623 11624 11625 11626 11627 11628 11629 11630 11631 11632 11633 11634 11635 11636 11637 11638 11639 11640 11641 11642 11643 11644 11645 11646 11647 11648 11649 11650 11651 11652 11653 11654 11655 11656 11657 11658 11659 11660 11661 11662 11663 11664 11665 11666 11667 11668 11669 11670 11671 11672 11673 11674 11675 11676 11677 11678 11679 11680 11681 11682 11683 11684 11685 11686 11687 11688 11689 11690 11691 11692 11693 11694 11695 11696 11697 11698 11699 11700 11701 11702 11703 11704 11705 11706 11707 11708 11709 11710 11711 11712 11713 11714 11715 11716 11717 11718 11719 11720 11721 11722 11723 11724 11725 11726 11727 11728 11729 11730 11731 11732 11733 11734 11735 11736 11737 11738 11739 11740 11741 11742 11743 11744 11745 11746 11747 11748 11749 11750 11751 11752 11753 11754 11755 11756 11757 11758 11759 11760 11761 11762 11763 11764 11765 11766 11767 11768 11769 11770 11771 11772 11773 11774 11775 11776 11777 11778 11779 11780 11781 11782 11783 11784 11785 11786 11787 11788 11789 11790 11791 11792 11793 11794 11795 11796 11797 11798 11799 11800 11801 11802 11803 11804 11805 11806 11807 11808 11809 11810 11811 11812 11813 11814 11815 11816 11817 11818 11819 11820 11821 11822 11823 11824 11825 11826 11827 11828 11829 11830 11831 11832 11833 11834 11835 11836 11837 11838 11839 11840 11841 11842 11843 11844 11845 11846 11847 11848 11849 11850 11851 11852 11853 11854 11855 11856 11857 11858 11859 11860 11861 11862 11863 11864 11865 11866 11867 11868 11869 11870 11871 11872 11873 11874 11875 11876 11877 11878 11879 11880 11881 11882 11883 11884 11885 11886 11887 11888 11889 11890 11891 11892 11893 11894 11895 11896 11897 11898 11899 11900 11901 11902 11903 11904 11905 11906 11907 11908 11909 11910 11911 11912 11913 11914 11915 11916 11917 11918 11919 11920 11921 11922 11923 11924 11925 11926 11927 11928 11929 11930 11931 11932 11933 11934 11935 11936 11937 11938 11939 11940 11941 11942 11943 11944 11945 11946 11947 11948 11949 11950 11951 11952 11953 11954 11955 11956 11957 11958 11959 11960 11961 11962 11963 11964 11965 11966 11967 11968 11969 11970 11971 11972 11973 11974 11975 11976 11977 11978 11979 11980 11981 11982 11983 11984 11985 11986 11987 11988 11989 11990 11991 11992 11993 11994 11995 11996 11997 11998 11999 12000 12001 12002 12003 12004 12005 12006 12007 12008 12009 12010 12011 12012 12013 12014 12015 12016 12017 12018 12019 12020 12021 12022 12023 12024 12025 12026 12027 12028 12029 12030 12031 12032 12033 12034 12035 12036 12037 12038 12039 12040 12041 12042 12043 12044 12045 12046 12047 12048 12049 12050 12051 12052 12053 12054 12055 12056 12057 12058 12059 12060 12061 12062 12063 12064 12065 12066 12067 12068 12069 12070 12071 12072 12073 12074 12075 12076 12077 12078 12079 12080 12081 12082 12083 12084 12085 12086 12087 12088 12089 12090 12091 12092 12093 12094 12095 12096 12097 12098 12099 12100 12101 12102 12103 12104 12105 12106 12107 12108 12109 12110 12111 12112 12113 12114 12115 12116 12117 12118 12119 12120 12121 12122 12123 12124 12125 12126 12127 12128 12129 12130 12131 12132 12133 12134 12135 12136 12137 12138 12139 12140 12141 12142 12143 12144 12145 12146 12147 12148 12149 12150 12151 12152 12153 12154 12155 12156 12157 12158 12159 12160 12161 12162 12163 12164 12165 12166 12167 12168 12169 12170 12171 12172 12173 12174 12175 12176 12177 12178 12179 12180 12181 12182 12183 12184 12185 12186 12187 12188 12189 12190 12191 12192 12193 12194 12195 12196 12197 12198 12199 12200 12201 12202 12203 12204 12205 12206 12207 12208 12209 12210 12211 12212 12213 12214 12215 12216 12217 12218 12219 12220 12221 12222 12223 12224 12225 12226 12227 12228 12229 12230 12231 12232 12233 12234 12235 12236 12237 12238 12239 12240 12241 12242 12243 12244 12245 12246 12247 12248 12249 12250 12251 12252 12253 12254 12255 12256 12257 12258 12259 12260 12261 12262 12263 12264 12265 12266 12267 12268 12269 12270 12271 12272 12273 12274 12275 12276 12277 12278 12279 12280 12281 12282 12283 12284 12285 12286 12287 12288 12289 12290 12291 12292 12293 12294 12295 12296 12297 12298 12299 12300 12301 12302 12303 12304 12305 12306 12307 12308 12309 12310 12311 12312 12313 12314 12315 12316 12317 12318 12319 12320 12321 12322 12323 12324 12325 12326 12327 12328 12329 12330 12331 12332 12333 12334 12335 12336 12337 12338 12339 12340 12341 12342 12343 12344 12345 12346 12347 12348 12349 12350 12351 12352 12353 12354 12355 12356 12357 12358 12359 12360 12361 12362 12363 12364 12365 12366 12367 12368 12369 12370 12371 12372 12373 12374 12375 12376 12377 12378 12379 12380 12381 12382 12383 12384 12385 12386 12387 12388 12389 12390 12391 12392 12393 12394 12395 12396 12397 12398 12399 12400 12401 12402 12403 12404 12405 12406 12407 12408 12409 12410 12411 12412 12413 12414 12415 12416 12417 12418 12419 12420 12421 12422 12423 12424 12425 12426 12427 12428 12429 12430 12431 12432 12433 12434 12435 12436 12437 12438 12439 12440 12441 12442 12443 12444 12445 12446 12447 12448 12449 12450 12451 12452 12453 12454 12455 12456 12457 12458 12459 12460 12461 12462 12463 12464 12465 12466 12467 12468 12469 12470 12471 12472 12473 12474 12475 12476 12477 12478 12479 12480 12481 12482 12483 12484 12485 12486 12487 12488 12489 12490 12491 12492 12493 12494 12495 12496 12497 12498 12499 12500 12501 12502 12503 12504 12505 12506 12507 12508 12509 12510 12511 12512 12513 12514 12515 12516 12517 12518 12519 12520 12521 12522 12523 12524 12525 12526 12527 12528 12529 12530 12531 12532 12533 12534 12535 12536 12537 12538 12539 12540 12541 12542 12543 12544 12545 12546 12547 12548 12549 12550 12551 12552 12553 12554 12555 12556 12557 12558 12559 12560 12561 12562 12563 12564 12565 12566 12567 12568 12569 12570 12571 12572 12573 12574 12575 12576 12577 12578 12579 12580 12581 12582 12583 12584 12585 12586 12587 12588 12589 12590 12591 12592 12593 12594 12595 12596 12597 12598 12599 12600 12601 12602 12603 12604 12605 12606 12607 12608 12609 12610 12611 12612 12613 12614 12615 12616 12617 12618 12619 12620 12621 12622 12623 12624 12625 12626 12627 12628 12629 12630 12631 12632 12633 12634 12635 12636 12637 12638 12639 12640 12641 12642 12643 12644 12645 12646 12647 12648 12649 12650 12651 12652 12653 12654 12655 12656 12657 12658 12659 12660 12661 12662 12663 12664 12665 12666 12667 12668 12669 12670 12671 12672 12673 12674 12675 12676 12677 12678 12679 12680 12681 12682 12683 12684 12685 12686 12687 12688 12689 12690 12691 12692 12693 12694 12695 12696 12697 12698 12699 12700 12701 12702 12703 12704 12705 12706 12707 12708 12709 12710 12711 12712 12713 12714 12715 12716 12717 12718 12719 12720 12721 12722 12723 12724 12725 12726 12727 12728 12729 12730 12731 12732 12733 12734 12735 12736 12737 12738 12739 12740 12741 12742 12743 12744 12745 12746 12747 12748 12749 12750 12751 12752 12753 12754 12755 12756 12757 12758 12759 12760 12761 12762 12763 12764 12765 12766 12767 12768 12769 12770 12771 12772 12773 12774 12775 12776 12777 12778 12779 12780 12781 12782 12783 12784 12785 12786 12787 12788 12789 12790 12791 12792 12793 12794 12795 12796 12797 12798 12799 12800 12801 12802 12803 12804 12805 12806 12807 12808 12809 12810 12811 12812 12813 12814 12815 12816 12817 12818 12819 12820 12821 12822 12823 12824 12825 12826 12827 12828 12829 12830 12831 12832 12833 12834 12835 12836 12837 12838 12839 12840 12841 12842 12843 12844 12845 12846 12847 12848 12849 12850 12851 12852 12853 12854 12855 12856 12857 12858 12859 12860 12861 12862 12863 12864 12865 12866 12867 12868 12869 12870 12871 12872 12873 12874 12875 12876 12877 12878 12879 12880 12881 12882 12883 12884 12885 12886 12887 12888 12889 12890 12891 12892 12893 12894 12895 12896 12897 12898 12899 12900 12901 12902 12903 12904 12905 12906 12907 12908 12909 12910 12911 12912 12913 12914 12915 12916 12917 12918 12919 12920 12921 12922 12923 12924 12925 12926 12927 12928 12929 12930 12931 12932 12933 12934 12935 12936 12937 12938 12939 12940 12941 12942 12943 12944 12945 12946 12947 12948 12949 12950 12951 12952 12953 12954 12955 12956 12957 12958 12959 12960 12961 12962 12963 12964 12965 12966 12967 12968 12969 12970 12971 12972 12973 12974 12975 12976 12977 12978 12979 12980 12981 12982 12983 12984 12985 12986 12987 12988 12989 12990 12991 12992 12993 12994 12995 12996 12997 12998 12999 13000 13001 13002 13003 13004 13005 13006 13007 13008 13009 13010 13011 13012 13013 13014 13015 13016 13017 13018 13019 13020 13021 13022 13023 13024 13025 13026 13027 13028 13029 13030 13031 13032 13033 13034 13035 13036 13037 13038 13039 13040 13041 13042 13043 13044 13045 13046 13047 13048 13049 13050 13051 13052 13053 13054 13055 13056 13057 13058 13059 13060 13061 13062 13063 13064 13065 13066 13067 13068 13069 13070 13071 13072 13073 13074 13075 13076 13077 13078 13079 13080 13081 13082 13083 13084 13085 13086 13087 13088 13089 13090 13091 13092 13093 13094 13095 13096 13097 13098 13099 13100 13101 13102 13103 13104 13105 13106 13107 13108 13109 13110 13111 13112 13113 13114 13115 13116 13117 13118 13119 13120 13121 13122 13123 13124 13125 13126 13127 13128 13129 13130 13131 13132 13133 13134 13135 13136 13137 13138 13139 13140 13141 13142 13143 13144 13145 13146 13147 13148 13149 13150 13151 13152 13153 13154 13155 13156 13157 13158 13159 13160 13161 13162 13163 13164 13165 13166 13167 13168 13169 13170 13171 13172 13173 13174 13175 13176 13177 13178 13179 13180 13181 13182 13183 13184 13185 13186 13187 13188 13189 13190 13191 13192 13193 13194 13195 13196 13197 13198 13199 13200 13201 13202 13203 13204 13205 13206 13207 13208 13209 13210 13211 13212 13213 13214 13215 13216 13217 13218 13219 13220 13221 13222 13223 13224 13225 13226 13227 13228 13229 13230 13231 13232 13233 13234 13235 13236 13237 13238 13239 13240 13241 13242 13243 13244 13245 13246 13247 13248 13249 13250 13251 13252 13253 13254 13255 13256 13257 13258 13259 13260 13261 13262 13263 13264 13265 13266 13267 13268 13269 13270 13271 13272 13273 13274 13275 13276 13277 13278 13279 13280 13281 13282 13283 13284 13285 13286 13287 13288 13289 13290 13291 13292 13293 13294 13295 13296 13297 13298 13299 13300 13301 13302 13303 13304 13305 13306 13307 13308 13309 13310 13311 13312 13313 13314 13315 13316 13317 13318 13319 13320 13321 13322 13323 13324 13325 13326 13327 13328 13329 13330 13331 13332 13333 13334 13335 13336 13337 13338 13339 13340 13341 13342 13343 13344 13345 13346 13347 13348 13349 13350 13351 13352 13353 13354 13355 13356 13357 13358 13359 13360 13361 13362 13363 13364 13365 13366 13367 13368 13369 13370 13371 13372 13373 13374 13375 13376 13377 13378 13379 13380 13381 13382 13383 13384 13385 13386 13387 13388 13389 13390 13391 13392 13393 13394 13395 13396 13397 13398 13399 13400 13401 13402 13403 13404 13405 13406 13407 13408 13409 13410 13411 13412 13413 13414 13415 13416 13417 13418 13419 13420 13421 13422 13423 13424 13425 13426 13427 13428 13429 13430 13431 13432 13433 13434 13435 13436 13437 13438 13439 13440 13441 13442 13443 13444 13445 13446 13447 13448 13449 13450 13451 13452 13453 13454 13455 13456 13457 13458 13459 13460 13461 13462 13463 13464 13465 13466 13467 13468 13469 13470 13471 13472 13473 13474 13475 13476 13477 13478 13479 13480 13481 13482 13483 13484 13485 13486 13487 13488 13489 13490 13491 13492 13493 13494 13495 13496 13497 13498 13499 13500 13501 13502 13503 13504 13505 13506 13507 13508 13509 13510 13511 13512 13513 13514 13515 13516 13517 13518 13519 13520 13521 13522 13523 13524 13525 13526 13527 13528 13529 13530 13531 13532 13533 13534 13535 13536 13537 13538 13539 13540 13541 13542 13543 13544 13545 13546 13547 13548 13549 13550 13551 13552 13553 13554 13555 13556 13557 13558 13559 13560 13561 13562 13563 13564 13565 13566 13567 13568 13569 13570 13571 13572 13573 13574 13575 13576 13577 13578 13579 13580 13581 13582 13583 13584 13585 13586 13587 13588 13589 13590 13591 13592 13593 13594 13595 13596 13597 13598 13599 13600 13601 13602 13603 13604 13605 13606 13607 13608 13609 13610 13611 13612 13613 13614 13615 13616 13617 13618 13619 13620 13621 13622 13623 13624 13625 13626 13627 13628 13629 13630 13631 13632 13633 13634 13635 13636 13637 13638 13639 13640 13641 13642 13643 13644 13645 13646 13647 13648 13649 13650 13651 13652 13653 13654 13655 13656 13657 13658 13659 13660 13661 13662 13663 13664 13665 13666 13667 13668 13669 13670 13671 13672 13673 13674 13675 13676 13677 13678 13679 13680 13681 13682 13683 13684 13685 13686 13687 13688 13689 13690 13691 13692 13693 13694 13695 13696 13697 13698 13699 13700 13701 13702 13703 13704 13705 13706 13707 13708 13709 13710 13711 13712 13713 13714 13715 13716 13717 13718 13719 13720 13721 13722 13723 13724 13725 13726 13727 13728 13729 13730 13731 13732 13733 13734 13735 13736 13737 13738 13739 13740 13741 13742 13743 13744 13745 13746 13747 13748 13749 13750 13751 13752 13753 13754 13755 13756 13757 13758 13759 13760 13761 13762 13763 13764 13765 13766 13767 13768 13769 13770 13771 13772 13773 13774 13775 13776 13777 13778 13779 13780 13781 13782 13783 13784 13785 13786 13787 13788 13789 13790 13791 13792 13793 13794 13795 13796 13797 13798 13799 13800 13801 13802 13803 13804 13805 13806 13807 13808 13809 13810 13811 13812 13813 13814 13815 13816 13817 13818 13819 13820 13821 13822 13823 13824 13825 13826 13827 13828 13829 13830 13831 13832 13833 13834 13835 13836 13837 13838 13839 13840 13841 13842 13843 13844 13845 13846 13847 13848 13849 13850 13851 13852 13853 13854 13855 13856 13857 13858 13859 13860 13861 13862 13863 13864 13865 13866 13867 13868 13869 13870 13871 13872 13873 13874 13875 13876 13877 13878 13879 13880 13881 13882 13883 13884 13885 13886 13887 13888 13889 13890 13891 13892 13893 13894 13895 13896 13897 13898 13899 13900 13901 13902 13903 13904 13905 13906 13907 13908 13909 13910 13911 13912 13913 13914 13915 13916 13917 13918 13919 13920 13921 13922 13923 13924 13925 13926 13927 13928 13929 13930 13931 13932 13933 13934 13935 13936 13937 13938 13939 13940 13941 13942 13943 13944 13945 13946 13947 13948 13949 13950 13951 13952 13953 13954 13955 13956 13957 13958 13959 13960 13961 13962 13963 13964 13965 13966 13967 13968 13969 13970 13971 13972 13973 13974 13975 13976 13977 13978 13979 13980 13981 13982 13983 13984 13985 13986 13987 13988 13989 13990 13991 13992 13993 13994 13995 13996 13997 13998 13999 14000 14001 14002 14003 14004 14005 14006 14007 14008 14009 14010 14011 14012 14013 14014 14015 14016 14017 14018 14019 14020 14021 14022 14023 14024 14025 14026 14027 14028 14029 14030 14031 14032 14033 14034 14035 14036 14037 14038 14039 14040 14041 14042 14043 14044 14045 14046 14047 14048 14049 14050 14051 14052 14053 14054 14055 14056 14057 14058 14059 14060 14061 14062 14063 14064 14065 14066 14067 14068 14069 14070 14071 14072 14073 14074 14075 14076 14077 14078 14079 14080 14081 14082 14083 14084 14085 14086 14087 14088 14089 14090 14091 14092 14093 14094 14095 14096 14097 14098 14099 14100 14101 14102 14103 14104 14105 14106 14107 14108 14109 14110 14111 14112 14113 14114 14115 14116 14117 14118 14119 14120 14121 14122 14123 14124 14125 14126 14127 14128 14129 14130 14131 14132 14133 14134 14135 14136 14137 14138 14139 14140 14141 14142 14143 14144 14145 14146 14147 14148 14149 14150 14151 14152 14153 14154 14155 14156 14157 14158 14159 14160 14161 14162 14163 14164 14165 14166 14167 14168 14169 14170 14171 14172 14173 14174 14175 14176 14177 14178 14179 14180 14181 14182 14183 14184 14185 14186 14187 14188 14189 14190 14191 14192 14193 14194 14195 14196 14197 14198 14199 14200 14201 14202 14203 14204 14205 14206 14207 14208 14209 14210 14211 14212 14213 14214 14215 14216 14217 14218 14219 14220 14221 14222 14223 14224 14225 14226 14227 14228 14229 14230 14231 14232 14233 14234 14235 14236 14237 14238 14239 14240 14241 14242 14243 14244 14245 14246 14247 14248 14249 14250 14251 14252 14253 14254 14255 14256 14257 14258 14259 14260 14261 14262 14263 14264 14265 14266 14267 14268 14269 14270 14271 14272 14273 14274 14275 14276 14277 14278 14279 14280 14281 14282 14283 14284 14285 14286 14287 14288 14289 14290 14291 14292 14293 14294 14295 14296 14297 14298 14299 14300 14301 14302 14303 14304 14305 14306 14307 14308 14309 14310 14311 14312 14313 14314 14315 14316 14317 14318 14319 14320 14321 14322 14323 14324 14325 14326 14327 14328 14329 14330 14331 14332 14333 14334 14335 14336 14337 14338 14339 14340 14341 14342 14343 14344 14345 14346 14347 14348 14349 14350 14351 14352 14353 14354 14355 14356 14357 14358 14359 14360 14361 14362 14363 14364 14365 14366 14367 14368 14369 14370 14371 14372 14373 14374 14375 14376 14377 14378 14379 14380 14381 14382 14383 14384 14385 14386 14387 14388 14389 14390 14391 14392 14393 14394 14395 14396 14397 14398 14399 14400 14401 14402 14403 14404 14405 14406 14407 14408 14409 14410 14411 14412 14413 14414 14415 14416 14417 14418 14419 14420 14421 14422 14423 14424 14425 14426 14427 14428 14429 14430 14431 14432 14433 14434 14435 14436 14437 14438 14439 14440 14441 14442 14443 14444 14445 14446 14447 14448 14449 14450 14451 14452 14453 14454 14455 14456 14457 14458 14459 14460 14461 14462 14463 14464 14465 14466 14467 14468 14469 14470 14471 14472 14473 14474 14475 14476 14477 14478 14479 14480 14481 14482 14483 14484 14485 14486 14487 14488 14489 14490 14491 14492 14493 14494 14495 14496 14497 14498 14499 14500 14501 14502 14503 14504 14505 14506 14507 14508 14509 14510 14511 14512 14513 14514 14515 14516 14517 14518 14519 14520 14521 14522 14523 14524 14525 14526 14527 14528 14529 14530 14531 14532 14533 14534 14535 14536 14537 14538 14539 14540 14541 14542 14543 14544 14545 14546 14547 14548 14549 14550 14551 14552 14553 14554 14555 14556 14557 14558 14559 14560 14561 14562 14563 14564 14565 14566 14567 14568 14569 14570 14571 14572 14573 14574 14575 14576 14577 14578 14579 14580 14581 14582 14583 14584 14585 14586 14587 14588 14589 14590 14591 14592 14593 14594 14595 14596 14597 14598 14599 14600 14601 14602 14603 14604 14605 14606 14607 14608 14609 14610 14611 14612 14613 14614 14615 14616 14617 14618 14619 14620 14621 14622 14623 14624 14625 14626 14627 14628 14629 14630 14631 14632 14633 14634 14635 14636 14637 14638 14639 14640 14641 14642 14643 14644 14645 14646 14647 14648 14649 14650 14651 14652 14653 14654 14655 14656 14657 14658 14659 14660 14661 14662 14663 14664 14665 14666 14667 14668 14669 14670 14671 14672 14673 14674 14675 14676 14677 14678 14679 14680 14681 14682 14683 14684 14685 14686 14687 14688 14689 14690 14691 14692 14693 14694 14695 14696 14697 14698 14699 14700 14701 14702 14703 14704 14705 14706 14707 14708 14709 14710 14711 14712 14713 14714 14715 14716 14717 14718 14719 14720 14721 14722 14723 14724 14725 14726 14727 14728 14729 14730 14731 14732 14733 14734 14735 14736 14737 14738 14739 14740 14741 14742 14743 14744 14745 14746 14747 14748 14749 14750 14751 14752 14753 14754 14755 14756 14757 14758 14759 14760 14761 14762 14763 14764 14765 14766 14767 14768 14769 14770 14771 14772 14773 14774 14775 14776 14777 14778 14779 14780 14781 14782 14783 14784 14785 14786 14787 14788 14789 14790 14791 14792 14793 14794 14795 14796 14797 14798 14799 14800 14801 14802 14803 14804 14805 14806 14807 14808 14809 14810 14811 14812 14813 14814 14815 14816 14817 14818 14819 14820 14821 14822 14823 14824 14825 14826 14827 14828 14829 14830 14831 14832 14833 14834 14835 14836 14837 14838 14839 14840 14841 14842 14843 14844 14845 14846 14847 14848 14849 14850 14851 14852 14853 14854 14855 14856 14857 14858 14859 14860 14861 14862 14863 14864 14865 14866 14867 14868 14869 14870 14871 14872 14873 14874 14875 14876 14877 14878 14879 14880 14881 14882 14883 14884 14885 14886 14887 14888 14889 14890 14891 14892 14893 14894 14895 14896 14897 14898 14899 14900 14901 14902 14903 14904 14905 14906 14907 14908 14909 14910 14911 14912 14913 14914 14915 14916 14917 14918 14919 14920 14921 14922 14923 14924 14925 14926 14927 14928 14929 14930 14931 14932 14933 14934 14935 14936 14937 14938 14939 14940 14941 14942 14943 14944 14945 14946 14947 14948 14949 14950 14951 14952 14953 14954 14955 14956 14957 14958 14959 14960 14961 14962 14963 14964 14965 14966 14967 14968 14969 14970 14971 14972 14973 14974 14975 14976 14977 14978 14979 14980 14981 14982 14983 14984 14985 14986 14987 14988 14989 14990 14991 14992 14993 14994 14995 14996 14997 14998 14999 15000 15001 15002 15003 15004 15005 15006 15007 15008 15009 15010 15011 15012 15013 15014 15015 15016 15017 15018 15019 15020 15021 15022 15023 15024 15025 15026 15027 15028 15029 15030 15031 15032 15033 15034 15035 15036 15037 15038 15039 15040 15041 15042 15043 15044 15045 15046 15047 15048 15049 15050 15051 15052 15053 15054 15055 15056 15057 15058 15059 15060 15061 15062 15063 15064 15065 15066 15067 15068 15069 15070 15071 15072 15073 15074 15075 15076 15077 15078 15079 15080 15081 15082 15083 15084 15085 15086 15087 15088 15089 15090 15091 15092 15093 15094 15095 15096 15097 15098 15099 15100 15101 15102 15103 15104 15105 15106 15107 15108 15109 15110 15111 15112 15113 15114 15115 15116 15117 15118 15119 15120 15121 15122 15123 15124 15125 15126 15127 15128 15129 15130 15131 15132 15133 15134 15135 15136 15137 15138 15139 15140 15141 15142 15143 15144 15145 15146 15147 15148 15149 15150 15151 15152 15153 15154 15155 15156 15157 15158 15159 15160 15161 15162 15163 15164 15165 15166 15167 15168 15169 15170 15171 15172 15173 15174 15175 15176 15177 15178 15179 15180 15181 15182 15183 15184 15185 15186 15187 15188 15189 15190 15191 15192 15193 15194 15195 15196 15197 15198 15199 15200 15201 15202 15203 15204 15205 15206 15207 15208 15209 15210 15211 15212 15213 15214 15215 15216 15217 15218 15219 15220 15221 15222 15223 15224 15225 15226 15227 15228 15229 15230 15231 15232 15233 15234 15235 15236 15237 15238 15239 15240 15241 15242 15243 15244 15245 15246 15247 15248 15249 15250 15251 15252 15253 15254 15255 15256 15257 15258 15259 15260 15261 15262 15263 15264 15265 15266 15267 15268 15269 15270 15271 15272 15273 15274 15275 15276 15277 15278 15279 15280 15281 15282 15283 15284 15285 15286 15287 15288 15289 15290 15291 15292 15293 15294 15295 15296 15297 15298 15299 15300 15301 15302 15303 15304 15305 15306 15307 15308 15309 15310 15311 15312 15313 15314 15315 15316 15317 15318 15319 15320 15321 15322 15323 15324 15325 15326 15327 15328 15329 15330 15331 15332 15333 15334 15335 15336 15337 15338 15339 15340 15341 15342 15343 15344 15345 15346 15347 15348 15349 15350 15351 15352 15353 15354 15355 15356 15357 15358 15359 15360 15361 15362 15363 15364 15365 15366 15367 15368 15369 15370 15371 15372 15373 15374 15375 15376 15377 15378 15379 15380 15381 15382 15383 15384 15385 15386 15387 15388 15389 15390 15391 15392 15393 15394 15395 15396 15397 15398 15399 15400 15401 15402 15403 15404 15405 15406 15407 15408 15409 15410 15411 15412 15413 15414 15415 15416 15417 15418 15419 15420 15421 15422 15423 15424 15425 15426 15427 15428 15429 15430 15431 15432 15433 15434 15435 15436 15437 15438 15439 15440 15441 15442 15443 15444 15445 15446 15447 15448 15449 15450 15451 15452 15453 15454 15455 15456 15457 15458 15459 15460 15461 15462 15463 15464 15465 15466 15467 15468 15469 15470 15471 15472 15473 15474 15475 15476 15477 15478 15479 15480 15481 15482 15483 15484 15485 15486 15487 15488 15489 15490 15491 15492 15493 15494 15495 15496 15497 15498 15499 15500 15501 15502 15503 15504 15505 15506 15507 15508 15509 15510 15511 15512 15513 15514 15515 15516 15517 15518 15519 15520 15521 15522 15523 15524 15525 15526 15527 15528 15529 15530 15531 15532 15533 15534 15535 15536 15537 15538 15539 15540 15541 15542 15543 15544 15545 15546 15547 15548 15549 15550 15551 15552 15553 15554 15555 15556 15557 15558 15559 15560 15561 15562 15563 15564 15565 15566 15567 15568 15569 15570 15571 15572 15573 15574 15575 15576 15577 15578 15579 15580 15581 15582 15583 15584 15585 15586 15587 15588 15589 15590 15591 15592 15593 15594 15595 15596 15597 15598 15599 15600 15601 15602 15603 15604 15605 15606 15607 15608 15609 15610 15611 15612 15613 15614 15615 15616 15617 15618 15619 15620 15621 15622 15623 15624 15625 15626 15627 15628 15629 15630 15631 15632 15633 15634 15635 15636 15637 15638 15639 15640 15641 15642 15643 15644 15645 15646 15647 15648 15649 15650 15651 15652 15653 15654 15655 15656 15657 15658 15659 15660 15661 15662 15663 15664 15665 15666 15667 15668 15669 15670 15671 15672 15673 15674 15675 15676 15677 15678 15679 15680 15681 15682 15683 15684 15685 15686 15687 15688 15689 15690 15691 15692 15693 15694 15695 15696 15697 15698 15699 15700 15701 15702 15703 15704 15705 15706 15707 15708 15709 15710 15711 15712 15713 15714 15715 15716 15717 15718 15719 15720 15721 15722 15723 15724 15725 15726 15727 15728 15729 15730 15731 15732 15733 15734 15735 15736 15737 15738 15739 15740 15741 15742 15743 15744 15745 15746 15747 15748 15749 15750 15751 15752 15753 15754 15755 15756 15757 15758 15759 15760 15761 15762 15763 15764 15765 15766 15767 15768 15769 15770 15771 15772 15773 15774 15775 15776 15777 15778 15779 15780 15781 15782 15783 15784 15785 15786 15787 15788 15789 15790 15791 15792 15793 15794 15795 15796 15797 15798 15799 15800 15801 15802 15803 15804 15805 15806 15807 15808 15809 15810 15811 15812 15813 15814 15815 15816 15817 15818 15819 15820 15821 15822 15823 15824 15825 15826 15827 15828 15829 15830 15831 15832 15833 15834 15835 15836 15837 15838 15839 15840 15841 15842 15843 15844 15845 15846 15847 15848 15849 15850 15851 15852 15853 15854 15855 15856 15857 15858 15859 15860 15861 15862 15863 15864 15865 15866 15867 15868 15869 15870 15871 15872 15873 15874 15875 15876 15877 15878 15879 15880 15881 15882 15883 15884 15885 15886 15887 15888 15889 15890 15891 15892 15893 15894 15895 15896 15897 15898 15899 15900 15901 15902 15903 15904 15905 15906 15907 15908 15909 15910 15911 15912 15913 15914 15915 15916 15917 15918 15919 15920 15921 15922 15923 15924 15925 15926 15927 15928 15929 15930 15931 15932 15933 15934 15935 15936 15937 15938 15939 15940 15941 15942 15943 15944 15945 15946 15947 15948 15949 15950 15951 15952 15953 15954 15955 15956 15957 15958 15959 15960 15961 15962 15963 15964 15965 15966 15967 15968 15969 15970 15971 15972 15973 15974 15975 15976 15977 15978 15979 15980 15981 15982 15983 15984 15985 15986 15987 15988 15989 15990 15991 15992 15993 15994 15995 15996 15997 15998 15999 16000 16001 16002 16003 16004 16005 16006 16007 16008 16009 16010 16011 16012 16013 16014 16015 16016 16017 16018 16019 16020 16021 16022 16023 16024 16025 16026 16027 16028 16029 16030 16031 16032 16033 16034 16035 16036 16037 16038 16039 16040 16041 16042 16043 16044 16045 16046 16047 16048 16049 16050 16051 16052 16053 16054 16055 16056 16057 16058 16059 16060 16061 16062 16063 16064 16065 16066 16067 16068 16069 16070 16071 16072 16073 16074 16075 16076 16077 16078 16079 16080 16081 16082 16083 16084 16085 16086 16087 16088 16089 16090 16091 16092 16093 16094 16095 16096 16097 16098 16099 16100 16101 16102 16103 16104 16105 16106 16107 16108 16109 16110 16111 16112 16113 16114 16115 16116 16117 16118 16119 16120 16121 16122 16123 16124 16125 16126 16127 16128 16129 16130 16131 16132 16133 16134 16135 16136 16137 16138 16139 16140 16141 16142 16143 16144 16145 16146 16147 16148 16149 16150 16151 16152 16153 16154 16155 16156 16157 16158 16159 16160 16161 16162 16163 16164 16165 16166 16167 16168 16169 16170 16171 16172 16173 16174 16175 16176 16177 16178 16179 16180 16181 16182 16183 16184 16185 16186 16187 16188 16189 16190 16191 16192 16193 16194 16195 16196 16197 16198 16199 16200 16201 16202 16203 16204 16205 16206 16207 16208 16209 16210 16211 16212 16213 16214 16215 16216 16217 16218 16219 16220 16221 16222 16223 16224 16225 16226 16227 16228 16229 16230 16231 16232 16233 16234 16235 16236 16237 16238 16239 16240 16241 16242 16243 16244 16245 16246 16247 16248 16249 16250 16251 16252 16253 16254 16255 16256 16257 16258 16259 16260 16261 16262 16263 16264 16265 16266 16267 16268 16269 16270 16271 16272 16273 16274 16275 16276 16277 16278 16279 16280 16281 16282 16283 16284 16285 16286 16287 16288 16289 16290 16291 16292 16293 16294 16295 16296 16297 16298 16299 16300 16301 16302 16303 16304 16305 16306 16307 16308 16309 16310 16311 16312 16313 16314 16315 16316 16317 16318 16319 16320 16321 16322 16323 16324 16325 16326 16327 16328 16329 16330 16331 16332 16333 16334 16335 16336 16337 16338 16339 16340 16341 16342 16343 16344 16345 16346 16347 16348 16349 16350 16351 16352 16353 16354 16355 16356 16357 16358 16359 16360 16361 16362 16363 16364 16365 16366 16367 16368 16369 16370 16371 16372 16373 16374 16375 16376 16377 16378 16379 16380 16381 16382 16383 16384 16385 16386 16387 16388 16389 16390 16391 16392 16393 16394 16395 16396 16397 16398 16399 16400 16401 16402 16403 16404 16405 16406 16407 16408 16409 16410 16411 16412 16413 16414 16415 16416 16417 16418 16419 16420 16421 16422 16423 16424 16425 16426 16427 16428 16429 16430 16431 16432 16433 16434 16435 16436 16437 16438 16439 16440 16441 16442 16443 16444 16445 16446 16447 16448 16449 16450 16451 16452 16453 16454 16455 16456 16457 16458 16459 16460 16461 16462 16463 16464 16465 16466 16467 16468 16469 16470 16471 16472 16473 16474 16475 16476 16477 16478 16479 16480 16481 16482 16483 16484 16485 16486 16487 16488 16489 16490 16491 16492 16493 16494 16495 16496 16497 16498 16499 16500 16501 16502 16503 16504 16505 16506 16507 16508 16509 16510 16511 16512 16513 16514 16515 16516 16517 16518 16519 16520 16521 16522 16523 16524 16525 16526 16527 16528 16529 16530 16531 16532 16533 16534 16535 16536 16537 16538 16539 16540 16541 16542 16543 16544 16545 16546 16547 16548 16549 16550 16551 16552 16553 16554 16555 16556 16557 16558 16559 16560 16561 16562 16563 16564 16565 16566 16567 16568 16569 16570 16571 16572 16573 16574 16575 16576 16577 16578 16579 16580 16581 16582 16583 16584 16585 16586 16587 16588 16589 16590 16591 16592 16593 16594 16595 16596 16597 16598 16599 16600 16601 16602 16603 16604 16605 16606 16607 16608 16609 16610 16611 16612 16613 16614 16615 16616 16617 16618 16619 16620 16621 16622 16623 16624 16625 16626 16627 16628 16629 16630 16631 16632 16633 16634 16635 16636 16637 16638 16639 16640 16641 16642 16643 16644 16645 16646 16647 16648 16649 16650 16651 16652 16653 16654 16655 16656 16657 16658 16659 16660 16661 16662 16663 16664 16665 16666 16667 16668 16669 16670 16671 16672 16673 16674 16675 16676 16677 16678 16679 16680 16681 16682 16683 16684 16685 16686 16687 16688 16689 16690 16691 16692 16693 16694 16695 16696 16697 16698 16699 16700 16701 16702 16703 16704 16705 16706 16707 16708 16709 16710 16711 16712 16713 16714 16715 16716 16717 16718 16719 16720 16721 16722 16723 16724 16725 16726 16727 16728 16729 16730 16731 16732 16733 16734 16735 16736 16737 16738 16739 16740 16741 16742 16743 16744 16745 16746 16747 16748 16749 16750 16751 16752 16753 16754 16755 16756 16757 16758 16759 16760 16761 16762 16763 16764 16765 16766 16767 16768 16769 16770 16771 16772 16773 16774 16775 16776 16777 16778 16779 16780 16781 16782 16783 16784 16785 16786 16787 16788 16789 16790 16791 16792 16793 16794 16795 16796 16797 16798 16799 16800 16801 16802 16803 16804 16805 16806 16807 16808 16809 16810 16811 16812 16813 16814 16815 16816 16817 16818 16819 16820 16821 16822 16823 16824 16825 16826 16827 16828 16829 16830 16831 16832 16833 16834 16835 16836 16837 16838 16839 16840 16841 16842 16843 16844 16845 16846 16847 16848 16849 16850 16851 16852 16853 16854 16855 16856 16857 16858 16859 16860 16861 16862 16863 16864 16865 16866 16867 16868 16869 16870 16871 16872 16873 16874 16875 16876 16877 16878 16879 16880 16881 16882 16883 16884 16885 16886 16887 16888 16889 16890 16891 16892 16893 16894 16895 16896 16897 16898 16899 16900 16901 16902 16903 16904 16905 16906 16907 16908 16909 16910 16911 16912 16913 16914 16915 16916 16917 16918 16919 16920 16921 16922 16923 16924 16925 16926 16927 16928 16929 16930 16931 16932 16933 16934 16935 16936 16937 16938 16939 16940 16941 16942 16943 16944 16945 16946 16947 16948 16949 16950 16951 16952 16953 16954 16955 16956 16957 16958 16959 16960 16961 16962 16963 16964 16965 16966 16967 16968 16969 16970 16971 16972 16973 16974 16975 16976 16977 16978 16979 16980 16981 16982 16983 16984 16985 16986 16987 16988 16989 16990 16991 16992 16993 16994 16995 16996 16997 16998 16999 17000 17001 17002 17003 17004 17005 17006 17007 17008 17009 17010 17011 17012 17013 17014 17015 17016 17017 17018 17019 17020 17021 17022 17023 17024 17025 17026 17027 17028 17029 17030 17031 17032 17033 17034 17035 17036 17037 17038 17039 17040 17041 17042 17043 17044 17045 17046 17047 17048 17049 17050 17051 17052 17053 17054 17055 17056 17057 17058 17059 17060 17061 17062 17063 17064 17065 17066 17067 17068 17069 17070 17071 17072 17073 17074 17075 17076 17077 17078 17079 17080 17081 17082 17083 17084 17085 17086 17087 17088 17089 17090 17091 17092 17093 17094 17095 17096 17097 17098 17099 17100 17101 17102 17103 17104 17105 17106 17107 17108 17109 17110 17111 17112 17113 17114 17115 17116 17117 17118 17119 17120 17121 17122 17123 17124 17125 17126 17127 17128 17129 17130 17131 17132 17133 17134 17135 17136 17137 17138 17139 17140 17141 17142 17143 17144 17145 17146 17147 17148 17149 17150 17151 17152 17153 17154 17155 17156 17157 17158 17159 17160 17161 17162 17163 17164 17165 17166 17167 17168 17169 17170 17171 17172 17173 17174 17175 17176 17177 17178 17179 17180 17181 17182 17183 17184 17185 17186 17187 17188 17189 17190 17191 17192 17193 17194 17195 17196 17197 17198 17199 17200 17201 17202 17203 17204 17205 17206 17207 17208 17209 17210 17211 17212 17213 17214 17215 17216 17217 17218 17219 17220 17221 17222 17223 17224 17225 17226 17227 17228 17229 17230 17231 17232 17233 17234 17235 17236 17237 17238 17239 17240 17241 17242 17243 17244 17245 17246 17247 17248 17249 17250 17251 17252 17253 17254 17255 17256 17257 17258 17259 17260 17261 17262 17263 17264 17265 17266 17267 17268 17269 17270 17271 17272 17273 17274 17275 17276 17277 17278 17279 17280 17281 17282 17283 17284 17285 17286 17287 17288 17289 17290 17291 17292 17293 17294 17295 17296 17297 17298 17299 17300 17301 17302 17303 17304 17305 17306 17307 17308 17309 17310 17311 17312 17313 17314 17315 17316 17317 17318 17319 17320 17321 17322 17323 17324 17325 17326 17327 17328 17329 17330 17331 17332 17333 17334 17335 17336 17337 17338 17339 17340 17341 17342 17343 17344 17345 17346 17347 17348 17349 17350 17351 17352 17353 17354 17355 17356 17357 17358 17359 17360 17361 17362 17363 17364 17365 17366 17367 17368 17369 17370 17371 17372 17373 17374 17375 17376 17377 17378 17379 17380 17381 17382 17383 17384 17385 17386 17387 17388 17389 17390 17391 17392 17393 17394 17395 17396 17397 17398 17399 17400 17401 17402 17403 17404 17405 17406 17407 17408 17409 17410 17411 17412 17413 17414 17415 17416 17417 17418 17419 17420 17421 17422 17423 17424 17425 17426 17427 17428 17429 17430 17431 17432 17433 17434 17435 17436 17437 17438 17439 17440 17441 17442 17443 17444 17445 17446 17447 17448 17449 17450 17451 17452 17453 17454 17455 17456 17457 17458 17459 17460 17461 17462 17463 17464 17465 17466 17467 17468 17469 17470 17471 17472 17473 17474 17475 17476 17477 17478 17479 17480 17481 17482 17483 17484 17485 17486 17487 17488 17489 17490 17491 17492 17493 17494 17495 17496 17497 17498 17499 17500 17501 17502 17503 17504 17505 17506 17507 17508 17509 17510 17511 17512 17513 17514 17515 17516 17517 17518 17519 17520 17521 17522 17523 17524 17525 17526 17527 17528 17529 17530 17531 17532 17533 17534 17535 17536 17537 17538 17539 17540 17541 17542 17543 17544 17545 17546 17547 17548 17549 17550 17551 17552 17553 17554 17555 17556 17557 17558 17559 17560 17561 17562 17563 17564 17565 17566 17567 17568 17569 17570 17571 17572 17573 17574 17575 17576 17577 17578 17579 17580 17581 17582 17583 17584 17585 17586 17587 17588 17589 17590 17591 17592 17593 17594 17595 17596 17597 17598 17599 17600 17601 17602 17603 17604 17605 17606 17607 17608 17609 17610 17611 17612 17613 17614 17615 17616 17617 17618 17619 17620 17621 17622 17623 17624 17625 17626 17627 17628 17629 17630 17631 17632 17633 17634 17635 17636 17637 17638 17639 17640 17641 17642 17643 17644 17645 17646 17647 17648 17649 17650 17651 17652 17653 17654 17655 17656 17657 17658 17659 17660 17661 17662 17663 17664 17665 17666 17667 17668 17669 17670 17671 17672 17673 17674 17675 17676 17677 17678 17679 17680 17681 17682 17683 17684 17685 17686 17687 17688 17689 17690 17691 17692 17693 17694 17695 17696 17697 17698 17699 17700 17701 17702 17703 17704 17705 17706 17707 17708 17709 17710 17711 17712 17713 17714 17715 17716 17717 17718 17719 17720 17721 17722 17723 17724 17725 17726 17727 17728 17729 17730 17731 17732 17733 17734 17735 17736 17737 17738 17739 17740 17741 17742 17743 17744 17745 17746 17747 17748 17749 17750 17751 17752 17753 17754 17755 17756 17757 17758 17759 17760 17761 17762 17763 17764 17765 17766 17767 17768 17769 17770 17771 17772 17773 17774 17775 17776 17777 17778 17779 17780 17781 17782 17783 17784 17785 17786 17787 17788 17789 17790 17791 17792 17793 17794 17795 17796 17797 17798 17799 17800 17801 17802 17803 17804 17805 17806 17807 17808 17809 17810 17811 17812 17813 17814 17815 17816 17817 17818 17819 17820 17821 17822 17823 17824 17825 17826 17827 17828 17829 17830 17831 17832 17833 17834 17835 17836 17837 17838 17839 17840 17841 17842 17843 17844 17845 17846 17847 17848 17849 17850 17851 17852 17853 17854 17855 17856 17857 17858 17859 17860 17861 17862 17863 17864 17865 17866 17867 17868 17869 17870 17871 17872 17873 17874 17875 17876 17877 17878 17879 17880 17881 17882 17883 17884 17885 17886 17887 17888 17889 17890 17891 17892 17893 17894 17895 17896 17897 17898 17899 17900 17901 17902 17903 17904 17905 17906 17907 17908 17909 17910 17911 17912 17913 17914 17915 17916 17917 17918 17919 17920 17921 17922 17923 17924 17925 17926 17927 17928 17929 17930 17931 17932 17933 17934 17935 17936 17937 17938 17939 17940 17941 17942 17943 17944 17945 17946 17947 17948 17949 17950 17951 17952 17953 17954 17955 17956 17957 17958 17959 17960 17961 17962 17963 17964 17965 17966 17967 17968 17969 17970 17971 17972 17973 17974 17975 17976 17977 17978 17979 17980 17981 17982 17983 17984 17985 17986 17987 17988 17989 17990 17991 17992 17993 17994 17995 17996 17997 17998 17999 18000 18001 18002 18003 18004 18005 18006 18007 18008 18009 18010 18011 18012 18013 18014 18015 18016 18017 18018 18019 18020 18021 18022 18023 18024 18025 18026 18027 18028 18029 18030 18031 18032 18033 18034 18035 18036 18037 18038 18039 18040 18041 18042 18043 18044 18045 18046 18047 18048 18049 18050 18051 18052 18053 18054 18055 18056 18057 18058 18059 18060 18061 18062 18063 18064 18065 18066 18067 18068 18069 18070 18071 18072 18073 18074 18075 18076 18077 18078 18079 18080 18081 18082 18083 18084 18085 18086 18087 18088 18089 18090 18091 18092 18093 18094 18095 18096 18097 18098 18099 18100 18101 18102 18103 18104 18105 18106 18107 18108 18109 18110 18111 18112 18113 18114 18115 18116 18117 18118 18119 18120 18121 18122 18123 18124 18125 18126 18127 18128 18129 18130 18131 18132 18133 18134 18135 18136 18137 18138 18139 18140 18141 18142 18143 18144 18145 18146 18147 18148 18149 18150 18151 18152 18153 18154 18155 18156 18157 18158 18159 18160 18161 18162 18163 18164 18165 18166 18167 18168 18169 18170 18171 18172 18173 18174 18175 18176 18177 18178 18179 18180 18181 18182 18183 18184 18185 18186 18187 18188 18189 18190 18191 18192 18193 18194 18195 18196 18197 18198 18199 18200 18201 18202 18203 18204 18205 18206 18207 18208 18209 18210 18211 18212 18213 18214 18215 18216 18217 18218 18219 18220 18221 18222 18223 18224 18225 18226 18227 18228 18229 18230 18231 18232 18233 18234 18235 18236 18237 18238 18239 18240 18241 18242 18243 18244 18245 18246 18247 18248 18249 18250 18251 18252 18253 18254 18255 18256 18257 18258 18259 18260 18261 18262 18263 18264 18265 18266 18267 18268 18269 18270 18271 18272 18273 18274 18275 18276 18277 18278 18279 18280 18281 18282 18283 18284 18285 18286 18287 18288 18289 18290 18291 18292 18293 18294 18295 18296 18297 18298 18299 18300 18301 18302 18303 18304 18305 18306 18307 18308 18309 18310 18311 18312 18313 18314 18315 18316 18317 18318 18319 18320 18321 18322 18323 18324 18325 18326 18327 18328 18329 18330 18331 18332 18333 18334 18335 18336 18337 18338 18339 18340 18341 18342 18343 18344 18345 18346 18347 18348 18349 18350 18351 18352 18353 18354 18355 18356 18357 18358 18359 18360 18361 18362 18363 18364 18365 18366 18367 18368 18369 18370 18371 18372 18373 18374 18375 18376 18377 18378 18379 18380 18381 18382 18383 18384 18385 18386 18387 18388 18389 18390 18391 18392 18393 18394 18395 18396 18397 18398 18399 18400 18401 18402 18403 18404 18405 18406 18407 18408 18409 18410 18411 18412 18413 18414 18415 18416 18417 18418 18419 18420 18421 18422 18423 18424 18425 18426 18427 18428 18429 18430 18431 18432 18433 18434 18435 18436 18437 18438 18439 18440 18441 18442 18443 18444 18445 18446 18447 18448 18449 18450 18451 18452 18453 18454 18455 18456 18457 18458 18459 18460 18461 18462 18463 18464 18465 18466 18467 18468 18469 18470 18471 18472 18473 18474 18475 18476 18477 18478 18479 18480 18481 18482 18483 18484 18485 18486 18487 18488 18489 18490 18491 18492 18493 18494 18495 18496 18497 18498 18499 18500 18501 18502 18503 18504 18505 18506 18507 18508 18509 18510 18511 18512 18513 18514 18515 18516 18517 18518 18519 18520 18521 18522 18523 18524 18525 18526 18527 18528 18529 18530 18531 18532 18533 18534 18535 18536 18537 18538 18539 18540 18541 18542 18543 18544 18545 18546 18547 18548 18549 18550 18551 18552 18553 18554 | # This file was automatically generated by SWIG (http://www.swig.org).
# Version 2.0.4
#
# Do not make changes to this file unless you know what you are doing--modify
# the SWIG interface file instead.
"""
PyTrilinos.Epetra is the python interface to the Trilinos linear
algebra services package Epetra:
http://trilinos.sandia.gov/packages/epetra
The purpose of Epetra is to provide fundamental linear algebra
services to the rest of Trilinos. These services include parallel
decomposition and communication, vectors and multivectors, graphs,
operators, and dense and sparse matrices. Note that the C++ version
of Epetra uses the prefix 'Epetra_' which has been stripped from the
python version.
Epetra provides the following user-level classes (by category):
* Communicators: PyComm, SerialComm, MpiComm (if built with mpi
support)
* Data distribution maps: Map, BlockMap, LocalMap
* Vectors: Vector, MultiVector, IntVector
* Graphs: CrsGraph, FECrsGraph
* Operators and matrices: Operator, RowMatrix, CrsMatrix,
FECrsMatrix, VbrMatrix
* Serial dense objects: SerialDenseVector, SerialDenseMatrix,
SerialDenseOperator, SerialDenseSolver, IntSerialDenseVector,
IntSerialDenseMatrix
* Aggregates: LinearProblem
* Utilities: Import, Export, Time, MapColoring, Util
For examples of usage, please consult the following scripts in the
example subdirectory of the PyTrilinos package:
* exEpetra.py
* exEpetra_Comm.py
* exEpetra_ImportExport.py
* exEpetra_CrsMatrix_Easy.py
* exEpetra_CrsMatrix_Efficient.py
* exEpetra_FECrsMatrix_Easy.py
The Epetra module has been designed to use and interoperate with the
numpy module, which provides multidimensional array support. Epetra
class constructors or methods that expect C arrays in C++ can
typically accept numpy arrays in python (or any python sequence that
numpy can convert to an array). Similarly, methods that return C
arrays in C++ will return numpy arrays in python. Also, certain
Epetra classes that represent contiguous blocks of homogeneous data
have been given the attributes of numpy arrays using multiple
inheritance: Vector, MultiVector, IntVector, SerialDenseVector,
SerialDenseMatrix, IntSerialDenseVector and IntSerialDenseMatrix.
"""
from sys import version_info
if version_info >= (2,6,0):
def swig_import_helper():
from os.path import dirname
import imp
fp = None
try:
fp, pathname, description = imp.find_module('_Epetra', [dirname(__file__)])
except ImportError:
import _Epetra
return _Epetra
if fp is not None:
try:
_mod = imp.load_module('_Epetra', fp, pathname, description)
finally:
fp.close()
return _mod
_Epetra = swig_import_helper()
del swig_import_helper
else:
import _Epetra
del version_info
try:
_swig_property = property
except NameError:
pass # Python < 2.2 doesn't have 'property'.
def _swig_setattr_nondynamic(self,class_type,name,value,static=1):
if (name == "thisown"): return self.this.own(value)
if (name == "this"):
if type(value).__name__ == 'SwigPyObject':
self.__dict__[name] = value
return
method = class_type.__swig_setmethods__.get(name,None)
if method: return method(self,value)
if (not static):
self.__dict__[name] = value
else:
raise AttributeError("You cannot add attributes to %s" % self)
def _swig_setattr(self,class_type,name,value):
return _swig_setattr_nondynamic(self,class_type,name,value,0)
def _swig_getattr(self,class_type,name):
if (name == "thisown"): return self.this.own()
method = class_type.__swig_getmethods__.get(name,None)
if method: return method(self)
raise AttributeError(name)
def _swig_repr(self):
try: strthis = "proxy of " + self.this.__repr__()
except: strthis = ""
return "<%s.%s; %s >" % (self.__class__.__module__, self.__class__.__name__, strthis,)
try:
_object = object
_newclass = 1
except AttributeError:
class _object : pass
_newclass = 0
try:
import weakref
weakref_proxy = weakref.proxy
except:
weakref_proxy = lambda x: x
class SwigPyIterator(_object):
"""Proxy of C++ swig::SwigPyIterator class"""
__swig_setmethods__ = {}
__setattr__ = lambda self, name, value: _swig_setattr(self, SwigPyIterator, name, value)
__swig_getmethods__ = {}
__getattr__ = lambda self, name: _swig_getattr(self, SwigPyIterator, name)
def __init__(self, *args, **kwargs): raise AttributeError("No constructor defined - class is abstract")
__repr__ = _swig_repr
__swig_destroy__ = _Epetra.delete_SwigPyIterator
__del__ = lambda self : None;
def value(self, *args):
"""value(self) -> PyObject"""
return _Epetra.SwigPyIterator_value(self, *args)
def incr(self, *args):
"""incr(self, size_t n = 1) -> SwigPyIterator"""
return _Epetra.SwigPyIterator_incr(self, *args)
def decr(self, *args):
"""decr(self, size_t n = 1) -> SwigPyIterator"""
return _Epetra.SwigPyIterator_decr(self, *args)
def distance(self, *args):
"""distance(self, SwigPyIterator x) -> ptrdiff_t"""
return _Epetra.SwigPyIterator_distance(self, *args)
def equal(self, *args):
"""equal(self, SwigPyIterator x) -> bool"""
return _Epetra.SwigPyIterator_equal(self, *args)
def copy(self, *args):
"""copy(self) -> SwigPyIterator"""
return _Epetra.SwigPyIterator_copy(self, *args)
def next(self, *args):
"""next(self) -> PyObject"""
return _Epetra.SwigPyIterator_next(self, *args)
def __next__(self, *args):
"""__next__(self) -> PyObject"""
return _Epetra.SwigPyIterator___next__(self, *args)
def previous(self, *args):
"""previous(self) -> PyObject"""
return _Epetra.SwigPyIterator_previous(self, *args)
def advance(self, *args):
"""advance(self, ptrdiff_t n) -> SwigPyIterator"""
return _Epetra.SwigPyIterator_advance(self, *args)
def __eq__(self, *args):
"""__eq__(self, SwigPyIterator x) -> bool"""
return _Epetra.SwigPyIterator___eq__(self, *args)
def __ne__(self, *args):
"""__ne__(self, SwigPyIterator x) -> bool"""
return _Epetra.SwigPyIterator___ne__(self, *args)
def __iadd__(self, *args):
"""__iadd__(self, ptrdiff_t n) -> SwigPyIterator"""
return _Epetra.SwigPyIterator___iadd__(self, *args)
def __isub__(self, *args):
"""__isub__(self, ptrdiff_t n) -> SwigPyIterator"""
return _Epetra.SwigPyIterator___isub__(self, *args)
def __add__(self, *args):
"""__add__(self, ptrdiff_t n) -> SwigPyIterator"""
return _Epetra.SwigPyIterator___add__(self, *args)
def __sub__(self, *args):
"""
__sub__(self, ptrdiff_t n) -> SwigPyIterator
__sub__(self, SwigPyIterator x) -> ptrdiff_t
"""
return _Epetra.SwigPyIterator___sub__(self, *args)
def __iter__(self): return self
SwigPyIterator_swigregister = _Epetra.SwigPyIterator_swigregister
SwigPyIterator_swigregister(SwigPyIterator)
# Much of the Epetra module is compatible with the numpy module
import numpy
# From numpy version 1.0 forward, we want to use the following import syntax for
# user_array.container. We rename it UserArray for backward compatibility with
# 0.9.x versions of numpy:
try:
from numpy.lib.user_array import container as UserArray
# If the previous import failed, it is because we are using a numpy version
# prior to 1.0. So we catch it and try again with different syntax.
except ImportError:
# There is a bug in UserArray from numpy 0.9.8. If this is the case, we
# have our own patched version.
try:
from UserArrayFix import UserArray
# If the previous import failed, it is because we are using a version of
# numpy prior to 0.9.8, such as 0.9.6, which has no bug and therefore has no
# local patch. Now we can import using the old syntax:
except ImportError:
from numpy.lib.UserArray import UserArray
Error = _Epetra.Error
def Version(*args):
"""
Version() -> string
string Epetra_Version()
"""
return _Epetra.Version(*args)
__version__ = Version().split()[2]
Add = _Epetra.Add
Zero = _Epetra.Zero
Insert = _Epetra.Insert
InsertAdd = _Epetra.InsertAdd
Average = _Epetra.Average
AbsMax = _Epetra.AbsMax
Copy = _Epetra.Copy
View = _Epetra.View
class Object(_object):
"""
The base Epetra class.
The Epetra_Object class provides capabilities common to all Epetra
objects, such as a label that identifies an object instance, constant
definitions, enum types. In C++, it supports a ``Print()`` method
that takes an output stream as an argument. In the python
implementation for this and all derived classes, this method takes an
optional file object argument whose default value is standard out.
"""
__swig_setmethods__ = {}
__setattr__ = lambda self, name, value: _swig_setattr(self, Object, name, value)
__swig_getmethods__ = {}
__getattr__ = lambda self, name: _swig_getattr(self, Object, name)
__repr__ = _swig_repr
def __init__(self, *args):
"""
__init__(self, int TracebackModeIn = -1, bool set_label = True) -> Object
__init__(self, char Label, int TracebackModeIn = -1) -> Object
__init__(self, Object Object) -> Object
Epetra_Object::Epetra_Object(const Epetra_Object &Object)
Epetra_Object Copy Constructor.
Makes an exact copy of an existing Epetra_Object instance.
"""
this = _Epetra.new_Object(*args)
try: self.this.append(this)
except: self.this = this
__swig_destroy__ = _Epetra.delete_Object
__del__ = lambda self : None;
def SetLabel(self, *args):
"""
SetLabel(self, char Label)
void
Epetra_Object::SetLabel(const char *const Label)
Epetra_Object Label definition using char *.
Defines the label used to describe the this object.
"""
return _Epetra.Object_SetLabel(self, *args)
def Label(self, *args):
"""
Label(self) -> char
const char *
Epetra_Object::Label() const
Epetra_Object Label access funtion.
Returns the string used to define this object.
"""
return _Epetra.Object_Label(self, *args)
def SetTracebackMode(*args):
"""
SetTracebackMode(int TracebackModeValue)
void
Epetra_Object::SetTracebackMode(int TracebackModeValue)
Set the value of the Epetra_Object error traceback report mode.
Sets the integer error traceback behavior. TracebackMode controls
whether or not traceback information is printed when run time integer
errors are detected:
<= 0 - No information report
= 1 - Fatal (negative) values are reported
>= 2 - All values (except zero) reported.
Default is set to 1.
"""
return _Epetra.Object_SetTracebackMode(*args)
if _newclass:SetTracebackMode = staticmethod(SetTracebackMode)
__swig_getmethods__["SetTracebackMode"] = lambda x: SetTracebackMode
def GetTracebackMode(*args):
"""
GetTracebackMode() -> int
int
Epetra_Object::GetTracebackMode()
Get the value of the Epetra_Object error report mode.
"""
return _Epetra.Object_GetTracebackMode(*args)
if _newclass:GetTracebackMode = staticmethod(GetTracebackMode)
__swig_getmethods__["GetTracebackMode"] = lambda x: GetTracebackMode
def GetTracebackStream(*args):
"""
GetTracebackStream()
std::ostream & Epetra_Object::GetTracebackStream()
Get the output stream for error reporting.
"""
return _Epetra.Object_GetTracebackStream(*args)
if _newclass:GetTracebackStream = staticmethod(GetTracebackStream)
__swig_getmethods__["GetTracebackStream"] = lambda x: GetTracebackStream
def ReportError(self, *args):
"""
ReportError(self, string Message, int ErrorCode) -> int
int
Epetra_Object::ReportError(const string Message, int ErrorCode) const
Error reporting method.
"""
return _Epetra.Object_ReportError(self, *args)
__swig_setmethods__["TracebackMode"] = _Epetra.Object_TracebackMode_set
__swig_getmethods__["TracebackMode"] = _Epetra.Object_TracebackMode_get
if _newclass:TracebackMode = _swig_property(_Epetra.Object_TracebackMode_get, _Epetra.Object_TracebackMode_set)
def __str__(self, *args):
"""
__str__(self) -> PyObject
Returns the results of ``Print()`` in a string, so that
the ``print`` command will work on ``Epetra`` objects. The
``Print()`` methods are designed to run correctly in parallel, so do
not execute ``print`` on an Epetra object conditionally on the
processor number. For example, do not do
``if comm.MyPID() == 0: print epetra_obj``
or it will hang your code.
"""
return _Epetra.Object___str__(self, *args)
def Print(self, *args):
"""
Print(self, PyObject pf = None)
void
Epetra_Object::Print(ostream &os) const
Print object to an output stream Print method
"""
return _Epetra.Object_Print(self, *args)
Object_swigregister = _Epetra.Object_swigregister
Object_swigregister(Object)
cvar = _Epetra.cvar
Epetra_MinDouble = cvar.Epetra_MinDouble
Epetra_MaxDouble = cvar.Epetra_MaxDouble
Epetra_Overflow = cvar.Epetra_Overflow
Epetra_Underflow = cvar.Epetra_Underflow
FormatStdout = cvar.FormatStdout
DefaultTracebackMode = cvar.DefaultTracebackMode
def Object_SetTracebackMode(*args):
"""
Object_SetTracebackMode(int TracebackModeValue)
void
Epetra_Object::SetTracebackMode(int TracebackModeValue)
Set the value of the Epetra_Object error traceback report mode.
Sets the integer error traceback behavior. TracebackMode controls
whether or not traceback information is printed when run time integer
errors are detected:
<= 0 - No information report
= 1 - Fatal (negative) values are reported
>= 2 - All values (except zero) reported.
Default is set to 1.
"""
return _Epetra.Object_SetTracebackMode(*args)
def Object_GetTracebackMode(*args):
"""
Object_GetTracebackMode() -> int
int
Epetra_Object::GetTracebackMode()
Get the value of the Epetra_Object error report mode.
"""
return _Epetra.Object_GetTracebackMode(*args)
def Object_GetTracebackStream(*args):
"""
Object_GetTracebackStream()
std::ostream & Epetra_Object::GetTracebackStream()
Get the output stream for error reporting.
"""
return _Epetra.Object_GetTracebackStream(*args)
class SrcDistObject(_object):
"""
Epetra_SrcDistObject: A class for supporting flexible source
distributed objects for import/export operations.
The Epetra_SrcDistObject is a base class for all Epetra distributed
global objects that are potential source objects for the general
Epetra_DistObject class. It provides a way to send a very general
distributed object as the potential source object for an import or
export object. For example, it is possible to pass an Epetra_RowMatrix
object as the source object for an import/export where the target is
an Epetra_CrsMatrix, or an Epetra_CrsGraph (where the RowMatrix values
will be ignored).
C++ includes: Epetra_SrcDistObject.h
"""
__swig_setmethods__ = {}
__setattr__ = lambda self, name, value: _swig_setattr(self, SrcDistObject, name, value)
__swig_getmethods__ = {}
__getattr__ = lambda self, name: _swig_getattr(self, SrcDistObject, name)
def __init__(self, *args, **kwargs): raise AttributeError("No constructor defined - class is abstract")
__repr__ = _swig_repr
__swig_destroy__ = _Epetra.delete_SrcDistObject
__del__ = lambda self : None;
def Map(self, *args):
"""
Map(self) -> BlockMap
virtual const
Epetra_BlockMap& Epetra_SrcDistObject::Map() const =0
Returns a reference to the Epetra_BlockMap for this object.
"""
return _Epetra.SrcDistObject_Map(self, *args)
SrcDistObject_swigregister = _Epetra.SrcDistObject_swigregister
SrcDistObject_swigregister(SrcDistObject)
class DistObject(Object,SrcDistObject):
"""
Epetra_DistObject: A class for constructing and using dense multi-
vectors, vectors and matrices in parallel.
The Epetra_DistObject is a base class for all Epetra distributed
global objects. It provides the basic mechanisms and interface
specifications for importing and exporting operations using
Epetra_Import and Epetra_Export objects.
Distributed Global vs. Replicated Local.
Distributed Global objects - In most instances, a distributed object
will be partitioned across multiple memory images associated with
multiple processors. In this case, there is a unique copy of each
element and elements are spread across all processors specified by the
Epetra_Comm communicator.
Replicated Local Objects - Some algorithms use objects that are too
small to be distributed across all processors, the Hessenberg matrix
in a GMRES computation. In other cases, such as with block iterative
methods, block dot product functions produce small dense matrices that
are required by all processors. Replicated local objectss handle these
types of situation.
C++ includes: Epetra_DistObject.h
"""
__swig_setmethods__ = {}
for _s in [Object,SrcDistObject]: __swig_setmethods__.update(getattr(_s,'__swig_setmethods__',{}))
__setattr__ = lambda self, name, value: _swig_setattr(self, DistObject, name, value)
__swig_getmethods__ = {}
for _s in [Object,SrcDistObject]: __swig_getmethods__.update(getattr(_s,'__swig_getmethods__',{}))
__getattr__ = lambda self, name: _swig_getattr(self, DistObject, name)
def __init__(self, *args, **kwargs): raise AttributeError("No constructor defined - class is abstract")
__repr__ = _swig_repr
__swig_destroy__ = _Epetra.delete_DistObject
__del__ = lambda self : None;
def Import(self, *args):
"""
Import(self, SrcDistObject A, Import Importer, Epetra_CombineMode CombineMode,
OffsetIndex Indexor = None) -> int
Import(self, SrcDistObject A, Export Exporter, Epetra_CombineMode CombineMode,
OffsetIndex Indexor = None) -> int
int
Epetra_DistObject::Import(const Epetra_SrcDistObject &A, const
Epetra_Export &Exporter, Epetra_CombineMode CombineMode, const
Epetra_OffsetIndex *Indexor=0)
Imports an Epetra_DistObject using the Epetra_Export object.
Parameters:
-----------
In: Source - Distributed object that will be imported into the
"\\e this" object.
In: Exporter - A Epetra_Export object specifying the communication
required.
In: CombineMode - A Epetra_CombineMode enumerated type specifying how
results should be combined on the receiving processor.
Integer error code, set to 0 if successful.
"""
return _Epetra.DistObject_Import(self, *args)
def Export(self, *args):
"""
Export(self, SrcDistObject A, Import Importer, Epetra_CombineMode CombineMode,
OffsetIndex Indexor = None) -> int
Export(self, SrcDistObject A, Export Exporter, Epetra_CombineMode CombineMode,
OffsetIndex Indexor = None) -> int
int
Epetra_DistObject::Export(const Epetra_SrcDistObject &A, const
Epetra_Export &Exporter, Epetra_CombineMode CombineMode, const
Epetra_OffsetIndex *Indexor=0)
Exports an Epetra_DistObject using the Epetra_Export object.
Parameters:
-----------
In: Source - Distributed object that will be exported to the "\\e
this" multivector.
In: Exporter - A Epetra_Export object specifying the communication
required.
In: CombineMode - A Epetra_CombineMode enumerated type specifying how
results should be combined on the receiving processor.
Integer error code, set to 0 if successful.
"""
return _Epetra.DistObject_Export(self, *args)
def Map(self, *args):
"""
Map(self) -> BlockMap
const Epetra_BlockMap&
Epetra_DistObject::Map() const
Returns the address of the Epetra_BlockMap for this multi-vector.
"""
return _Epetra.DistObject_Map(self, *args)
def Comm(self, *args):
"""
Comm(self) -> Comm
const Epetra_Comm&
Epetra_DistObject::Comm() const
Returns the address of the Epetra_Comm for this multi-vector.
"""
return _Epetra.DistObject_Comm(self, *args)
def DistributedGlobal(self, *args):
"""
DistributedGlobal(self) -> bool
bool
Epetra_DistObject::DistributedGlobal() const
Returns true if this multi-vector is distributed global, i.e., not
local replicated.
"""
return _Epetra.DistObject_DistributedGlobal(self, *args)
DistObject_swigregister = _Epetra.DistObject_swigregister
DistObject_swigregister(DistObject)
class CompObject(_object):
"""
Epetra_CompObject: Functionality and data that is common to all
computational classes.
The Epetra_CompObject is a base class for all Epetra computational
objects. It provides the basic mechanisms and interface specifications
for floating point operations using Epetra_Flops objects.
C++ includes: Epetra_CompObject.h
"""
__swig_setmethods__ = {}
__setattr__ = lambda self, name, value: _swig_setattr(self, CompObject, name, value)
__swig_getmethods__ = {}
__getattr__ = lambda self, name: _swig_getattr(self, CompObject, name)
__repr__ = _swig_repr
def __init__(self, *args):
"""
__init__(self) -> CompObject
__init__(self, CompObject Source) -> CompObject
Epetra_CompObject::Epetra_CompObject(const Epetra_CompObject &Source)
Epetra_CompObject copy constructor.
"""
this = _Epetra.new_CompObject(*args)
try: self.this.append(this)
except: self.this = this
__swig_destroy__ = _Epetra.delete_CompObject
__del__ = lambda self : None;
def SetFlopCounter(self, *args):
"""
SetFlopCounter(self, FLOPS FlopCounter_in)
SetFlopCounter(self, CompObject CompObject)
void
Epetra_CompObject::SetFlopCounter(const Epetra_CompObject &CompObject)
Set the internal Epetra_Flops() pointer to the flop counter of another
Epetra_CompObject.
"""
return _Epetra.CompObject_SetFlopCounter(self, *args)
def UnsetFlopCounter(self, *args):
"""
UnsetFlopCounter(self)
void
Epetra_CompObject::UnsetFlopCounter()
Set the internal Epetra_Flops() pointer to 0 (no flops counted).
"""
return _Epetra.CompObject_UnsetFlopCounter(self, *args)
def GetFlopCounter(self, *args):
"""
GetFlopCounter(self) -> FLOPS
Epetra_Flops* Epetra_CompObject::GetFlopCounter() const
Get the pointer to the Epetra_Flops() object associated with this
object, returns 0 if none.
"""
return _Epetra.CompObject_GetFlopCounter(self, *args)
def ResetFlops(self, *args):
"""
ResetFlops(self)
void
Epetra_CompObject::ResetFlops() const
Resets the number of floating point operations to zero for this multi-
vector.
"""
return _Epetra.CompObject_ResetFlops(self, *args)
def Flops(self, *args):
"""
Flops(self) -> double
double
Epetra_CompObject::Flops() const
Returns the number of floating point operations with this multi-
vector.
"""
return _Epetra.CompObject_Flops(self, *args)
def UpdateFlops(self, *args):
"""
UpdateFlops(self, long Flops_in)
UpdateFlops(self, double Flops_in)
void
Epetra_CompObject::UpdateFlops(float Flops_in) const
Increment Flop count for this object.
"""
return _Epetra.CompObject_UpdateFlops(self, *args)
CompObject_swigregister = _Epetra.CompObject_swigregister
CompObject_swigregister(CompObject)
class BLAS(_object):
"""
Epetra_BLAS: The Epetra BLAS Wrapper Class.
The Epetra_BLAS class is a wrapper that encapsulates the BLAS (Basic
Linear Algebra Subprograms). The BLAS provide portable, high-
performance implementations of kernels such as dense vectoer
multiplication, dot products, dense matrix-vector multiplication and
dense matrix-matrix multiplication.
The standard BLAS interface is Fortran-specific. Unfortunately, the
interface between C++ and Fortran is not standard across all computer
platforms. The Epetra_BLAS class provides C++ wrappers for the BLAS
kernels in order to insulate the rest of Epetra from the details of
C++ to Fortran translation. A Epetra_BLAS object is essentially
nothing, but allows access to the BLAS wrapper functions.
Epetra_BLAS is a serial interface only. This is appropriate since the
standard BLAS are only specified for serial execution (or shared
memory parallel).
C++ includes: Epetra_BLAS.h
"""
__swig_setmethods__ = {}
__setattr__ = lambda self, name, value: _swig_setattr(self, BLAS, name, value)
__swig_getmethods__ = {}
__getattr__ = lambda self, name: _swig_getattr(self, BLAS, name)
__repr__ = _swig_repr
def __init__(self, *args):
"""
__init__(self) -> BLAS
__init__(self, BLAS BLAS) -> BLAS
Epetra_BLAS::Epetra_BLAS(const Epetra_BLAS &BLAS)
Epetra_BLAS Copy Constructor.
Makes an exact copy of an existing Epetra_BLAS instance.
"""
this = _Epetra.new_BLAS(*args)
try: self.this.append(this)
except: self.this = this
__swig_destroy__ = _Epetra.delete_BLAS
__del__ = lambda self : None;
def SYRK(self, *args):
"""
SYRK(self, char UPLO, char TRANS, int N, int K, float ALPHA, float A,
int LDA, float BETA, float C, int LDC)
SYRK(self, char UPLO, char TRANS, int N, int K, double ALPHA,
double A, int LDA, double BETA, double C, int LDC)
"""
return _Epetra.BLAS_SYRK(self, *args)
BLAS_swigregister = _Epetra.BLAS_swigregister
BLAS_swigregister(BLAS)
class LAPACK(_object):
"""
Epetra_LAPACK: The Epetra LAPACK Wrapper Class.
The Epetra_LAPACK class is a wrapper that encapsulates LAPACK (Linear
Algebra Package). LAPACK provides portable, high- performance
implementations of linear, eigen, SVD, etc solvers.
The standard LAPACK interface is Fortran-specific. Unfortunately, the
interface between C++ and Fortran is not standard across all computer
platforms. The Epetra_LAPACK class provides C++ wrappers for the
LAPACK kernels in order to insulate the rest of Epetra from the
details of C++ to Fortran translation. A Epetra_LAPACK object is
essentially nothing, but allows access to the LAPACK wrapper
functions.
Epetra_LAPACK is a serial interface only. This is appropriate since
the standard LAPACK are only specified for serial execution (or shared
memory parallel).
C++ includes: Epetra_LAPACK.h
"""
__swig_setmethods__ = {}
__setattr__ = lambda self, name, value: _swig_setattr(self, LAPACK, name, value)
__swig_getmethods__ = {}
__getattr__ = lambda self, name: _swig_getattr(self, LAPACK, name)
__repr__ = _swig_repr
def __init__(self, *args):
"""
__init__(self) -> LAPACK
__init__(self, LAPACK LAPACK) -> LAPACK
Epetra_LAPACK::Epetra_LAPACK(const Epetra_LAPACK &LAPACK)
Epetra_LAPACK Copy Constructor.
Makes an exact copy of an existing Epetra_LAPACK instance.
"""
this = _Epetra.new_LAPACK(*args)
try: self.this.append(this)
except: self.this = this
__swig_destroy__ = _Epetra.delete_LAPACK
__del__ = lambda self : None;
def TRTRS(self, *args):
"""
TRTRS(self, char UPLO, char TRANS, char DIAG, int N, int NRHS,
float A, int LDA, float B, int LDB, int INFO)
TRTRS(self, char UPLO, char TRANS, char DIAG, int N, int NRHS,
double A, int LDA, double B, int LDB, int INFO)
"""
return _Epetra.LAPACK_TRTRS(self, *args)
LAPACK_swigregister = _Epetra.LAPACK_swigregister
LAPACK_swigregister(LAPACK)
class FLOPS(_object):
"""
Epetra_Flops: The Epetra Floating Point Operations Class.
The Epetra_Flops class provides basic support and consistent
interfaces for counting and reporting floating point operations
performed in the Epetra computational classes. All classes based on
the Epetra_CompObject can count flops by the user creating an
Epetra_Flops object and calling the SetFlopCounter() method for an
Epetra_CompObject.
C++ includes: Epetra_Flops.h
"""
__swig_setmethods__ = {}
__setattr__ = lambda self, name, value: _swig_setattr(self, FLOPS, name, value)
__swig_getmethods__ = {}
__getattr__ = lambda self, name: _swig_getattr(self, FLOPS, name)
__repr__ = _swig_repr
def __init__(self, *args):
"""
__init__(self) -> FLOPS
__init__(self, FLOPS Flops_in) -> FLOPS
Epetra_Flops::Epetra_Flops(const Epetra_Flops &Flops_in)
Epetra_Flops Copy Constructor.
Makes an exact copy of an existing Epetra_Flops instance.
"""
this = _Epetra.new_FLOPS(*args)
try: self.this.append(this)
except: self.this = this
def Flops(self, *args):
"""
Flops(self) -> double
double
Epetra_Flops::Flops() const
Returns the number of floating point operations with this object and
resets the count.
"""
return _Epetra.FLOPS_Flops(self, *args)
def ResetFlops(self, *args):
"""
ResetFlops(self)
void
Epetra_Flops::ResetFlops()
Resets the number of floating point operations to zero for this multi-
vector.
"""
return _Epetra.FLOPS_ResetFlops(self, *args)
__swig_destroy__ = _Epetra.delete_FLOPS
__del__ = lambda self : None;
FLOPS_swigregister = _Epetra.FLOPS_swigregister
FLOPS_swigregister(FLOPS)
class Time(Object):
"""
Epetra_Time: The Epetra Timing Class.
The Epetra_Time class is a wrapper that encapsulates the general
information needed getting timing information. Currently it return the
elapsed time for each calling processor.. A Epetra_Comm object is
required for building all Epetra_Time objects.
Epetra_Time support both serial execution and (via MPI) parallel
distributed memory execution. It is meant to insulate the user from
the specifics of timing across a variety of platforms.
C++ includes: Epetra_Time.h
"""
__swig_setmethods__ = {}
for _s in [Object]: __swig_setmethods__.update(getattr(_s,'__swig_setmethods__',{}))
__setattr__ = lambda self, name, value: _swig_setattr(self, Time, name, value)
__swig_getmethods__ = {}
for _s in [Object]: __swig_getmethods__.update(getattr(_s,'__swig_getmethods__',{}))
__getattr__ = lambda self, name: _swig_getattr(self, Time, name)
__repr__ = _swig_repr
def __init__(self, *args):
"""
__init__(self, Comm Comm) -> Time
__init__(self, Time Time) -> Time
Epetra_Time::Epetra_Time(const Epetra_Time &Time)
Epetra_Time Copy Constructor.
Makes an exact copy of an existing Epetra_Time instance.
"""
this = _Epetra.new_Time(*args)
try: self.this.append(this)
except: self.this = this
def WallTime(self, *args):
"""
WallTime(self) -> double
double
Epetra_Time::WallTime(void) const
Epetra_Time wall-clock time function.
Returns the wall-clock time in seconds. A code section can be timed by
putting it between two calls to WallTime and taking the difference of
the times.
"""
return _Epetra.Time_WallTime(self, *args)
def ResetStartTime(self, *args):
"""
ResetStartTime(self)
void
Epetra_Time::ResetStartTime(void)
Epetra_Time function to reset the start time for a timer object.
Resets the start time for the timer object to the current time A code
section can be timed by putting it between a call to ResetStartTime
and ElapsedTime.
"""
return _Epetra.Time_ResetStartTime(self, *args)
def ElapsedTime(self, *args):
"""
ElapsedTime(self) -> double
double
Epetra_Time::ElapsedTime(void) const
Epetra_Time elapsed time function.
Returns the elapsed time in seconds since the timer object was
constructed, or since the ResetStartTime function was called. A code
section can be timed by putting it between the Epetra_Time constructor
and a call to ElapsedTime, or between a call to ResetStartTime and
ElapsedTime.
"""
return _Epetra.Time_ElapsedTime(self, *args)
__swig_destroy__ = _Epetra.delete_Time
__del__ = lambda self : None;
Time_swigregister = _Epetra.Time_swigregister
Time_swigregister(Time)
class Util(_object):
"""
Epetra Util Wrapper Class.
The Epetra.Util class is a collection of useful functions that cut
across a broad set of other classes. A random number generator is
provided, along with methods to set and retrieve the random-number
seed.
The random number generator is a multiplicative linear congruential
generator, with multiplier 16807 and modulus 2^31 - 1. It is based on
the algorithm described in 'Random Number Generators: Good Ones Are
Hard To Find', S. K. Park and K. W. Miller, Communications of the ACM,
vol. 31, no. 10, pp. 1192-1201.
The C++ Sort() method is not supported in python.
A static function is provided for creating a new Epetra.Map object
with 1-to-1 ownership of entries from an existing map which may have
entries that appear on multiple processors.
Epetra.Util is a serial interface only. This is appropriate since the
standard utilities are only specified for serial execution (or shared
memory parallel).
"""
__swig_setmethods__ = {}
__setattr__ = lambda self, name, value: _swig_setattr(self, Util, name, value)
__swig_getmethods__ = {}
__getattr__ = lambda self, name: _swig_getattr(self, Util, name)
__repr__ = _swig_repr
def __init__(self, *args):
"""
__init__(self) -> Util
__init__(self, Util Util) -> Util
Epetra_Util::Epetra_Util(const Epetra_Util &Util)
Epetra_Util Copy Constructor.
Makes an exact copy of an existing Epetra_Util instance.
"""
this = _Epetra.new_Util(*args)
try: self.this.append(this)
except: self.this = this
__swig_destroy__ = _Epetra.delete_Util
__del__ = lambda self : None;
def RandomInt(self, *args):
"""
RandomInt(self) -> unsigned int
unsigned int
Epetra_Util::RandomInt()
Returns a random integer on the interval (0, 2^31-1).
"""
return _Epetra.Util_RandomInt(self, *args)
def RandomDouble(self, *args):
"""
RandomDouble(self) -> double
double
Epetra_Util::RandomDouble()
Returns a random double on the interval (-1.0,1.0).
"""
return _Epetra.Util_RandomDouble(self, *args)
def Seed(self, *args):
"""
Seed(self) -> unsigned int
unsigned int
Epetra_Util::Seed() const
Get seed from Random function.
Current random number seed.
"""
return _Epetra.Util_Seed(self, *args)
def SetSeed(self, *args):
"""
SetSeed(self, unsigned int Seed_in) -> int
int
Epetra_Util::SetSeed(unsigned int Seed_in)
Set seed for Random function.
Parameters:
-----------
In: Seed - An integer on the interval [1, 2^31-2]
Integer error code, set to 0 if successful.
"""
return _Epetra.Util_SetSeed(self, *args)
def Create_Root_Map(*args):
"""Create_Root_Map(Map usermap, int root = 0) -> Map"""
return _Epetra.Util_Create_Root_Map(*args)
if _newclass:Create_Root_Map = staticmethod(Create_Root_Map)
__swig_getmethods__["Create_Root_Map"] = lambda x: Create_Root_Map
def Create_OneToOne_Map(*args):
"""Create_OneToOne_Map(Map usermap, bool high_rank_proc_owns_shared = False) -> Map"""
return _Epetra.Util_Create_OneToOne_Map(*args)
if _newclass:Create_OneToOne_Map = staticmethod(Create_OneToOne_Map)
__swig_getmethods__["Create_OneToOne_Map"] = lambda x: Create_OneToOne_Map
def Create_OneToOne_BlockMap(*args):
"""Create_OneToOne_BlockMap(BlockMap usermap, bool high_rank_proc_owns_shared = False) -> BlockMap"""
return _Epetra.Util_Create_OneToOne_BlockMap(*args)
if _newclass:Create_OneToOne_BlockMap = staticmethod(Create_OneToOne_BlockMap)
__swig_getmethods__["Create_OneToOne_BlockMap"] = lambda x: Create_OneToOne_BlockMap
def Chop(*args):
"""Chop(double Value) -> double"""
return _Epetra.Util_Chop(*args)
if _newclass:Chop = staticmethod(Chop)
__swig_getmethods__["Chop"] = lambda x: Chop
Util_swigregister = _Epetra.Util_swigregister
Util_swigregister(Util)
def Util_Create_Root_Map(*args):
"""Util_Create_Root_Map(Map usermap, int root = 0) -> Map"""
return _Epetra.Util_Create_Root_Map(*args)
def Util_Create_OneToOne_Map(*args):
"""Util_Create_OneToOne_Map(Map usermap, bool high_rank_proc_owns_shared = False) -> Map"""
return _Epetra.Util_Create_OneToOne_Map(*args)
def Util_Create_OneToOne_BlockMap(*args):
"""Util_Create_OneToOne_BlockMap(BlockMap usermap, bool high_rank_proc_owns_shared = False) -> BlockMap"""
return _Epetra.Util_Create_OneToOne_BlockMap(*args)
def Util_Chop(*args):
"""Util_Chop(double Value) -> double"""
return _Epetra.Util_Chop(*args)
Util.chopVal_ = _Epetra.cvar.Util_chopVal_
def Epetra_Util_binary_search(*args):
"""
Epetra_Util_binary_search(int item, int list, int len, int insertPoint) -> int
int
Epetra_Util_binary_search(int item, const int *list, int len, int
&insertPoint)
Utility function to perform a binary-search on a list of data.
Important assumption: data is assumed to be sorted.
Parameters:
-----------
item: to be searched for
list: to be searched in
len: Length of list
insertPoint: Input/Output. If item is found, insertPoint is not
referenced. If item is not found, insertPoint is set to the offset at
which item should be inserted in list such that order (sortedness)
would be maintained.
offset Location in list at which item was found. -1 if not found.
"""
return _Epetra.Epetra_Util_binary_search(*args)
def Epetra_Util_ExtractHbData(*args):
"""
Epetra_Util_ExtractHbData(CrsMatrix A, Epetra_MultiVector LHS, Epetra_MultiVector RHS,
int M, int N, int nz, int ptr, int ind,
double val, int Nrhs, double rhs, int ldrhs,
double lhs, int ldlhs) -> int
int
Epetra_Util_ExtractHbData(Epetra_CrsMatrix *A, Epetra_MultiVector
*LHS, Epetra_MultiVector *RHS, int &M, int &N, int &nz, int *&ptr, int
*&ind, double *&val, int &Nrhs, double *&rhs, int &ldrhs, double
*&lhs, int &ldlhs)
Harwell-Boeing data extraction routine.
This routine will extract data from an existing Epetra_Crs Matrix, and
optionally from related rhs and lhs objects in a form that is
compatible with software that requires the Harwell-Boeing data format.
The matrix must be passed in, but the RHS and LHS arguments may be set
to zero (either or both of them). For each of the LHS or RHS
arguments, if non-trivial and contain more than one vector, the
vectors must have strided access. If both LHS and RHS are non-trivial,
they must have the same number of vectors. If the input objects are
distributed, the returned matrices will contain the local part of the
matrix and vectors only.
Parameters:
-----------
A: (In) Epetra_CrsMatrix.
LHS: (In) Left hand side multivector. Set to zero if none not
available or needed.
RHS: (In) Right hand side multivector. Set to zero if none not
available or needed.
M: (Out) Local row dimension of matrix.
N: (Out) Local column dimension of matrix.
nz: (Out) Number of nonzero entries in matrix.
ptr: (Out) Offsets into ind and val arrays pointing to start of each
row's data.
ind: (Out) Column indices of the matrix, in compressed form.
val: (Out) Matrix values, in compressed form corresponding to the ind
array.
Nrhs: (Out) Number of right/left hand sides found (if any) in RHS and
LHS.
rhs: (Out) Fortran-style 2D array of RHS values.
ldrhs: (Out) Stride between columns of rhs.
lhs: (Out) Fortran-style 2D array of LHS values.
ldrhs: (Out) Stride between columns of lhs.
"""
return _Epetra.Epetra_Util_ExtractHbData(*args)
class MapColoring(DistObject):
"""
Epetra_MapColoring: A class for coloring Epetra_Map and
Epetra_BlockMap objects.
This class allows the user to associate an integer value, i.e., a
color, to each element of an existing Epetra_Map or Epetra_BlockMap
object. Colors may be assigned at construction, or via set methods.
Any elements that are not explicitly assigned a color are assigned the
color 0 (integer zero).
This class has the following features:
A color (arbitrary integer label) can be associated locally with each
element of a map. Color assignment can be done all-at-once via the
constructor, or
via operator[] (using LIDs) one-at-a-time
operator() (using GIDs) one-at-a-time
or some combination of the above.
Any element that is not explicitly colored takes on the default color.
The default color is implicitly zero, unless specified differently at
the time of construction.
Color information may be accessed in the following ways: By local
element ID (LID) - Returns the color of a specified LID, where the LID
is associated with the Epetra_Map or BlockMap that was passed in to
the Epetra_MapColoring constructor.
By global element ID (GID) - Returns the color of the specified GID.
There two methods for accessing GIDs, one assumes the request is for
GIDs owned by the calling processor, the second allows arbitrary
requested for GIDs, as long as the GID is defined on some processor
for the Epetra_Map or Epetra_BlockMap.
By color groups - Elements are grouped by color so that all elements
of a given color can be accessed.
Epetra_Map/Epetra_BlockMap pointers for a specified color - This
facilitates use of coloring with Epetra distributed objects that are
distributed via the map that was colored. For example, if users want
to work with all rows of a matrix that have a certain color, they can
create a map for that color and use it to access only those rows.
The Epetra_MapColoring class implements the Epetra_DistObject
interface. Therefore, a map coloring can be computed for a map with a
given distribution and then redistributed across the parallel machine.
For example, it would be possible to compute a map coloring on a
single processor (perhaps because the algorithm for computing the
color assignment is too difficult to implement in parallel or because
it is cheap to run and not worth parallelizing), and then re-
distribute the coloring using an Epetra_Export or Epetra_Import
object.
C++ includes: Epetra_MapColoring.h
"""
__swig_setmethods__ = {}
for _s in [DistObject]: __swig_setmethods__.update(getattr(_s,'__swig_setmethods__',{}))
__setattr__ = lambda self, name, value: _swig_setattr(self, MapColoring, name, value)
__swig_getmethods__ = {}
for _s in [DistObject]: __swig_getmethods__.update(getattr(_s,'__swig_getmethods__',{}))
__getattr__ = lambda self, name: _swig_getattr(self, MapColoring, name)
__repr__ = _swig_repr
__swig_destroy__ = _Epetra.delete_MapColoring
__del__ = lambda self : None;
def __call__(self, *args):
"""__call__(self, int GID) -> int"""
return _Epetra.MapColoring___call__(self, *args)
def NumColors(self, *args):
"""
NumColors(self) -> int
int
Epetra_MapColoring::NumColors() const
Returns number of colors on the calling processor.
"""
return _Epetra.MapColoring_NumColors(self, *args)
def MaxNumColors(self, *args):
"""
MaxNumColors(self) -> int
int
Epetra_MapColoring::MaxNumColors() const
Returns maximum over all processors of the number of colors.
"""
return _Epetra.MapColoring_MaxNumColors(self, *args)
def DefaultColor(self, *args):
"""
DefaultColor(self) -> int
int
Epetra_MapColoring::DefaultColor() const
Returns default color.
"""
return _Epetra.MapColoring_DefaultColor(self, *args)
def NumElementsWithColor(self, *args):
"""
NumElementsWithColor(self, int Color) -> int
int
Epetra_MapColoring::NumElementsWithColor(int Color) const
Returns number of map elements on calling processor having specified
Color.
"""
return _Epetra.MapColoring_NumElementsWithColor(self, *args)
def GenerateMap(self, *args):
"""
GenerateMap(self, int Color) -> Map
Epetra_Map *
Epetra_MapColoring::GenerateMap(int Color) const
Generates an Epetra_Map of the GIDs associated with the specified
color.
This method will create an Epetra_Map such that on each processor the
GIDs associated with the specified color will be part of the map on
that processor. Note that this method always generates an Epetra_Map,
not an Epetra_BlockMap, even if the map associated with this map
coloring is a block map. Once the map is generated, the user is
responsible for deleting it.
"""
return _Epetra.MapColoring_GenerateMap(self, *args)
def GenerateBlockMap(self, *args):
"""
GenerateBlockMap(self, int Color) -> BlockMap
Epetra_BlockMap * Epetra_MapColoring::GenerateBlockMap(int Color)
const
Generates an Epetra_BlockMap of the GIDs associated with the specified
color.
This method will create an Epetra_BlockMap such that on each processor
the GIDs associated with the specified color will be part of the map
on that processor. Note that this method will generate an
Epetra_BlockMap such that each element as the same element size as the
corresponding element of map associated with the map coloring. Once
the map is generated, the user is responsible for deleting it.
"""
return _Epetra.MapColoring_GenerateBlockMap(self, *args)
def __init__(self, *args):
"""
__init__(self, BlockMap Map, int DefaultColor = 0) -> MapColoring
__init__(self, MapColoring Source) -> MapColoring
__init__(self, BlockMap map, int numColors, int defaultColor = 0) -> MapColoring
Epetra_MapColoring::Epetra_MapColoring(const Epetra_MapColoring
&Source)
Epetra_MapColoring copy constructor.
"""
this = _Epetra.new_MapColoring(*args)
try: self.this.append(this)
except: self.this = this
def __getitem__(self, *args):
"""__getitem__(self, int i) -> int"""
return _Epetra.MapColoring___getitem__(self, *args)
def __setitem__(self, *args):
"""__setitem__(self, int i, int color)"""
return _Epetra.MapColoring___setitem__(self, *args)
def ListOfColors(self, *args):
"""
ListOfColors(self) -> PyObject
int*
Epetra_MapColoring::ListOfColors() const
Array of length NumColors() containing List of color values used in
this coloring.
Color values can be arbitrary integer values. As a result, a user of a
previously constructed MapColoring object may need to know exactly
which color values are present. This array contains that information
as a sorted list of integer values.
"""
return _Epetra.MapColoring_ListOfColors(self, *args)
def ColorLIDList(self, *args):
"""
ColorLIDList(self, int color) -> PyObject
int *
Epetra_MapColoring::ColorLIDList(int Color) const
Returns pointer to array of Map LIDs associated with the specified
color.
Returns a pointer to a list of Map LIDs associated with the specified
color. This is a purely local list with no information about other
processors. If there are no LIDs associated with the specified color,
the pointer is set to zero.
"""
return _Epetra.MapColoring_ColorLIDList(self, *args)
def ElementColors(self, *args):
"""
ElementColors(self) -> PyObject
int*
Epetra_MapColoring::ElementColors() const
Returns pointer to array of the colors associated with the LIDs on the
calling processor.
Returns a pointer to the list of colors associated with the elements
on this processor such that ElementColor[LID] is the color assigned to
that LID.
"""
return _Epetra.MapColoring_ElementColors(self, *args)
MapColoring_swigregister = _Epetra.MapColoring_swigregister
MapColoring_swigregister(MapColoring)
class IntSerialDenseMatrix(_object):
"""Proxy of C++ IntSerialDenseMatrix class"""
__swig_setmethods__ = {}
__setattr__ = lambda self, name, value: _swig_setattr(self, IntSerialDenseMatrix, name, value)
__swig_getmethods__ = {}
__getattr__ = lambda self, name: _swig_getattr(self, IntSerialDenseMatrix, name)
__repr__ = _swig_repr
def __init__(self, *args):
"""__init__(self) -> IntSerialDenseMatrix"""
this = _Epetra.new_IntSerialDenseMatrix(*args)
try: self.this.append(this)
except: self.this = this
__swig_destroy__ = _Epetra.delete_IntSerialDenseMatrix
__del__ = lambda self : None;
IntSerialDenseMatrix_swigregister = _Epetra.IntSerialDenseMatrix_swigregister
IntSerialDenseMatrix_swigregister(IntSerialDenseMatrix)
class Epetra_IntSerialDenseMatrix(Object):
"""
Epetra_IntSerialDenseMatrix: A class for constructing and using
general dense integer matrices.
The Epetra_IntSerialDenseMatrix class enables the construction and use
of integer-valued, general dense matrices.
The Epetra_IntSerialDenseMatrix class is intended to provide very
basic support for dense rectangular matrices.
Constructing Epetra_IntSerialDenseMatrix Objects
There are four Epetra_IntSerialDenseMatrix constructors. The first
constructs a zero-sized object which should be made to appropriate
length using the Shape() or Reshape() functions and then filled with
the [] or () operators. The second constructs an object sized to the
dimensions specified, which should be filled with the [] or ()
operators. The third is a constructor that accepts user data as a 2D
array, and the fourth is a copy constructor. The third constructor has
two data access modes (specified by the Epetra_DataAccess argument):
Copy mode - Allocates memory and makes a copy of the user-provided
data. In this case, the user data is not needed after construction.
View mode - Creates a "view" of the user data. In this case, the
user data is required to remain intact for the life of the object.
WARNING: View mode is extremely dangerous from a data hiding
perspective. Therefore, we strongly encourage users to develop code
using Copy mode first and only use the View mode in a secondary
optimization phase. Epetra_IntSerialDenseMatrix constructors will
throw an exception if an error occurrs. These exceptions will alway be
negative integer values as follows: -1 Invalid dimension specified.
-2 Shape returned non-zero.
-3 Null pointer specified for user's data.
-99 Internal Epetra_IntSerialDenseMatrix error. Contact developer.
Other Epetra_IntSerialDenseMatrix functions that do not return an
integer error code (such as operators () and [] ) will throw an
exception if an error occurrs. These exceptions will be integer values
as follows: -1 Invalid row specified.
-2 Invalid column specified.
-5 Invalid assignment (type mismatch).
-99 Internal Epetra_IntSerialDenseMatrix error. Contact developer.
b Extracting Data from Epetra_IntSerialDenseMatrix Objects
Once a Epetra_IntSerialDenseMatrix is constructed, it is possible to
view the data via access functions.
WARNING: Use of these access functions cam be extremely dangerous
from a data hiding perspective. Vector and Utility Functions
Once a Epetra_IntSerialDenseMatrix is constructed, several
mathematical functions can be applied to the object. Specifically:
Multiplication.
Norms.
C++ includes: Epetra_IntSerialDenseMatrix.h
"""
__swig_setmethods__ = {}
for _s in [Object]: __swig_setmethods__.update(getattr(_s,'__swig_setmethods__',{}))
__setattr__ = lambda self, name, value: _swig_setattr(self, Epetra_IntSerialDenseMatrix, name, value)
__swig_getmethods__ = {}
for _s in [Object]: __swig_getmethods__.update(getattr(_s,'__swig_getmethods__',{}))
__getattr__ = lambda self, name: _swig_getattr(self, Epetra_IntSerialDenseMatrix, name)
__repr__ = _swig_repr
def __init__(self, *args):
"""
__init__(self) -> Epetra_IntSerialDenseMatrix
__init__(self, int NumRows, int NumCols) -> Epetra_IntSerialDenseMatrix
__init__(self, Epetra_DataAccess CV, int A, int LDA, int NumRows,
int NumCols) -> Epetra_IntSerialDenseMatrix
__init__(self, Epetra_IntSerialDenseMatrix Source) -> Epetra_IntSerialDenseMatrix
Epetra_IntSerialDenseMatrix::Epetra_IntSerialDenseMatrix(const
Epetra_IntSerialDenseMatrix &Source)
Epetra_IntSerialDenseMatrix copy constructor.
This matrix will take on the data access mode of the Source matrix.
"""
this = _Epetra.new_Epetra_IntSerialDenseMatrix(*args)
try: self.this.append(this)
except: self.this = this
__swig_destroy__ = _Epetra.delete_Epetra_IntSerialDenseMatrix
__del__ = lambda self : None;
def Shape(self, *args):
"""
Shape(self, int NumRows, int NumCols) -> int
int
Epetra_IntSerialDenseMatrix::Shape(int NumRows, int NumCols)
Set dimensions of a Epetra_IntSerialDenseMatrix object; init values to
zero.
Parameters:
-----------
In: NumRows - Number of rows in object.
In: NumCols - Number of columns in object.
Allows user to define the dimensions of a Epetra_IntSerialDenseMatrix
at any point. This function can be called at any point after
construction. Any values that were previously in this object are
destroyed and the resized matrix starts off with all zero values.
Integer error code, set to 0 if successful.
"""
return _Epetra.Epetra_IntSerialDenseMatrix_Shape(self, *args)
def Reshape(self, *args):
"""
Reshape(self, int NumRows, int NumCols) -> int
int
Epetra_IntSerialDenseMatrix::Reshape(int NumRows, int NumCols)
Reshape a Epetra_IntSerialDenseMatrix object.
Parameters:
-----------
In: NumRows - Number of rows in object.
In: NumCols - Number of columns in object.
Allows user to define the dimensions of a Epetra_IntSerialDenseMatrix
at any point. This function can be called at any point after
construction. Any values that were previously in this object are
copied into the new shape. If the new shape is smaller than the
original, the upper left portion of the original matrix (the principal
submatrix) is copied to the new matrix.
Integer error code, set to 0 if successful.
"""
return _Epetra.Epetra_IntSerialDenseMatrix_Reshape(self, *args)
def OneNorm(self):
"""
OneNorm(self) -> int
int
Epetra_IntSerialDenseMatrix::OneNorm()
Computes the 1-Norm of the this matrix.
Integer error code, set to 0 if successful.
"""
return _Epetra.Epetra_IntSerialDenseMatrix_OneNorm(self)
def InfNorm(self):
"""
InfNorm(self) -> int
int
Epetra_IntSerialDenseMatrix::InfNorm()
Computes the Infinity-Norm of the this matrix.
"""
return _Epetra.Epetra_IntSerialDenseMatrix_InfNorm(self)
def __eq__(self, *args):
"""__eq__(self, Epetra_IntSerialDenseMatrix rhs) -> bool"""
return _Epetra.Epetra_IntSerialDenseMatrix___eq__(self, *args)
def __ne__(self, *args):
"""__ne__(self, Epetra_IntSerialDenseMatrix rhs) -> bool"""
return _Epetra.Epetra_IntSerialDenseMatrix___ne__(self, *args)
def __call__(self, *args):
"""__call__(self, int RowIndex, int ColIndex) -> int"""
return _Epetra.Epetra_IntSerialDenseMatrix___call__(self, *args)
def Random(self):
"""
Random(self) -> int
int
Epetra_IntSerialDenseMatrix::Random()
Set matrix values to random numbers.
IntSerialDenseMatrix uses the random number generator provided by
Epetra_Util. The matrix values will be set to random values on the
interval (0, 2^31 - 1).
Integer error code, set to 0 if successful.
"""
return _Epetra.Epetra_IntSerialDenseMatrix_Random(self)
def M(self):
"""
M(self) -> int
int
Epetra_IntSerialDenseMatrix::M() const
Returns row dimension of system.
"""
return _Epetra.Epetra_IntSerialDenseMatrix_M(self)
def N(self):
"""
N(self) -> int
int
Epetra_IntSerialDenseMatrix::N() const
Returns column dimension of system.
"""
return _Epetra.Epetra_IntSerialDenseMatrix_N(self)
def A(self):
"""
A(self) -> int
int*
Epetra_IntSerialDenseMatrix::A()
Returns pointer to the this matrix.
"""
return _Epetra.Epetra_IntSerialDenseMatrix_A(self)
def LDA(self):
"""
LDA(self) -> int
int
Epetra_IntSerialDenseMatrix::LDA() const
Returns the leading dimension of the this matrix.
"""
return _Epetra.Epetra_IntSerialDenseMatrix_LDA(self)
def CV(self):
"""
CV(self) -> Epetra_DataAccess
Epetra_DataAccess Epetra_IntSerialDenseMatrix::CV() const
Returns the data access mode of the this matrix.
"""
return _Epetra.Epetra_IntSerialDenseMatrix_CV(self)
Epetra_IntSerialDenseMatrix_swigregister = _Epetra.Epetra_IntSerialDenseMatrix_swigregister
Epetra_IntSerialDenseMatrix_swigregister(Epetra_IntSerialDenseMatrix)
class IntSerialDenseVector(_object):
"""Proxy of C++ IntSerialDenseVector class"""
__swig_setmethods__ = {}
__setattr__ = lambda self, name, value: _swig_setattr(self, IntSerialDenseVector, name, value)
__swig_getmethods__ = {}
__getattr__ = lambda self, name: _swig_getattr(self, IntSerialDenseVector, name)
__repr__ = _swig_repr
def __init__(self, *args):
"""__init__(self) -> IntSerialDenseVector"""
this = _Epetra.new_IntSerialDenseVector(*args)
try: self.this.append(this)
except: self.this = this
__swig_destroy__ = _Epetra.delete_IntSerialDenseVector
__del__ = lambda self : None;
IntSerialDenseVector_swigregister = _Epetra.IntSerialDenseVector_swigregister
IntSerialDenseVector_swigregister(IntSerialDenseVector)
class Epetra_IntSerialDenseVector(Epetra_IntSerialDenseMatrix):
"""
Epetra_IntSerialDenseVector: A class for constructing and using dense
vectors.
The Epetra_IntSerialDenseVector class enables the construction and use
of integer-valued, dense vectors. It derives from the
Epetra_IntSerialDenseMatrix class.
The Epetra_IntSerialDenseVector class is intended to provide
convenient vector notation but derives all signficant functionality
from Epetra_IntSerialDenseMatrix.
Constructing Epetra_IntSerialDenseVector Objects
There are three Epetra_IntSerialDenseVector constructors. The first
constructs a zero-length object which should be made to appropriate
length using the Size() or Resize() functions and then filled with the
[] or () operators. The second constructs an object sized to the
dimension specified, which should be filled with the [] or ()
operators. The third is a constructor that accepts user data as a 1D
array, and the fourth is a copy constructor. The third constructor has
two data access modes (specified by the Epetra_DataAccess argument):
Copy mode - Allocates memory and makes a copy of the user-provided
data. In this case, the user data is not needed after construction.
View mode - Creates a "view" of the user data. In this case, the
user data is required to remain intact for the life of the object.
WARNING: View mode is extremely dangerous from a data hiding
perspective. Therefore, we strongly encourage users to develop code
using Copy mode first and only use the View mode in a secondary
optimization phase. Extracting Data from Epetra_IntSerialDenseVector
Objects
Once a Epetra_IntSerialDenseVector is constructed, it is possible to
view the data via access functions.
WARNING: Use of these access functions cam be extremely dangerous
from a data hiding perspective.
C++ includes: Epetra_IntSerialDenseVector.h
"""
__swig_setmethods__ = {}
for _s in [Epetra_IntSerialDenseMatrix]: __swig_setmethods__.update(getattr(_s,'__swig_setmethods__',{}))
__setattr__ = lambda self, name, value: _swig_setattr(self, Epetra_IntSerialDenseVector, name, value)
__swig_getmethods__ = {}
for _s in [Epetra_IntSerialDenseMatrix]: __swig_getmethods__.update(getattr(_s,'__swig_getmethods__',{}))
__getattr__ = lambda self, name: _swig_getattr(self, Epetra_IntSerialDenseVector, name)
__repr__ = _swig_repr
def __init__(self, *args):
"""
__init__(self) -> Epetra_IntSerialDenseVector
__init__(self, int Length_in) -> Epetra_IntSerialDenseVector
__init__(self, Epetra_DataAccess CV_in, int Values_in, int Length_in) -> Epetra_IntSerialDenseVector
__init__(self, Epetra_IntSerialDenseVector Source) -> Epetra_IntSerialDenseVector
Epetra_IntSerialDenseVector::Epetra_IntSerialDenseVector(const
Epetra_IntSerialDenseVector &Source)
Epetra_IntSerialDenseVector copy constructor.
"""
this = _Epetra.new_Epetra_IntSerialDenseVector(*args)
try: self.this.append(this)
except: self.this = this
def Size(self, *args):
"""
Size(self, int Length_in) -> int
int
Epetra_IntSerialDenseVector::Size(int Length_in)
Set length of a Epetra_IntSerialDenseVector object; init values to
zero.
Parameters:
-----------
In: Length - Length of vector object.
Allows user to define the dimension of a Epetra_IntSerialDenseVector.
This function can be called at any point after construction. Any
values that were previously in this object are destroyed and the
resized vector starts off with all zero values.
Integer error code, set to 0 if successful.
"""
return _Epetra.Epetra_IntSerialDenseVector_Size(self, *args)
def Resize(self, *args):
"""
Resize(self, int Length_in) -> int
int
Epetra_IntSerialDenseVector::Resize(int Length_in)
Resize a Epetra_IntSerialDenseVector object.
Parameters:
-----------
In: Length - Length of vector object.
Allows user to define the dimension of a Epetra_IntSerialDenseVector.
This function can be called at any point after construction. Any
values that were previously in this object are copied into the new
size. If the new shape is smaller than the original, the first Length
values are copied to the new vector.
Integer error code, set to 0 if successful.
"""
return _Epetra.Epetra_IntSerialDenseVector_Resize(self, *args)
__swig_destroy__ = _Epetra.delete_Epetra_IntSerialDenseVector
__del__ = lambda self : None;
def __call__(self, *args):
"""__call__(self, int RowIndex, int ColIndex) -> int"""
return _Epetra.Epetra_IntSerialDenseVector___call__(self, *args)
def Random(self):
"""
Random(self) -> int
int
Epetra_IntSerialDenseVector::Random()
Set vector values to random numbers.
IntSerialDenseVector uses the random number generator provided by
Epetra_Util. The vector values will be set to random values on the
interval (0, 2^31 - 1).
Integer error code, set to 0 if successful.
"""
return _Epetra.Epetra_IntSerialDenseVector_Random(self)
def Length(self):
"""
Length(self) -> int
int
Epetra_IntSerialDenseVector::Length() const
Returns length of vector.
"""
return _Epetra.Epetra_IntSerialDenseVector_Length(self)
def Values(self, *args):
"""
Values(self) -> int
Values(self) -> int
const
int* Epetra_IntSerialDenseVector::Values() const
Returns const pointer to the values in vector.
"""
return _Epetra.Epetra_IntSerialDenseVector_Values(self, *args)
def CV(self):
"""
CV(self) -> Epetra_DataAccess
Epetra_DataAccess Epetra_IntSerialDenseVector::CV() const
Returns the data access mode of the this vector.
"""
return _Epetra.Epetra_IntSerialDenseVector_CV(self)
Epetra_IntSerialDenseVector_swigregister = _Epetra.Epetra_IntSerialDenseVector_swigregister
Epetra_IntSerialDenseVector_swigregister(Epetra_IntSerialDenseVector)
class SerialDenseOperator(_object):
"""
Epetra_SerialDenseOperator: A pure virtual class for using real-valued
double-precision operators.
The Epetra_SerialDenseOperator class is a pure virtual class
(specifies interface only) that enable the use of real-valued double-
precision operators. It is currently implemented by the
Epetra_SerialDenseMatrix, Epetra_SerialDenseSolver and
Epetra_SerialDenseSVD classes.
C++ includes: Epetra_SerialDenseOperator.h
"""
__swig_setmethods__ = {}
__setattr__ = lambda self, name, value: _swig_setattr(self, SerialDenseOperator, name, value)
__swig_getmethods__ = {}
__getattr__ = lambda self, name: _swig_getattr(self, SerialDenseOperator, name)
def __init__(self, *args, **kwargs): raise AttributeError("No constructor defined - class is abstract")
__repr__ = _swig_repr
__swig_destroy__ = _Epetra.delete_SerialDenseOperator
__del__ = lambda self : None;
def SetUseTranspose(self, *args):
"""
SetUseTranspose(self, bool UseTranspose) -> int
virtual int Epetra_SerialDenseOperator::SetUseTranspose(bool
UseTranspose)=0
If set true, transpose of this operator will be applied.
This flag allows the transpose of the given operator to be used
implicitly. Setting this flag affects only the Apply() and
ApplyInverse() methods. If the implementation of this interface does
not support transpose use, this method should return a value of -1.
Parameters:
-----------
In: UseTranspose -If true, multiply by the transpose of operator,
otherwise just use operator.
Integer error code, set to 0 if successful. Set to -1 if this
implementation does not support transpose.
"""
return _Epetra.SerialDenseOperator_SetUseTranspose(self, *args)
def Apply(self, *args):
"""
Apply(self, Epetra_SerialDenseMatrix X, Epetra_SerialDenseMatrix Y) -> int
virtual int
Epetra_SerialDenseOperator::Apply(const Epetra_SerialDenseMatrix &X,
Epetra_SerialDenseMatrix &Y)=0
Returns the result of a Epetra_SerialDenseOperator applied to a
Epetra_SerialDenseMatrix X in Y.
Parameters:
-----------
In: X - A Epetra_SerialDenseMatrix to multiply with operator.
Out: Y -A Epetra_SerialDenseMatrix containing result.
Integer error code, set to 0 if successful.
"""
return _Epetra.SerialDenseOperator_Apply(self, *args)
def ApplyInverse(self, *args):
"""
ApplyInverse(self, Epetra_SerialDenseMatrix X, Epetra_SerialDenseMatrix Y) -> int
virtual int Epetra_SerialDenseOperator::ApplyInverse(const
Epetra_SerialDenseMatrix &X, Epetra_SerialDenseMatrix &Y)=0
Returns the result of a Epetra_SerialDenseOperator inverse applied to
an Epetra_SerialDenseMatrix X in Y.
Parameters:
-----------
In: X - A Epetra_SerialDenseMatrix to solve for.
Out: Y -A Epetra_SerialDenseMatrix containing result.
Integer error code, set to 0 if successful.
"""
return _Epetra.SerialDenseOperator_ApplyInverse(self, *args)
def NormInf(self):
"""
NormInf(self) -> double
virtual
double Epetra_SerialDenseOperator::NormInf() const =0
Returns the infinity norm of the global matrix.
"""
return _Epetra.SerialDenseOperator_NormInf(self)
def Label(self):
"""
Label(self) -> char
virtual
const char* Epetra_SerialDenseOperator::Label() const =0
Returns a character string describing the operator.
"""
return _Epetra.SerialDenseOperator_Label(self)
def UseTranspose(self):
"""
UseTranspose(self) -> bool
virtual bool Epetra_SerialDenseOperator::UseTranspose() const =0
Returns the current UseTranspose setting.
"""
return _Epetra.SerialDenseOperator_UseTranspose(self)
def HasNormInf(self):
"""
HasNormInf(self) -> bool
virtual bool Epetra_SerialDenseOperator::HasNormInf() const =0
Returns true if the this object can provide an approximate Inf-norm,
false otherwise.
"""
return _Epetra.SerialDenseOperator_HasNormInf(self)
def RowDim(self):
"""
RowDim(self) -> int
virtual
int Epetra_SerialDenseOperator::RowDim() const =0
Returns the row dimension of operator.
"""
return _Epetra.SerialDenseOperator_RowDim(self)
def ColDim(self):
"""
ColDim(self) -> int
virtual
int Epetra_SerialDenseOperator::ColDim() const =0
Returns the column dimension of operator.
"""
return _Epetra.SerialDenseOperator_ColDim(self)
SerialDenseOperator_swigregister = _Epetra.SerialDenseOperator_swigregister
SerialDenseOperator_swigregister(SerialDenseOperator)
class SerialDenseMatrix(_object):
"""Proxy of C++ SerialDenseMatrix class"""
__swig_setmethods__ = {}
__setattr__ = lambda self, name, value: _swig_setattr(self, SerialDenseMatrix, name, value)
__swig_getmethods__ = {}
__getattr__ = lambda self, name: _swig_getattr(self, SerialDenseMatrix, name)
__repr__ = _swig_repr
def __init__(self, *args):
"""__init__(self) -> SerialDenseMatrix"""
this = _Epetra.new_SerialDenseMatrix(*args)
try: self.this.append(this)
except: self.this = this
__swig_destroy__ = _Epetra.delete_SerialDenseMatrix
__del__ = lambda self : None;
SerialDenseMatrix_swigregister = _Epetra.SerialDenseMatrix_swigregister
SerialDenseMatrix_swigregister(SerialDenseMatrix)
class Epetra_SerialDenseMatrix(CompObject,Object,SerialDenseOperator,BLAS):
"""
Epetra_SerialDenseMatrix: A class for constructing and using real
double precision general dense matrices.
The Epetra_SerialDenseMatrix class enables the construction and use of
real-valued, general, double-precision dense matrices. It is built on
the BLAS, and derives from the Epetra_BLAS.
The Epetra_SerialDenseMatrix class is intended to provide very basic
support for dense rectangular matrices.
Constructing Epetra_SerialDenseMatrix Objects
There are four Epetra_SerialDenseMatrix constructors. The first
constructs a zero-sized object which should be made to appropriate
length using the Shape() or Reshape() functions and then filled with
the [] or () operators. The second constructs an object sized to the
dimensions specified, which should be filled with the [] or ()
operators. The third is a constructor that accepts user data as a 2D
array, and the fourth is a copy constructor. The third constructor has
two data access modes (specified by the Epetra_DataAccess argument):
Copy mode - Allocates memory and makes a copy of the user-provided
data. In this case, the user data is not needed after construction.
View mode - Creates a "view" of the user data. In this case, the
user data is required to remain intact for the life of the object.
WARNING: View mode is extremely dangerous from a data hiding
perspective. Therefore, we strongly encourage users to develop code
using Copy mode first and only use the View mode in a secondary
optimization phase. Extracting Data from Epetra_SerialDenseMatrix
Objects
Once a Epetra_SerialDenseMatrix is constructed, it is possible to view
the data via access functions.
WARNING: Use of these access functions cam be extremely dangerous
from a data hiding perspective. Vector and Utility Functions
Once a Epetra_SerialDenseMatrix is constructed, several mathematical
functions can be applied to the object. Specifically: Multiplication.
Norms.
Counting floating point operations The Epetra_SerialDenseMatrix class
has Epetra_CompObject as a base class. Thus, floating point operations
are counted and accumulated in the Epetra_Flop object (if any) that
was set using the SetFlopCounter() method in the Epetra_CompObject
base class.
C++ includes: Epetra_SerialDenseMatrix.h
"""
__swig_setmethods__ = {}
for _s in [CompObject,Object,SerialDenseOperator,BLAS]: __swig_setmethods__.update(getattr(_s,'__swig_setmethods__',{}))
__setattr__ = lambda self, name, value: _swig_setattr(self, Epetra_SerialDenseMatrix, name, value)
__swig_getmethods__ = {}
for _s in [CompObject,Object,SerialDenseOperator,BLAS]: __swig_getmethods__.update(getattr(_s,'__swig_getmethods__',{}))
__getattr__ = lambda self, name: _swig_getattr(self, Epetra_SerialDenseMatrix, name)
__repr__ = _swig_repr
def __init__(self, *args):
"""
__init__(self, bool set_object_label = True) -> Epetra_SerialDenseMatrix
__init__(self) -> Epetra_SerialDenseMatrix
__init__(self, int NumRows, int NumCols, bool set_object_label = True) -> Epetra_SerialDenseMatrix
__init__(self, int NumRows, int NumCols) -> Epetra_SerialDenseMatrix
__init__(self, Epetra_DataAccess CV, double A_in, int LDA_in, int NumRows,
int NumCols, bool set_object_label = True) -> Epetra_SerialDenseMatrix
__init__(self, Epetra_DataAccess CV, double A_in, int LDA_in, int NumRows,
int NumCols) -> Epetra_SerialDenseMatrix
__init__(self, Epetra_SerialDenseMatrix Source) -> Epetra_SerialDenseMatrix
Epetra_SerialDenseMatrix::Epetra_SerialDenseMatrix(const
Epetra_SerialDenseMatrix &Source)
Epetra_SerialDenseMatrix copy constructor.
"""
this = _Epetra.new_Epetra_SerialDenseMatrix(*args)
try: self.this.append(this)
except: self.this = this
__swig_destroy__ = _Epetra.delete_Epetra_SerialDenseMatrix
__del__ = lambda self : None;
def Shape(self, *args):
"""
Shape(self, int NumRows, int NumCols) -> int
int
Epetra_SerialDenseMatrix::Shape(int NumRows, int NumCols)
Set dimensions of a Epetra_SerialDenseMatrix object; init values to
zero.
Parameters:
-----------
In: NumRows - Number of rows in object.
In: NumCols - Number of columns in object.
Allows user to define the dimensions of a Epetra_SerialDenseMatrix at
any point. This function can be called at any point after
construction. Any values that were previously in this object are
destroyed and the resized matrix starts off with all zero values.
Integer error code, set to 0 if successful.
"""
return _Epetra.Epetra_SerialDenseMatrix_Shape(self, *args)
def Reshape(self, *args):
"""
Reshape(self, int NumRows, int NumCols) -> int
int
Epetra_SerialDenseMatrix::Reshape(int NumRows, int NumCols)
Reshape a Epetra_SerialDenseMatrix object.
Parameters:
-----------
In: NumRows - Number of rows in object.
In: NumCols - Number of columns in object.
Allows user to define the dimensions of a Epetra_SerialDenseMatrix at
any point. This function can be called at any point after
construction. Any values that were previously in this object are
copied into the new shape. If the new shape is smaller than the
original, the upper left portion of the original matrix (the principal
submatrix) is copied to the new matrix.
Integer error code, set to 0 if successful.
"""
return _Epetra.Epetra_SerialDenseMatrix_Reshape(self, *args)
def Multiply(self, *args):
"""
Multiply(self, char TransA, char TransB, double ScalarAB, Epetra_SerialDenseMatrix A,
Epetra_SerialDenseMatrix B,
double ScalarThis) -> int
Multiply(self, bool transA, Epetra_SerialDenseMatrix x, Epetra_SerialDenseMatrix y) -> int
Multiply(self, char SideA, double ScalarAB, SerialSymDenseMatrix A,
Epetra_SerialDenseMatrix B, double ScalarThis) -> int
int
Epetra_SerialDenseMatrix::Multiply(char SideA, double ScalarAB, const
Epetra_SerialSymDenseMatrix &A, const Epetra_SerialDenseMatrix &B,
double ScalarThis)
Matrix-Matrix multiplication with a symmetric matrix A.
If SideA = 'L', compute this = ScalarThis* this + ScalarAB*A*B. If
SideA = 'R', compute this = ScalarThis* this + ScalarAB*B*A.
This function performs a variety of matrix-matrix multiply operations.
Parameters:
-----------
In: SideA - Specifies order of A relative to B.
In: ScalarAB - Scalar to multiply with A*B.
In: A - Symmetric Dense Matrix, either upper or lower triangle will
be used depending on value of A.Upper().
In: B - Dense Matrix.
In: ScalarThis - Scalar to multiply with this.
Integer error code, set to 0 if successful.
"""
return _Epetra.Epetra_SerialDenseMatrix_Multiply(self, *args)
def Scale(self, *args):
"""
Scale(self, double ScalarA) -> int
int
Epetra_SerialDenseMatrix::Scale(double ScalarA)
Inplace scalar-matrix product A = a A.
Scale a matrix, entry-by-entry using the value ScalarA.
Parameters:
-----------
ScalarA: (In) Scalar to multiply with A.
Integer error code, set to 0 if successful.
"""
return _Epetra.Epetra_SerialDenseMatrix_Scale(self, *args)
def NormOne(self):
"""
NormOne(self) -> double
double
Epetra_SerialDenseMatrix::NormOne() const
Computes the 1-Norm of the this matrix.
Integer error code, set to 0 if successful.
"""
return _Epetra.Epetra_SerialDenseMatrix_NormOne(self)
def NormInf(self):
"""
NormInf(self) -> double
double
Epetra_SerialDenseMatrix::NormInf() const
Computes the Infinity-Norm of the this matrix.
"""
return _Epetra.Epetra_SerialDenseMatrix_NormInf(self)
def __eq__(self, *args):
"""__eq__(self, Epetra_SerialDenseMatrix rhs) -> bool"""
return _Epetra.Epetra_SerialDenseMatrix___eq__(self, *args)
def __ne__(self, *args):
"""__ne__(self, Epetra_SerialDenseMatrix rhs) -> bool"""
return _Epetra.Epetra_SerialDenseMatrix___ne__(self, *args)
def __iadd__(self, *args):
"""__iadd__(self, Epetra_SerialDenseMatrix Source) -> Epetra_SerialDenseMatrix"""
return _Epetra.Epetra_SerialDenseMatrix___iadd__(self, *args)
def __call__(self, *args):
"""__call__(self, int RowIndex, int ColIndex) -> double"""
return _Epetra.Epetra_SerialDenseMatrix___call__(self, *args)
def Random(self):
"""
Random(self) -> int
int
Epetra_SerialDenseMatrix::Random()
Set matrix values to random numbers.
SerialDenseMatrix uses the random number generator provided by
Epetra_Util. The matrix values will be set to random values on the
interval (-1.0, 1.0).
Integer error code, set to 0 if successful.
"""
return _Epetra.Epetra_SerialDenseMatrix_Random(self)
def M(self):
"""
M(self) -> int
int
Epetra_SerialDenseMatrix::M() const
Returns row dimension of system.
"""
return _Epetra.Epetra_SerialDenseMatrix_M(self)
def N(self):
"""
N(self) -> int
int
Epetra_SerialDenseMatrix::N() const
Returns column dimension of system.
"""
return _Epetra.Epetra_SerialDenseMatrix_N(self)
def A(self):
"""
A(self) -> double
double*
Epetra_SerialDenseMatrix::A()
Returns pointer to the this matrix.
"""
return _Epetra.Epetra_SerialDenseMatrix_A(self)
def LDA(self):
"""
LDA(self) -> int
int
Epetra_SerialDenseMatrix::LDA() const
Returns the leading dimension of the this matrix.
"""
return _Epetra.Epetra_SerialDenseMatrix_LDA(self)
def CV(self):
"""
CV(self) -> Epetra_DataAccess
Epetra_DataAccess Epetra_SerialDenseMatrix::CV() const
Returns the data access mode of the this matrix.
"""
return _Epetra.Epetra_SerialDenseMatrix_CV(self)
def OneNorm(self):
"""
OneNorm(self) -> double
virtual
double Epetra_SerialDenseMatrix::OneNorm() const
Computes the 1-Norm of the this matrix (identical to NormOne()
method).
Integer error code, set to 0 if successful.
"""
return _Epetra.Epetra_SerialDenseMatrix_OneNorm(self)
def InfNorm(self):
"""
InfNorm(self) -> double
virtual
double Epetra_SerialDenseMatrix::InfNorm() const
Computes the Infinity-Norm of the this matrix (identical to NormInf()
method).
"""
return _Epetra.Epetra_SerialDenseMatrix_InfNorm(self)
def SetUseTranspose(self, *args):
"""
SetUseTranspose(self, bool UseTranspose_in) -> int
virtual int Epetra_SerialDenseMatrix::SetUseTranspose(bool
UseTranspose_in)
If set true, transpose of this operator will be applied.
This flag allows the transpose of the given operator to be used
implicitly. Setting this flag affects only the Apply() and
ApplyInverse() methods. If the implementation of this interface does
not support transpose use, this method should return a value of -1.
Parameters:
-----------
In: UseTranspose -If true, multiply by the transpose of operator,
otherwise just use operator.
Integer error code, set to 0 if successful. Set to -1 if this
implementation does not support transpose.
"""
return _Epetra.Epetra_SerialDenseMatrix_SetUseTranspose(self, *args)
def Apply(self, *args):
"""
Apply(self, Epetra_SerialDenseMatrix X, Epetra_SerialDenseMatrix Y) -> int
int
Epetra_SerialDenseMatrix::Apply(const Epetra_SerialDenseMatrix &X,
Epetra_SerialDenseMatrix &Y)
Returns the result of a Epetra_SerialDenseOperator applied to a
Epetra_SerialDenseMatrix X in Y.
Parameters:
-----------
In: X - A Epetra_SerialDenseMatrix to multiply with operator.
Out: Y -A Epetra_SerialDenseMatrix containing result.
Integer error code, set to 0 if successful.
"""
return _Epetra.Epetra_SerialDenseMatrix_Apply(self, *args)
def ApplyInverse(self, *args):
"""
ApplyInverse(self, Epetra_SerialDenseMatrix X, Epetra_SerialDenseMatrix Y) -> int
virtual int Epetra_SerialDenseMatrix::ApplyInverse(const
Epetra_SerialDenseMatrix &X, Epetra_SerialDenseMatrix &Y)
Returns the result of a Epetra_SerialDenseOperator inverse applied to
an Epetra_SerialDenseMatrix X in Y.
Parameters:
-----------
In: X - A Epetra_SerialDenseMatrix to solve for.
Out: Y -A Epetra_SerialDenseMatrix containing result.
Integer error code, set to 0 if successful.
"""
return _Epetra.Epetra_SerialDenseMatrix_ApplyInverse(self, *args)
def Label(self):
"""
Label(self) -> char
virtual const
char* Epetra_SerialDenseMatrix::Label() const
Returns a character string describing the operator.
"""
return _Epetra.Epetra_SerialDenseMatrix_Label(self)
def UseTranspose(self):
"""
UseTranspose(self) -> bool
virtual bool Epetra_SerialDenseMatrix::UseTranspose() const
Returns the current UseTranspose setting.
"""
return _Epetra.Epetra_SerialDenseMatrix_UseTranspose(self)
def HasNormInf(self):
"""
HasNormInf(self) -> bool
virtual
bool Epetra_SerialDenseMatrix::HasNormInf() const
Returns true if the this object can provide an approximate Inf-norm,
false otherwise.
"""
return _Epetra.Epetra_SerialDenseMatrix_HasNormInf(self)
def RowDim(self):
"""
RowDim(self) -> int
virtual int
Epetra_SerialDenseMatrix::RowDim() const
Returns the row dimension of operator.
"""
return _Epetra.Epetra_SerialDenseMatrix_RowDim(self)
def ColDim(self):
"""
ColDim(self) -> int
virtual int
Epetra_SerialDenseMatrix::ColDim() const
Returns the column dimension of operator.
"""
return _Epetra.Epetra_SerialDenseMatrix_ColDim(self)
Epetra_SerialDenseMatrix_swigregister = _Epetra.Epetra_SerialDenseMatrix_swigregister
Epetra_SerialDenseMatrix_swigregister(Epetra_SerialDenseMatrix)
class SerialSymDenseMatrix(Epetra_SerialDenseMatrix):
"""
Epetra_SerialSymDenseMatrix: A class for constructing and using
symmetric positive definite dense matrices.
The Epetra_SerialSymDenseMatrix class enables the construction and use
of real-valued, symmetric positive definite, double-precision dense
matrices. It is built on the Epetra_SerialDenseMatrix class which in
turn is built on the BLAS via the Epetra_BLAS class.
The Epetra_SerialSymDenseMatrix class is intended to provide full-
featured support for solving linear and eigen system problems for
symmetric positive definite matrices. It is written on top of BLAS and
LAPACK and thus has excellent performance and numerical capabilities.
Using this class, one can either perform simple factorizations and
solves or apply all the tricks available in LAPACK to get the best
possible solution for very ill-conditioned problems.
Epetra_SerialSymDenseMatrix vs. Epetra_LAPACK
The Epetra_LAPACK class provides access to most of the same
functionality as Epetra_SerialSymDenseMatrix. The primary difference
is that Epetra_LAPACK is a "thin" layer on top of LAPACK and
Epetra_SerialSymDenseMatrix attempts to provide easy access to the
more sophisticated aspects of solving dense linear and eigensystems.
When you should use Epetra_LAPACK: If you are simply looking for a
convenient wrapper around the Fortran LAPACK routines and you have a
well-conditioned problem, you should probably use Epetra_LAPACK
directly.
When you should use Epetra_SerialSymDenseMatrix: If you want to (or
potentially want to) solve ill-conditioned problems or want to work
with a more object-oriented interface, you should probably use
Epetra_SerialSymDenseMatrix.
Constructing Epetra_SerialSymDenseMatrix Objects
There are three Epetra_DenseMatrix constructors. The first constructs
a zero-sized object which should be made to appropriate length using
the Shape() or Reshape() functions and then filled with the [] or ()
operators. The second is a constructor that accepts user data as a 2D
array, the third is a copy constructor. The second constructor has two
data access modes (specified by the Epetra_DataAccess argument): Copy
mode - Allocates memory and makes a copy of the user-provided data. In
this case, the user data is not needed after construction.
View mode - Creates a "view" of the user data. In this case, the
user data is required to remain intact for the life of the object.
WARNING: View mode is extremely dangerous from a data hiding
perspective. Therefore, we strongly encourage users to develop code
using Copy mode first and only use the View mode in a secondary
optimization phase. Extracting Data from Epetra_SerialSymDenseMatrix
Objects
Once a Epetra_SerialSymDenseMatrix is constructed, it is possible to
view the data via access functions.
WARNING: Use of these access functions cam be extremely dangerous
from a data hiding perspective. Vector and Utility Functions
Once a Epetra_SerialSymDenseMatrix is constructed, several
mathematical functions can be applied to the object. Specifically:
Multiplication.
Norms.
Counting floating point operations The Epetra_SerialSymDenseMatrix
class has Epetra_CompObject as a base class. Thus, floating point
operations are counted and accumulated in the Epetra_Flop object (if
any) that was set using the SetFlopCounter() method in the
Epetra_CompObject base class.
C++ includes: Epetra_SerialSymDenseMatrix.h
"""
__swig_setmethods__ = {}
for _s in [Epetra_SerialDenseMatrix]: __swig_setmethods__.update(getattr(_s,'__swig_setmethods__',{}))
__setattr__ = lambda self, name, value: _swig_setattr(self, SerialSymDenseMatrix, name, value)
__swig_getmethods__ = {}
for _s in [Epetra_SerialDenseMatrix]: __swig_getmethods__.update(getattr(_s,'__swig_getmethods__',{}))
__getattr__ = lambda self, name: _swig_getattr(self, SerialSymDenseMatrix, name)
__repr__ = _swig_repr
def __init__(self, *args):
"""
__init__(self) -> SerialSymDenseMatrix
__init__(self, Epetra_DataAccess CV, double A, int LDA, int NumRowsCols) -> SerialSymDenseMatrix
__init__(self, SerialSymDenseMatrix Source) -> SerialSymDenseMatrix
Epetra_SerialSymDenseMatrix::Epetra_SerialSymDenseMatrix(const
Epetra_SerialSymDenseMatrix &Source)
Epetra_SerialSymDenseMatrix copy constructor.
"""
this = _Epetra.new_SerialSymDenseMatrix(*args)
try: self.this.append(this)
except: self.this = this
__swig_destroy__ = _Epetra.delete_SerialSymDenseMatrix
__del__ = lambda self : None;
def Shape(self, *args):
"""
Shape(self, int NumRows, int NumCols) -> int
Shape(self, int NumRowsCols) -> int
int
Epetra_SerialSymDenseMatrix::Shape(int NumRowsCols)
Set dimensions of a Epetra_SerialSymDenseMatrix object; init values to
zero.
Parameters:
-----------
In: NumRowsCols - Number of rows and columns in object.
Allows user to define the dimensions of a Epetra_DenseMatrix at any
point. This function can be called at any point after construction.
Any values that were previously in this object are destroyed and the
resized matrix starts off with all zero values.
Integer error code, set to 0 if successful.
"""
return _Epetra.SerialSymDenseMatrix_Shape(self, *args)
def Reshape(self, *args):
"""
Reshape(self, int NumRows, int NumCols) -> int
Reshape(self, int NumRowsCols) -> int
int
Epetra_SerialSymDenseMatrix::Reshape(int NumRowsCols)
Reshape a Epetra_SerialSymDenseMatrix object.
Parameters:
-----------
In: NumRowsCols - Number of rows and columns in object.
Allows user to define the dimensions of a Epetra_SerialSymDenseMatrix
at any point. This function can be called at any point after
construction. Any values that were previously in this object are
copied into the new shape. If the new shape is smaller than the
original, the upper left portion of the original matrix (the principal
submatrix) is copied to the new matrix.
Integer error code, set to 0 if successful.
"""
return _Epetra.SerialSymDenseMatrix_Reshape(self, *args)
def SetLower(self):
"""
SetLower(self)
void
Epetra_SerialSymDenseMatrix::SetLower()
Specify that the lower triangle of the this matrix should be used.
"""
return _Epetra.SerialSymDenseMatrix_SetLower(self)
def SetUpper(self):
"""
SetUpper(self)
void
Epetra_SerialSymDenseMatrix::SetUpper()
Specify that the upper triangle of the this matrix should be used.
"""
return _Epetra.SerialSymDenseMatrix_SetUpper(self)
def Upper(self):
"""
Upper(self) -> bool
bool
Epetra_SerialSymDenseMatrix::Upper() const
Returns true if upper triangle of this matrix has and will be used.
"""
return _Epetra.SerialSymDenseMatrix_Upper(self)
def UPLO(self):
"""
UPLO(self) -> char
char
Epetra_SerialSymDenseMatrix::UPLO() const
Returns character value of UPLO used by LAPACK routines.
"""
return _Epetra.SerialSymDenseMatrix_UPLO(self)
def Scale(self, *args):
"""
Scale(self, double ScalarA) -> int
int
Epetra_SerialSymDenseMatrix::Scale(double ScalarA)
Inplace scalar-matrix product A = a A.
Scale a matrix, entry-by-entry using the value ScalarA. This method is
sensitive to the UPLO() parameter.
Parameters:
-----------
ScalarA: (In) Scalar to multiply with A.
Integer error code, set to 0 if successful.
"""
return _Epetra.SerialSymDenseMatrix_Scale(self, *args)
def NormOne(self):
"""
NormOne(self) -> double
double
Epetra_SerialSymDenseMatrix::NormOne() const
Computes the 1-Norm of the this matrix.
Integer error code, set to 0 if successful.
"""
return _Epetra.SerialSymDenseMatrix_NormOne(self)
def NormInf(self):
"""
NormInf(self) -> double
double
Epetra_SerialSymDenseMatrix::NormInf() const
Computes the Infinity-Norm of the this matrix.
"""
return _Epetra.SerialSymDenseMatrix_NormInf(self)
def CopyUPLOMat(self, *args):
"""
CopyUPLOMat(self, bool Upper, double A, int LDA, int NumRows)
void
Epetra_SerialSymDenseMatrix::CopyUPLOMat(bool Upper, double *A, int
LDA, int NumRows)
"""
return _Epetra.SerialSymDenseMatrix_CopyUPLOMat(self, *args)
def OneNorm(self):
"""
OneNorm(self) -> double
double
Epetra_SerialSymDenseMatrix::OneNorm() const
Computes the 1-Norm of the this matrix (identical to NormOne()
method).
Integer error code, set to 0 if successful.
"""
return _Epetra.SerialSymDenseMatrix_OneNorm(self)
def InfNorm(self):
"""
InfNorm(self) -> double
double
Epetra_SerialSymDenseMatrix::InfNorm() const
Computes the Infinity-Norm of the this matrix (identical to NormInf()
method).
"""
return _Epetra.SerialSymDenseMatrix_InfNorm(self)
SerialSymDenseMatrix_swigregister = _Epetra.SerialSymDenseMatrix_swigregister
SerialSymDenseMatrix_swigregister(SerialSymDenseMatrix)
class SerialDenseVector(_object):
"""Proxy of C++ SerialDenseVector class"""
__swig_setmethods__ = {}
__setattr__ = lambda self, name, value: _swig_setattr(self, SerialDenseVector, name, value)
__swig_getmethods__ = {}
__getattr__ = lambda self, name: _swig_getattr(self, SerialDenseVector, name)
__repr__ = _swig_repr
def __init__(self, *args):
"""__init__(self) -> SerialDenseVector"""
this = _Epetra.new_SerialDenseVector(*args)
try: self.this.append(this)
except: self.this = this
__swig_destroy__ = _Epetra.delete_SerialDenseVector
__del__ = lambda self : None;
SerialDenseVector_swigregister = _Epetra.SerialDenseVector_swigregister
SerialDenseVector_swigregister(SerialDenseVector)
class Epetra_SerialDenseVector(Epetra_SerialDenseMatrix):
"""
Epetra_SerialDenseVector: A class for constructing and using dense
vectors.
The Epetra_SerialDenseVector class enables the construction and use of
real-valued, double- precision dense vectors. It is built on the BLAS
and LAPACK and derives from the Epetra_SerialDenseMatrix class.
The Epetra_SerialDenseVector class is intended to provide convenient
vector notation but derives all signficant functionality from
Epetra_SerialDenseMatrix.
Constructing Epetra_SerialDenseVector Objects
There are four Epetra_SerialDenseVector constructors. The first
constructs a zero-length object which should be made to appropriate
length using the Size() or Resize() functions and then filled with the
[] or () operators. The second constructs an object sized to the
dimension specified, which should be filled with the [] or ()
operators. The third is a constructor that accepts user data as a 1D
array, and the fourth is a copy constructor. The third constructor has
two data access modes (specified by the Epetra_DataAccess argument):
Copy mode - Allocates memory and makes a copy of the user-provided
data. In this case, the user data is not needed after construction.
View mode - Creates a "view" of the user data. In this case, the
user data is required to remain intact for the life of the object.
WARNING: View mode is extremely dangerous from a data hiding
perspective. Therefore, we strongly encourage users to develop code
using Copy mode first and only use the View mode in a secondary
optimization phase. Extracting Data from Epetra_SerialDenseVector
Objects
Once a Epetra_SerialDenseVector is constructed, it is possible to view
the data via access functions.
WARNING: Use of these access functions cam be extremely dangerous
from a data hiding perspective. The final useful function is Flops().
Each Epetra_SerialDenseVector object keep track of the number of
serial floating point operations performed using the specified object
as the this argument to the function. The Flops() function returns
this number as a double precision number. Using this information, in
conjunction with the Epetra_Time class, one can get accurate parallel
performance numbers.
C++ includes: Epetra_SerialDenseVector.h
"""
__swig_setmethods__ = {}
for _s in [Epetra_SerialDenseMatrix]: __swig_setmethods__.update(getattr(_s,'__swig_setmethods__',{}))
__setattr__ = lambda self, name, value: _swig_setattr(self, Epetra_SerialDenseVector, name, value)
__swig_getmethods__ = {}
for _s in [Epetra_SerialDenseMatrix]: __swig_getmethods__.update(getattr(_s,'__swig_getmethods__',{}))
__getattr__ = lambda self, name: _swig_getattr(self, Epetra_SerialDenseVector, name)
__repr__ = _swig_repr
def __init__(self, *args):
"""
__init__(self) -> Epetra_SerialDenseVector
__init__(self, int Length) -> Epetra_SerialDenseVector
__init__(self, Epetra_DataAccess CV, double Values, int Length) -> Epetra_SerialDenseVector
__init__(self, Epetra_SerialDenseVector Source) -> Epetra_SerialDenseVector
Epetra_SerialDenseVector::Epetra_SerialDenseVector(const
Epetra_SerialDenseVector &Source)
Epetra_SerialDenseVector copy constructor.
"""
this = _Epetra.new_Epetra_SerialDenseVector(*args)
try: self.this.append(this)
except: self.this = this
__swig_destroy__ = _Epetra.delete_Epetra_SerialDenseVector
__del__ = lambda self : None;
def Size(self, *args):
"""
Size(self, int Length_in) -> int
int
Epetra_SerialDenseVector::Size(int Length_in)
Set length of a Epetra_SerialDenseVector object; init values to zero.
Parameters:
-----------
In: Length - Length of vector object.
Allows user to define the dimension of a Epetra_SerialDenseVector.
This function can be called at any point after construction. Any
values that were previously in this object are destroyed and the
resized vector starts off with all zero values.
Integer error code, set to 0 if successful.
"""
return _Epetra.Epetra_SerialDenseVector_Size(self, *args)
def Resize(self, *args):
"""
Resize(self, int Length_in) -> int
int
Epetra_SerialDenseVector::Resize(int Length_in)
Resize a Epetra_SerialDenseVector object.
Parameters:
-----------
In: Length - Length of vector object.
Allows user to define the dimension of a Epetra_SerialDenseVector.
This function can be called at any point after construction. Any
values that were previously in this object are copied into the new
size. If the new shape is smaller than the original, the first Length
values are copied to the new vector.
Integer error code, set to 0 if successful.
"""
return _Epetra.Epetra_SerialDenseVector_Resize(self, *args)
def __call__(self, *args):
"""__call__(self, int RowIndex, int ColIndex) -> double"""
return _Epetra.Epetra_SerialDenseVector___call__(self, *args)
def Random(self):
"""
Random(self) -> int
int
Epetra_SerialDenseVector::Random()
Set vector values to random numbers.
SerialDenseVector uses the random number generator provided by
Epetra_Util. The vector values will be set to random values on the
interval (-1.0, 1.0).
Integer error code, set to 0 if successful.
"""
return _Epetra.Epetra_SerialDenseVector_Random(self)
def Dot(self, *args):
"""
Dot(self, Epetra_SerialDenseVector x) -> double
double
Epetra_SerialDenseVector::Dot(const Epetra_SerialDenseVector &x) const
Compute 1-norm of each vector in multi-vector.
Parameters:
-----------
x: (In) Input vector x.
Dot-product of the this vector and x.
"""
return _Epetra.Epetra_SerialDenseVector_Dot(self, *args)
def Norm1(self):
"""
Norm1(self) -> double
double
Epetra_SerialDenseVector::Norm1() const
Compute 1-norm of each vector in multi-vector.
1-norm of the vector.
"""
return _Epetra.Epetra_SerialDenseVector_Norm1(self)
def Norm2(self):
"""
Norm2(self) -> double
double
Epetra_SerialDenseVector::Norm2() const
Compute 2-norm of each vector in multi-vector.
Parameters:
-----------
Out:
2-norm of the vector.
"""
return _Epetra.Epetra_SerialDenseVector_Norm2(self)
def NormInf(self):
"""
NormInf(self) -> double
double
Epetra_SerialDenseVector::NormInf() const
Compute Inf-norm of each vector in multi-vector.
Infinity-norm of the vector.
"""
return _Epetra.Epetra_SerialDenseVector_NormInf(self)
def Length(self):
"""
Length(self) -> int
int
Epetra_SerialDenseVector::Length() const
Returns length of vector.
"""
return _Epetra.Epetra_SerialDenseVector_Length(self)
def Values(self):
"""
Values(self) -> double
double*
Epetra_SerialDenseVector::Values() const
Returns pointer to the values in vector.
"""
return _Epetra.Epetra_SerialDenseVector_Values(self)
def CV(self):
"""
CV(self) -> Epetra_DataAccess
Epetra_DataAccess Epetra_SerialDenseVector::CV() const
Returns the data access mode of the this vector.
"""
return _Epetra.Epetra_SerialDenseVector_CV(self)
Epetra_SerialDenseVector_swigregister = _Epetra.Epetra_SerialDenseVector_swigregister
Epetra_SerialDenseVector_swigregister(Epetra_SerialDenseVector)
class SerialDenseSolver(CompObject,BLAS,LAPACK,Object):
"""
Epetra_SerialDenseSolver: A class for solving dense linear problems.
The Epetra_SerialDenseSolver class enables the definition, in terms of
Epetra_SerialDenseMatrix and Epetra_SerialDenseVector objects, of a
dense linear problem, followed by the solution of that problem via the
most sophisticated techniques available in LAPACK.
The Epetra_SerialDenseSolver class is intended to provide full-
featured support for solving linear problems for general dense
rectangular (or square) matrices. It is written on top of BLAS and
LAPACK and thus has excellent performance and numerical capabilities.
Using this class, one can either perform simple factorizations and
solves or apply all the tricks available in LAPACK to get the best
possible solution for very ill-conditioned problems.
Epetra_SerialDenseSolver vs. Epetra_LAPACK
The Epetra_LAPACK class provides access to most of the same
functionality as Epetra_SerialDenseSolver. The primary difference is
that Epetra_LAPACK is a "thin" layer on top of LAPACK and
Epetra_SerialDenseSolver attempts to provide easy access to the more
sophisticated aspects of solving dense linear and eigensystems. When
you should use Epetra_LAPACK: If you are simply looking for a
convenient wrapper around the Fortran LAPACK routines and you have a
well-conditioned problem, you should probably use Epetra_LAPACK
directly.
When you should use Epetra_SerialDenseSolver: If you want to (or
potentially want to) solve ill-conditioned problems or want to work
with a more object-oriented interface, you should probably use
Epetra_SerialDenseSolver.
Constructing Epetra_SerialDenseSolver Objects
There is a single Epetra_SerialDenseSolver constructor. However, the
matrix, right hand side and solution vectors must be set prior to
executing most methods in this class.
Setting vectors used for linear solves
The matrix A, the left hand side X and the right hand side B (when
solving AX = B, for X), can be set by appropriate set methods. Each of
these three objects must be an Epetra_SerialDenseMatrix or and
Epetra_SerialDenseVector object. The set methods are as follows:
SetMatrix() - Sets the matrix.
SetVectors() - Sets the left and right hand side vector(s).
Vector and Utility Functions
Once a Epetra_SerialDenseSolver is constructed, several mathematical
functions can be applied to the object. Specifically: Factorizations.
Solves.
Condition estimates.
Equilibration.
Norms.
Counting floating point operations The Epetra_SerialDenseSolver class
has Epetra_CompObject as a base class. Thus, floating point operations
are counted and accumulated in the Epetra_Flop object (if any) that
was set using the SetFlopCounter() method in the Epetra_CompObject
base class.
Strategies for Solving Linear Systems In many cases, linear systems
can be accurately solved by simply computing the LU factorization of
the matrix and then performing a forward back solve with a given set
of right hand side vectors. However, in some instances, the
factorization may be very poorly conditioned and this simple approach
may not work. In these situations, equilibration and iterative
refinement may improve the accuracy, or prevent a breakdown in the
factorization.
Epetra_SerialDenseSolver will use equilibration with the factorization
if, once the object is constructed and before it is factored, you call
the function FactorWithEquilibration(true) to force equilibration to
be used. If you are uncertain if equilibration should be used, you may
call the function ShouldEquilibrate() which will return true if
equilibration could possibly help. ShouldEquilibrate() uses guidelines
specified in the LAPACK User Guide, namely if SCOND < 0.1 and AMAX <
Underflow or AMAX > Overflow, to determine if equilibration might be
useful.
Epetra_SerialDenseSolver will use iterative refinement after a
forward/back solve if you call SolveToRefinedSolution(true). It will
also compute forward and backward error estimates if you call
EstimateSolutionErrors(true). Access to the forward (back) error
estimates is available via FERR() ( BERR()).
Examples using Epetra_SerialDenseSolver can be found in the Epetra
test directories.
C++ includes: Epetra_SerialDenseSolver.h
"""
__swig_setmethods__ = {}
for _s in [CompObject,BLAS,LAPACK,Object]: __swig_setmethods__.update(getattr(_s,'__swig_setmethods__',{}))
__setattr__ = lambda self, name, value: _swig_setattr(self, SerialDenseSolver, name, value)
__swig_getmethods__ = {}
for _s in [CompObject,BLAS,LAPACK,Object]: __swig_getmethods__.update(getattr(_s,'__swig_getmethods__',{}))
__getattr__ = lambda self, name: _swig_getattr(self, SerialDenseSolver, name)
__repr__ = _swig_repr
def __init__(self):
"""
__init__(self) -> SerialDenseSolver
Epetra_SerialDenseSolver::Epetra_SerialDenseSolver()
Default constructor; matrix should be set using SetMatrix(), LHS and
RHS set with SetVectors().
"""
this = _Epetra.new_SerialDenseSolver()
try: self.this.append(this)
except: self.this = this
__swig_destroy__ = _Epetra.delete_SerialDenseSolver
__del__ = lambda self : None;
def SetMatrix(self, *args):
"""
SetMatrix(self, Epetra_SerialDenseMatrix A) -> int
int
Epetra_SerialDenseSolver::SetMatrix(Epetra_SerialDenseMatrix &A)
Sets the pointers for coefficient matrix.
"""
return _Epetra.SerialDenseSolver_SetMatrix(self, *args)
def SetVectors(self, *args):
"""
SetVectors(self, Epetra_SerialDenseMatrix X, Epetra_SerialDenseMatrix B) -> int
int
Epetra_SerialDenseSolver::SetVectors(Epetra_SerialDenseMatrix &X,
Epetra_SerialDenseMatrix &B)
Sets the pointers for left and right hand side vector(s).
Row dimension of X must match column dimension of matrix A, row
dimension of B must match row dimension of A. X and B must have the
same dimensions.
"""
return _Epetra.SerialDenseSolver_SetVectors(self, *args)
def FactorWithEquilibration(self, *args):
"""
FactorWithEquilibration(self, bool Flag)
void
Epetra_SerialDenseSolver::FactorWithEquilibration(bool Flag)
Causes equilibration to be called just before the matrix factorization
as part of the call to Factor.
This function must be called before the factorization is performed.
"""
return _Epetra.SerialDenseSolver_FactorWithEquilibration(self, *args)
def SolveWithTranspose(self, *args):
"""
SolveWithTranspose(self, bool Flag)
void Epetra_SerialDenseSolver::SolveWithTranspose(bool Flag)
If Flag is true, causes all subsequent function calls to work with the
transpose of this matrix, otherwise not.
"""
return _Epetra.SerialDenseSolver_SolveWithTranspose(self, *args)
def SolveToRefinedSolution(self, *args):
"""
SolveToRefinedSolution(self, bool Flag)
void
Epetra_SerialDenseSolver::SolveToRefinedSolution(bool Flag)
Causes all solves to compute solution to best ability using iterative
refinement.
"""
return _Epetra.SerialDenseSolver_SolveToRefinedSolution(self, *args)
def EstimateSolutionErrors(self, *args):
"""
EstimateSolutionErrors(self, bool Flag)
void
Epetra_SerialDenseSolver::EstimateSolutionErrors(bool Flag)
Causes all solves to estimate the forward and backward solution error.
Error estimates will be in the arrays FERR and BERR, resp, after the
solve step is complete. These arrays are accessible via the FERR() and
BERR() access functions.
"""
return _Epetra.SerialDenseSolver_EstimateSolutionErrors(self, *args)
def Factor(self):
"""
Factor(self) -> int
int
Epetra_SerialDenseSolver::Factor(void)
Computes the in-place LU factorization of the matrix using the LAPACK
routine DGETRF.
Integer error code, set to 0 if successful.
"""
return _Epetra.SerialDenseSolver_Factor(self)
def Solve(self):
"""
Solve(self) -> int
int
Epetra_SerialDenseSolver::Solve(void)
Computes the solution X to AX = B for the this matrix and the B
provided to SetVectors()..
Integer error code, set to 0 if successful.
"""
return _Epetra.SerialDenseSolver_Solve(self)
def Invert(self):
"""
Invert(self) -> int
int
Epetra_SerialDenseSolver::Invert(void)
Inverts the this matrix.
Integer error code, set to 0 if successful. Otherwise returns the
LAPACK error code INFO.
"""
return _Epetra.SerialDenseSolver_Invert(self)
def ComputeEquilibrateScaling(self):
"""
ComputeEquilibrateScaling(self) -> int
int
Epetra_SerialDenseSolver::ComputeEquilibrateScaling(void)
Computes the scaling vector S(i) = 1/sqrt(A(i,i)) of the this matrix.
Integer error code, set to 0 if successful. Otherwise returns the
LAPACK error code INFO.
"""
return _Epetra.SerialDenseSolver_ComputeEquilibrateScaling(self)
def EquilibrateMatrix(self):
"""
EquilibrateMatrix(self) -> int
int Epetra_SerialDenseSolver::EquilibrateMatrix(void)
Equilibrates the this matrix.
Integer error code, set to 0 if successful. Otherwise returns the
LAPACK error code INFO.
"""
return _Epetra.SerialDenseSolver_EquilibrateMatrix(self)
def EquilibrateRHS(self):
"""
EquilibrateRHS(self) -> int
int
Epetra_SerialDenseSolver::EquilibrateRHS(void)
Equilibrates the current RHS.
Integer error code, set to 0 if successful. Otherwise returns the
LAPACK error code INFO.
"""
return _Epetra.SerialDenseSolver_EquilibrateRHS(self)
def ApplyRefinement(self):
"""
ApplyRefinement(self) -> int
int
Epetra_SerialDenseSolver::ApplyRefinement(void)
Apply Iterative Refinement.
Integer error code, set to 0 if successful. Otherwise returns the
LAPACK error code INFO.
"""
return _Epetra.SerialDenseSolver_ApplyRefinement(self)
def UnequilibrateLHS(self):
"""
UnequilibrateLHS(self) -> int
int Epetra_SerialDenseSolver::UnequilibrateLHS(void)
Unscales the solution vectors if equilibration was used to solve the
system.
Integer error code, set to 0 if successful. Otherwise returns the
LAPACK error code INFO.
"""
return _Epetra.SerialDenseSolver_UnequilibrateLHS(self)
def Transpose(self):
"""
Transpose(self) -> bool
bool
Epetra_SerialDenseSolver::Transpose()
Returns true if transpose of this matrix has and will be used.
"""
return _Epetra.SerialDenseSolver_Transpose(self)
def Factored(self):
"""
Factored(self) -> bool
bool
Epetra_SerialDenseSolver::Factored()
Returns true if matrix is factored (factor available via AF() and
LDAF()).
"""
return _Epetra.SerialDenseSolver_Factored(self)
def A_Equilibrated(self):
"""
A_Equilibrated(self) -> bool
bool
Epetra_SerialDenseSolver::A_Equilibrated()
Returns true if factor is equilibrated (factor available via AF() and
LDAF()).
"""
return _Epetra.SerialDenseSolver_A_Equilibrated(self)
def B_Equilibrated(self):
"""
B_Equilibrated(self) -> bool
bool
Epetra_SerialDenseSolver::B_Equilibrated()
Returns true if RHS is equilibrated (RHS available via B() and LDB()).
"""
return _Epetra.SerialDenseSolver_B_Equilibrated(self)
def ShouldEquilibrate(self):
"""
ShouldEquilibrate(self) -> bool
virtual bool Epetra_SerialDenseSolver::ShouldEquilibrate()
Returns true if the LAPACK general rules for equilibration suggest you
should equilibrate the system.
"""
return _Epetra.SerialDenseSolver_ShouldEquilibrate(self)
def SolutionErrorsEstimated(self):
"""
SolutionErrorsEstimated(self) -> bool
bool
Epetra_SerialDenseSolver::SolutionErrorsEstimated()
Returns true if forward and backward error estimated have been
computed (available via FERR() and BERR()).
"""
return _Epetra.SerialDenseSolver_SolutionErrorsEstimated(self)
def Inverted(self):
"""
Inverted(self) -> bool
bool
Epetra_SerialDenseSolver::Inverted()
Returns true if matrix inverse has been computed (inverse available
via AF() and LDAF()).
"""
return _Epetra.SerialDenseSolver_Inverted(self)
def ReciprocalConditionEstimated(self):
"""
ReciprocalConditionEstimated(self) -> bool
bool
Epetra_SerialDenseSolver::ReciprocalConditionEstimated()
Returns true if the condition number of the this matrix has been
computed (value available via ReciprocalConditionEstimate()).
"""
return _Epetra.SerialDenseSolver_ReciprocalConditionEstimated(self)
def Solved(self):
"""
Solved(self) -> bool
bool
Epetra_SerialDenseSolver::Solved()
Returns true if the current set of vectors has been solved.
"""
return _Epetra.SerialDenseSolver_Solved(self)
def SolutionRefined(self):
"""
SolutionRefined(self) -> bool
bool Epetra_SerialDenseSolver::SolutionRefined()
Returns true if the current set of vectors has been refined.
"""
return _Epetra.SerialDenseSolver_SolutionRefined(self)
def Matrix(self):
"""
Matrix(self) -> Epetra_SerialDenseMatrix
Epetra_SerialDenseMatrix* Epetra_SerialDenseSolver::Matrix() const
Returns pointer to current matrix.
"""
return _Epetra.SerialDenseSolver_Matrix(self)
def FactoredMatrix(self):
"""
FactoredMatrix(self) -> Epetra_SerialDenseMatrix
Epetra_SerialDenseMatrix* Epetra_SerialDenseSolver::FactoredMatrix()
const
Returns pointer to factored matrix (assuming factorization has been
performed).
"""
return _Epetra.SerialDenseSolver_FactoredMatrix(self)
def LHS(self):
"""
LHS(self) -> Epetra_SerialDenseMatrix
Epetra_SerialDenseMatrix* Epetra_SerialDenseSolver::LHS() const
Returns pointer to current LHS.
"""
return _Epetra.SerialDenseSolver_LHS(self)
def RHS(self):
"""
RHS(self) -> Epetra_SerialDenseMatrix
Epetra_SerialDenseMatrix* Epetra_SerialDenseSolver::RHS() const
Returns pointer to current RHS.
"""
return _Epetra.SerialDenseSolver_RHS(self)
def M(self):
"""
M(self) -> int
int
Epetra_SerialDenseSolver::M() const
Returns row dimension of system.
"""
return _Epetra.SerialDenseSolver_M(self)
def N(self):
"""
N(self) -> int
int
Epetra_SerialDenseSolver::N() const
Returns column dimension of system.
"""
return _Epetra.SerialDenseSolver_N(self)
def LDA(self):
"""
LDA(self) -> int
int
Epetra_SerialDenseSolver::LDA() const
Returns the leading dimension of the this matrix.
"""
return _Epetra.SerialDenseSolver_LDA(self)
def LDB(self):
"""
LDB(self) -> int
int
Epetra_SerialDenseSolver::LDB() const
Returns the leading dimension of the RHS.
"""
return _Epetra.SerialDenseSolver_LDB(self)
def NRHS(self):
"""
NRHS(self) -> int
int
Epetra_SerialDenseSolver::NRHS() const
Returns the number of current right hand sides and solution vectors.
"""
return _Epetra.SerialDenseSolver_NRHS(self)
def LDX(self):
"""
LDX(self) -> int
int
Epetra_SerialDenseSolver::LDX() const
Returns the leading dimension of the solution.
"""
return _Epetra.SerialDenseSolver_LDX(self)
def LDAF(self):
"""
LDAF(self) -> int
int
Epetra_SerialDenseSolver::LDAF() const
Returns the leading dimension of the factored matrix.
"""
return _Epetra.SerialDenseSolver_LDAF(self)
def ANORM(self):
"""
ANORM(self) -> double
double
Epetra_SerialDenseSolver::ANORM() const
Returns the 1-Norm of the this matrix (returns -1 if not yet
computed).
"""
return _Epetra.SerialDenseSolver_ANORM(self)
def RCOND(self):
"""
RCOND(self) -> double
double
Epetra_SerialDenseSolver::RCOND() const
Returns the reciprocal of the condition number of the this matrix
(returns -1 if not yet computed).
"""
return _Epetra.SerialDenseSolver_RCOND(self)
def ROWCND(self):
"""
ROWCND(self) -> double
double
Epetra_SerialDenseSolver::ROWCND() const
Ratio of smallest to largest row scale factors for the this matrix
(returns -1 if not yet computed).
If ROWCND() is >= 0.1 and AMAX() is not close to overflow or
underflow, then equilibration is not needed.
"""
return _Epetra.SerialDenseSolver_ROWCND(self)
def COLCND(self):
"""
COLCND(self) -> double
double
Epetra_SerialDenseSolver::COLCND() const
Ratio of smallest to largest column scale factors for the this matrix
(returns -1 if not yet computed).
If COLCND() is >= 0.1 then equilibration is not needed.
"""
return _Epetra.SerialDenseSolver_COLCND(self)
def AMAX(self):
"""
AMAX(self) -> double
double
Epetra_SerialDenseSolver::AMAX() const
Returns the absolute value of the largest entry of the this matrix
(returns -1 if not yet computed).
"""
return _Epetra.SerialDenseSolver_AMAX(self)
def IPIV(self):
"""
IPIV(self) -> PyObject
int*
Epetra_SerialDenseSolver::IPIV() const
Returns pointer to pivot vector (if factorization has been computed),
zero otherwise.
"""
return _Epetra.SerialDenseSolver_IPIV(self)
def A(self):
"""
A(self) -> PyObject
double*
Epetra_SerialDenseSolver::A() const
Returns pointer to the this matrix.
"""
return _Epetra.SerialDenseSolver_A(self)
def B(self):
"""
B(self) -> PyObject
double*
Epetra_SerialDenseSolver::B() const
Returns pointer to current RHS.
"""
return _Epetra.SerialDenseSolver_B(self)
def X(self):
"""
X(self) -> PyObject
double*
Epetra_SerialDenseSolver::X() const
Returns pointer to current solution.
"""
return _Epetra.SerialDenseSolver_X(self)
def AF(self):
"""
AF(self) -> PyObject
double*
Epetra_SerialDenseSolver::AF() const
Returns pointer to the factored matrix (may be the same as A() if
factorization done in place).
"""
return _Epetra.SerialDenseSolver_AF(self)
def FERR(self):
"""
FERR(self) -> PyObject
double*
Epetra_SerialDenseSolver::FERR() const
Returns a pointer to the forward error estimates computed by LAPACK.
"""
return _Epetra.SerialDenseSolver_FERR(self)
def BERR(self):
"""
BERR(self) -> PyObject
double*
Epetra_SerialDenseSolver::BERR() const
Returns a pointer to the backward error estimates computed by LAPACK.
"""
return _Epetra.SerialDenseSolver_BERR(self)
def R(self):
"""
R(self) -> PyObject
double*
Epetra_SerialDenseSolver::R() const
Returns a pointer to the row scaling vector used for equilibration.
"""
return _Epetra.SerialDenseSolver_R(self)
def C(self):
"""
C(self) -> PyObject
double*
Epetra_SerialDenseSolver::C() const
Returns a pointer to the column scale vector used for equilibration.
"""
return _Epetra.SerialDenseSolver_C(self)
def ReciprocalConditionEstimate(self):
"""
ReciprocalConditionEstimate(self) -> double
int
Epetra_SerialDenseSolver::ReciprocalConditionEstimate(double &Value)
Returns the reciprocal of the 1-norm condition number of the this
matrix.
Parameters:
-----------
Value: Out On return contains the reciprocal of the 1-norm condition
number of the this matrix.
Integer error code, set to 0 if successful. Otherwise returns the
LAPACK error code INFO.
"""
return _Epetra.SerialDenseSolver_ReciprocalConditionEstimate(self)
SerialDenseSolver_swigregister = _Epetra.SerialDenseSolver_swigregister
SerialDenseSolver_swigregister(SerialDenseSolver)
class SerialDenseSVD(SerialDenseOperator,CompObject,Object,BLAS,LAPACK):
"""
Epetra_SerialDenseSVD: A class for SVDing dense linear problems.
The Epetra_SerialDenseSVD class enables the definition, in terms of
Epetra_SerialDenseMatrix and Epetra_SerialDenseVector objects, of a
dense linear problem, followed by the solution of that problem via the
most sophisticated techniques available in LAPACK.
The Epetra_SerialDenseSVD class is intended to provide full-featured
support for solving linear problems for general dense rectangular (or
square) matrices. It is written on top of BLAS and LAPACK and thus has
excellent performance and numerical capabilities. Using this class,
one can either perform simple factorizations and solves or apply all
the tricks available in LAPACK to get the best possible solution for
very ill-conditioned problems.
Epetra_SerialDenseSVD vs. Epetra_LAPACK
The Epetra_LAPACK class provides access to most of the same
functionality as Epetra_SerialDenseSolver. The primary difference is
that Epetra_LAPACK is a "thin" layer on top of LAPACK and
Epetra_SerialDenseSolver attempts to provide easy access to the more
sophisticated aspects of solving dense linear and eigensystems. When
you should use Epetra_LAPACK: If you are simply looking for a
convenient wrapper around the Fortran LAPACK routines and you have a
well-conditioned problem, you should probably use Epetra_LAPACK
directly.
When you should use Epetra_SerialDenseSolver: If you want to (or
potentially want to) solve ill-conditioned problems or want to work
with a more object-oriented interface, you should probably use
Epetra_SerialDenseSolver.
Constructing Epetra_SerialDenseSVD Objects
There is a single Epetra_SerialDenseSVD constructor. However, the
matrix, right hand side and solution vectors must be set prior to
executing most methods in this class.
Setting vectors used for linear solves
The matrix A, the left hand side X and the right hand side B (when
solving AX = B, for X), can be set by appropriate set methods. Each of
these three objects must be an Epetra_SerialDenseMatrix or and
Epetra_SerialDenseVector object. The set methods are as follows:
SetMatrix() - Sets the matrix.
SetVectors() - Sets the left and right hand side vector(s).
Vector and Utility Functions
Once a Epetra_SerialDenseSVD is constructed, several mathematical
functions can be applied to the object. Specifically: Factorizations.
Solves.
Condition estimates.
Norms.
Counting floating point operations The Epetra_SerialDenseSVD class has
Epetra_CompObject as a base class. Thus, floating point operations are
counted and accumulated in the Epetra_Flop object (if any) that was
set using the SetFlopCounter() method in the Epetra_CompObject base
class.
Examples using Epetra_SerialDenseSVD can be found in the Epetra test
directories.
C++ includes: Epetra_SerialDenseSVD.h
"""
__swig_setmethods__ = {}
for _s in [SerialDenseOperator,CompObject,Object,BLAS,LAPACK]: __swig_setmethods__.update(getattr(_s,'__swig_setmethods__',{}))
__setattr__ = lambda self, name, value: _swig_setattr(self, SerialDenseSVD, name, value)
__swig_getmethods__ = {}
for _s in [SerialDenseOperator,CompObject,Object,BLAS,LAPACK]: __swig_getmethods__.update(getattr(_s,'__swig_getmethods__',{}))
__getattr__ = lambda self, name: _swig_getattr(self, SerialDenseSVD, name)
__repr__ = _swig_repr
def __init__(self):
"""
__init__(self) -> SerialDenseSVD
Epetra_SerialDenseSVD::Epetra_SerialDenseSVD()
Default constructor; matrix should be set using SetMatrix(), LHS and
RHS set with SetVectors().
"""
this = _Epetra.new_SerialDenseSVD()
try: self.this.append(this)
except: self.this = this
__swig_destroy__ = _Epetra.delete_SerialDenseSVD
__del__ = lambda self : None;
def SetMatrix(self, *args):
"""
SetMatrix(self, Epetra_SerialDenseMatrix A) -> int
int
Epetra_SerialDenseSVD::SetMatrix(Epetra_SerialDenseMatrix &A)
Sets the pointers for coefficient matrix.
"""
return _Epetra.SerialDenseSVD_SetMatrix(self, *args)
def SetVectors(self, *args):
"""
SetVectors(self, Epetra_SerialDenseMatrix X, Epetra_SerialDenseMatrix B) -> int
int
Epetra_SerialDenseSVD::SetVectors(Epetra_SerialDenseMatrix &X,
Epetra_SerialDenseMatrix &B)
Sets the pointers for left and right hand side vector(s).
Row dimension of X must match column dimension of matrix A, row
dimension of B must match row dimension of A. X and B must have the
same dimensions.
"""
return _Epetra.SerialDenseSVD_SetVectors(self, *args)
def SolveWithTranspose(self, *args):
"""
SolveWithTranspose(self, bool Flag)
void Epetra_SerialDenseSVD::SolveWithTranspose(bool Flag)
Causes equilibration to be called just before the matrix factorization
as part of the call to Factor.
This function must be called before the factorization is performed. If
Flag is true, causes all subsequent function calls to work with the
transpose of this matrix, otherwise not.
"""
return _Epetra.SerialDenseSVD_SolveWithTranspose(self, *args)
def Factor(self):
"""
Factor(self) -> int
int
Epetra_SerialDenseSVD::Factor(void)
"""
return _Epetra.SerialDenseSVD_Factor(self)
def Solve(self):
"""
Solve(self) -> int
int
Epetra_SerialDenseSVD::Solve(void)
Computes the solution X to AX = B for the this matrix and the B
provided to SetVectors()..
Inverse of Matrix must be formed Integer error code, set to 0 if
successful.
"""
return _Epetra.SerialDenseSVD_Solve(self)
def Invert(self, rthresh = 0.0, athresh = 0.0):
"""
Invert(self, double rthresh = 0.0, double athresh = 0.0) -> int
Invert(self, double rthresh = 0.0) -> int
Invert(self) -> int
int
Epetra_SerialDenseSVD::Invert(double rthresh=0.0, double athresh=0.0)
Inverts the this matrix.
Integer error code, set to 0 if successful. Otherwise returns the
LAPACK error code INFO.
"""
return _Epetra.SerialDenseSVD_Invert(self, rthresh, athresh)
def Transpose(self):
"""
Transpose(self) -> bool
bool
Epetra_SerialDenseSVD::Transpose()
Returns true if transpose of this matrix has and will be used.
"""
return _Epetra.SerialDenseSVD_Transpose(self)
def Factored(self):
"""
Factored(self) -> bool
bool
Epetra_SerialDenseSVD::Factored()
Returns true if matrix is factored (factor available via AF() and
LDAF()).
"""
return _Epetra.SerialDenseSVD_Factored(self)
def Inverted(self):
"""
Inverted(self) -> bool
bool
Epetra_SerialDenseSVD::Inverted()
Returns true if matrix inverse has been computed (inverse available
via AF() and LDAF()).
"""
return _Epetra.SerialDenseSVD_Inverted(self)
def Solved(self):
"""
Solved(self) -> bool
bool
Epetra_SerialDenseSVD::Solved()
Returns true if the current set of vectors has been solved.
"""
return _Epetra.SerialDenseSVD_Solved(self)
def Matrix(self):
"""
Matrix(self) -> Epetra_SerialDenseMatrix
Epetra_SerialDenseMatrix* Epetra_SerialDenseSVD::Matrix() const
Returns pointer to current matrix.
"""
return _Epetra.SerialDenseSVD_Matrix(self)
def InvertedMatrix(self):
"""
InvertedMatrix(self) -> Epetra_SerialDenseMatrix
Epetra_SerialDenseMatrix* Epetra_SerialDenseSVD::InvertedMatrix()
const
Returns pointer to inverted matrix (assuming inverse has been
performed).
"""
return _Epetra.SerialDenseSVD_InvertedMatrix(self)
def LHS(self):
"""
LHS(self) -> Epetra_SerialDenseMatrix
Epetra_SerialDenseMatrix* Epetra_SerialDenseSVD::LHS() const
Returns pointer to current LHS.
"""
return _Epetra.SerialDenseSVD_LHS(self)
def RHS(self):
"""
RHS(self) -> Epetra_SerialDenseMatrix
Epetra_SerialDenseMatrix* Epetra_SerialDenseSVD::RHS() const
Returns pointer to current RHS.
"""
return _Epetra.SerialDenseSVD_RHS(self)
def M(self):
"""
M(self) -> int
int
Epetra_SerialDenseSVD::M() const
Returns row dimension of system.
"""
return _Epetra.SerialDenseSVD_M(self)
def N(self):
"""
N(self) -> int
int
Epetra_SerialDenseSVD::N() const
Returns column dimension of system.
"""
return _Epetra.SerialDenseSVD_N(self)
def A(self):
"""
A(self) -> double
double*
Epetra_SerialDenseSVD::A() const
Returns pointer to the this matrix.
"""
return _Epetra.SerialDenseSVD_A(self)
def LDA(self):
"""
LDA(self) -> int
int
Epetra_SerialDenseSVD::LDA() const
Returns the leading dimension of the this matrix.
"""
return _Epetra.SerialDenseSVD_LDA(self)
def B(self):
"""
B(self) -> double
double*
Epetra_SerialDenseSVD::B() const
Returns pointer to current RHS.
"""
return _Epetra.SerialDenseSVD_B(self)
def LDB(self):
"""
LDB(self) -> int
int
Epetra_SerialDenseSVD::LDB() const
Returns the leading dimension of the RHS.
"""
return _Epetra.SerialDenseSVD_LDB(self)
def NRHS(self):
"""
NRHS(self) -> int
int
Epetra_SerialDenseSVD::NRHS() const
Returns the number of current right hand sides and solution vectors.
"""
return _Epetra.SerialDenseSVD_NRHS(self)
def X(self):
"""
X(self) -> double
double*
Epetra_SerialDenseSVD::X() const
Returns pointer to current solution.
"""
return _Epetra.SerialDenseSVD_X(self)
def LDX(self):
"""
LDX(self) -> int
int
Epetra_SerialDenseSVD::LDX() const
Returns the leading dimension of the solution.
"""
return _Epetra.SerialDenseSVD_LDX(self)
def S(self):
"""
S(self) -> double
double*
Epetra_SerialDenseSVD::S() const
"""
return _Epetra.SerialDenseSVD_S(self)
def AI(self):
"""
AI(self) -> double
double*
Epetra_SerialDenseSVD::AI() const
Returns pointer to the inverted matrix (may be the same as A() if
factorization done in place).
"""
return _Epetra.SerialDenseSVD_AI(self)
def LDAI(self):
"""
LDAI(self) -> int
int
Epetra_SerialDenseSVD::LDAI() const
Returns the leading dimension of the inverted matrix.
"""
return _Epetra.SerialDenseSVD_LDAI(self)
def ANORM(self):
"""
ANORM(self) -> double
double
Epetra_SerialDenseSVD::ANORM() const
Returns the 1-Norm of the this matrix (returns -1 if not yet
computed).
"""
return _Epetra.SerialDenseSVD_ANORM(self)
def SetUseTranspose(self, *args):
"""
SetUseTranspose(self, bool use_transpose) -> int
virtual int Epetra_SerialDenseSVD::SetUseTranspose(bool use_transpose)
If set true, transpose of this operator will be applied.
This flag allows the transpose of the given operator to be used
implicitly. Setting this flag affects only the Apply() and
ApplyInverse() methods. If the implementation of this interface does
not support transpose use, this method should return a value of -1.
Parameters:
-----------
In: use_transpose -If true, multiply by the transpose of operator,
otherwise just use operator.
Integer error code, set to 0 if successful. Set to -1 if this
implementation does not support transpose.
"""
return _Epetra.SerialDenseSVD_SetUseTranspose(self, *args)
def Apply(self, *args):
"""
Apply(self, Epetra_SerialDenseMatrix Xmat, Epetra_SerialDenseMatrix Ymat) -> int
virtual int
Epetra_SerialDenseSVD::Apply(const Epetra_SerialDenseMatrix &Xmat,
Epetra_SerialDenseMatrix &Ymat)
Returns the result of a Epetra_SerialDenseOperator applied to a
Epetra_SerialDenseMatrix X in Y.
Parameters:
-----------
In: X - A Epetra_SerialDenseMatrix to multiply with operator.
Out: Y -A Epetra_SerialDenseMatrix containing result.
Integer error code, set to 0 if successful.
"""
return _Epetra.SerialDenseSVD_Apply(self, *args)
def ApplyInverse(self, *args):
"""
ApplyInverse(self, Epetra_SerialDenseMatrix Xmat, Epetra_SerialDenseMatrix Ymat) -> int
virtual
int Epetra_SerialDenseSVD::ApplyInverse(const Epetra_SerialDenseMatrix
&Xmat, Epetra_SerialDenseMatrix &Ymat)
Returns the result of a Epetra_SerialDenseOperator inverse applied to
an Epetra_SerialDenseMatrix X in Y.
Parameters:
-----------
In: X - A Epetra_SerialDenseMatrix to solve for.
Out: Y -A Epetra_SerialDenseMatrix containing result.
Integer error code, set to 0 if successful.
"""
return _Epetra.SerialDenseSVD_ApplyInverse(self, *args)
def NormInf(self):
"""
NormInf(self) -> double
virtual double
Epetra_SerialDenseSVD::NormInf() const
Returns the infinity norm of the global matrix.
"""
return _Epetra.SerialDenseSVD_NormInf(self)
def Label(self):
"""
Label(self) -> char
virtual const
char* Epetra_SerialDenseSVD::Label() const
Returns a character string describing the operator.
"""
return _Epetra.SerialDenseSVD_Label(self)
def UseTranspose(self):
"""
UseTranspose(self) -> bool
virtual
bool Epetra_SerialDenseSVD::UseTranspose() const
Returns the current UseTranspose setting.
"""
return _Epetra.SerialDenseSVD_UseTranspose(self)
def HasNormInf(self):
"""
HasNormInf(self) -> bool
virtual
bool Epetra_SerialDenseSVD::HasNormInf() const
Returns true if the this object can provide an approximate Inf-norm,
false otherwise.
"""
return _Epetra.SerialDenseSVD_HasNormInf(self)
def RowDim(self):
"""
RowDim(self) -> int
virtual int
Epetra_SerialDenseSVD::RowDim() const
Returns the row dimension of operator.
"""
return _Epetra.SerialDenseSVD_RowDim(self)
def ColDim(self):
"""
ColDim(self) -> int
virtual int
Epetra_SerialDenseSVD::ColDim() const
Returns the column dimension of operator.
"""
return _Epetra.SerialDenseSVD_ColDim(self)
def AllocateWORK(self):
"""
AllocateWORK(self)
void
Epetra_SerialDenseSVD::AllocateWORK()
"""
return _Epetra.SerialDenseSVD_AllocateWORK(self)
def AllocateIWORK(self):
"""
AllocateIWORK(self)
void
Epetra_SerialDenseSVD::AllocateIWORK()
"""
return _Epetra.SerialDenseSVD_AllocateIWORK(self)
def InitPointers(self):
"""
InitPointers(self)
void
Epetra_SerialDenseSVD::InitPointers()
"""
return _Epetra.SerialDenseSVD_InitPointers(self)
def DeleteArrays(self):
"""
DeleteArrays(self)
void
Epetra_SerialDenseSVD::DeleteArrays()
"""
return _Epetra.SerialDenseSVD_DeleteArrays(self)
def ResetMatrix(self):
"""
ResetMatrix(self)
void
Epetra_SerialDenseSVD::ResetMatrix()
"""
return _Epetra.SerialDenseSVD_ResetMatrix(self)
def ResetVectors(self):
"""
ResetVectors(self)
void
Epetra_SerialDenseSVD::ResetVectors()
"""
return _Epetra.SerialDenseSVD_ResetVectors(self)
__swig_setmethods__["Transpose_"] = _Epetra.SerialDenseSVD_Transpose__set
__swig_getmethods__["Transpose_"] = _Epetra.SerialDenseSVD_Transpose__get
if _newclass:Transpose_ = _swig_property(_Epetra.SerialDenseSVD_Transpose__get, _Epetra.SerialDenseSVD_Transpose__set)
__swig_setmethods__["Factored_"] = _Epetra.SerialDenseSVD_Factored__set
__swig_getmethods__["Factored_"] = _Epetra.SerialDenseSVD_Factored__get
if _newclass:Factored_ = _swig_property(_Epetra.SerialDenseSVD_Factored__get, _Epetra.SerialDenseSVD_Factored__set)
__swig_setmethods__["Solved_"] = _Epetra.SerialDenseSVD_Solved__set
__swig_getmethods__["Solved_"] = _Epetra.SerialDenseSVD_Solved__get
if _newclass:Solved_ = _swig_property(_Epetra.SerialDenseSVD_Solved__get, _Epetra.SerialDenseSVD_Solved__set)
__swig_setmethods__["Inverted_"] = _Epetra.SerialDenseSVD_Inverted__set
__swig_getmethods__["Inverted_"] = _Epetra.SerialDenseSVD_Inverted__get
if _newclass:Inverted_ = _swig_property(_Epetra.SerialDenseSVD_Inverted__get, _Epetra.SerialDenseSVD_Inverted__set)
__swig_setmethods__["TRANS_"] = _Epetra.SerialDenseSVD_TRANS__set
__swig_getmethods__["TRANS_"] = _Epetra.SerialDenseSVD_TRANS__get
if _newclass:TRANS_ = _swig_property(_Epetra.SerialDenseSVD_TRANS__get, _Epetra.SerialDenseSVD_TRANS__set)
__swig_setmethods__["M_"] = _Epetra.SerialDenseSVD_M__set
__swig_getmethods__["M_"] = _Epetra.SerialDenseSVD_M__get
if _newclass:M_ = _swig_property(_Epetra.SerialDenseSVD_M__get, _Epetra.SerialDenseSVD_M__set)
__swig_setmethods__["N_"] = _Epetra.SerialDenseSVD_N__set
__swig_getmethods__["N_"] = _Epetra.SerialDenseSVD_N__get
if _newclass:N_ = _swig_property(_Epetra.SerialDenseSVD_N__get, _Epetra.SerialDenseSVD_N__set)
__swig_setmethods__["Min_MN_"] = _Epetra.SerialDenseSVD_Min_MN__set
__swig_getmethods__["Min_MN_"] = _Epetra.SerialDenseSVD_Min_MN__get
if _newclass:Min_MN_ = _swig_property(_Epetra.SerialDenseSVD_Min_MN__get, _Epetra.SerialDenseSVD_Min_MN__set)
__swig_setmethods__["NRHS_"] = _Epetra.SerialDenseSVD_NRHS__set
__swig_getmethods__["NRHS_"] = _Epetra.SerialDenseSVD_NRHS__get
if _newclass:NRHS_ = _swig_property(_Epetra.SerialDenseSVD_NRHS__get, _Epetra.SerialDenseSVD_NRHS__set)
__swig_setmethods__["LDA_"] = _Epetra.SerialDenseSVD_LDA__set
__swig_getmethods__["LDA_"] = _Epetra.SerialDenseSVD_LDA__get
if _newclass:LDA_ = _swig_property(_Epetra.SerialDenseSVD_LDA__get, _Epetra.SerialDenseSVD_LDA__set)
__swig_setmethods__["LDAI_"] = _Epetra.SerialDenseSVD_LDAI__set
__swig_getmethods__["LDAI_"] = _Epetra.SerialDenseSVD_LDAI__get
if _newclass:LDAI_ = _swig_property(_Epetra.SerialDenseSVD_LDAI__get, _Epetra.SerialDenseSVD_LDAI__set)
__swig_setmethods__["LDB_"] = _Epetra.SerialDenseSVD_LDB__set
__swig_getmethods__["LDB_"] = _Epetra.SerialDenseSVD_LDB__get
if _newclass:LDB_ = _swig_property(_Epetra.SerialDenseSVD_LDB__get, _Epetra.SerialDenseSVD_LDB__set)
__swig_setmethods__["LDX_"] = _Epetra.SerialDenseSVD_LDX__set
__swig_getmethods__["LDX_"] = _Epetra.SerialDenseSVD_LDX__get
if _newclass:LDX_ = _swig_property(_Epetra.SerialDenseSVD_LDX__get, _Epetra.SerialDenseSVD_LDX__set)
__swig_setmethods__["INFO_"] = _Epetra.SerialDenseSVD_INFO__set
__swig_getmethods__["INFO_"] = _Epetra.SerialDenseSVD_INFO__get
if _newclass:INFO_ = _swig_property(_Epetra.SerialDenseSVD_INFO__get, _Epetra.SerialDenseSVD_INFO__set)
__swig_setmethods__["LWORK_"] = _Epetra.SerialDenseSVD_LWORK__set
__swig_getmethods__["LWORK_"] = _Epetra.SerialDenseSVD_LWORK__get
if _newclass:LWORK_ = _swig_property(_Epetra.SerialDenseSVD_LWORK__get, _Epetra.SerialDenseSVD_LWORK__set)
__swig_setmethods__["IWORK_"] = _Epetra.SerialDenseSVD_IWORK__set
__swig_getmethods__["IWORK_"] = _Epetra.SerialDenseSVD_IWORK__get
if _newclass:IWORK_ = _swig_property(_Epetra.SerialDenseSVD_IWORK__get, _Epetra.SerialDenseSVD_IWORK__set)
__swig_setmethods__["ANORM_"] = _Epetra.SerialDenseSVD_ANORM__set
__swig_getmethods__["ANORM_"] = _Epetra.SerialDenseSVD_ANORM__get
if _newclass:ANORM_ = _swig_property(_Epetra.SerialDenseSVD_ANORM__get, _Epetra.SerialDenseSVD_ANORM__set)
__swig_setmethods__["Matrix_"] = _Epetra.SerialDenseSVD_Matrix__set
__swig_getmethods__["Matrix_"] = _Epetra.SerialDenseSVD_Matrix__get
if _newclass:Matrix_ = _swig_property(_Epetra.SerialDenseSVD_Matrix__get, _Epetra.SerialDenseSVD_Matrix__set)
__swig_setmethods__["LHS_"] = _Epetra.SerialDenseSVD_LHS__set
__swig_getmethods__["LHS_"] = _Epetra.SerialDenseSVD_LHS__get
if _newclass:LHS_ = _swig_property(_Epetra.SerialDenseSVD_LHS__get, _Epetra.SerialDenseSVD_LHS__set)
__swig_setmethods__["RHS_"] = _Epetra.SerialDenseSVD_RHS__set
__swig_getmethods__["RHS_"] = _Epetra.SerialDenseSVD_RHS__get
if _newclass:RHS_ = _swig_property(_Epetra.SerialDenseSVD_RHS__get, _Epetra.SerialDenseSVD_RHS__set)
__swig_setmethods__["Inverse_"] = _Epetra.SerialDenseSVD_Inverse__set
__swig_getmethods__["Inverse_"] = _Epetra.SerialDenseSVD_Inverse__get
if _newclass:Inverse_ = _swig_property(_Epetra.SerialDenseSVD_Inverse__get, _Epetra.SerialDenseSVD_Inverse__set)
__swig_setmethods__["A_"] = _Epetra.SerialDenseSVD_A__set
__swig_getmethods__["A_"] = _Epetra.SerialDenseSVD_A__get
if _newclass:A_ = _swig_property(_Epetra.SerialDenseSVD_A__get, _Epetra.SerialDenseSVD_A__set)
__swig_setmethods__["AI_"] = _Epetra.SerialDenseSVD_AI__set
__swig_getmethods__["AI_"] = _Epetra.SerialDenseSVD_AI__get
if _newclass:AI_ = _swig_property(_Epetra.SerialDenseSVD_AI__get, _Epetra.SerialDenseSVD_AI__set)
__swig_setmethods__["WORK_"] = _Epetra.SerialDenseSVD_WORK__set
__swig_getmethods__["WORK_"] = _Epetra.SerialDenseSVD_WORK__get
if _newclass:WORK_ = _swig_property(_Epetra.SerialDenseSVD_WORK__get, _Epetra.SerialDenseSVD_WORK__set)
__swig_setmethods__["U_"] = _Epetra.SerialDenseSVD_U__set
__swig_getmethods__["U_"] = _Epetra.SerialDenseSVD_U__get
if _newclass:U_ = _swig_property(_Epetra.SerialDenseSVD_U__get, _Epetra.SerialDenseSVD_U__set)
__swig_setmethods__["S_"] = _Epetra.SerialDenseSVD_S__set
__swig_getmethods__["S_"] = _Epetra.SerialDenseSVD_S__get
if _newclass:S_ = _swig_property(_Epetra.SerialDenseSVD_S__get, _Epetra.SerialDenseSVD_S__set)
__swig_setmethods__["Vt_"] = _Epetra.SerialDenseSVD_Vt__set
__swig_getmethods__["Vt_"] = _Epetra.SerialDenseSVD_Vt__get
if _newclass:Vt_ = _swig_property(_Epetra.SerialDenseSVD_Vt__get, _Epetra.SerialDenseSVD_Vt__set)
__swig_setmethods__["B_"] = _Epetra.SerialDenseSVD_B__set
__swig_getmethods__["B_"] = _Epetra.SerialDenseSVD_B__get
if _newclass:B_ = _swig_property(_Epetra.SerialDenseSVD_B__get, _Epetra.SerialDenseSVD_B__set)
__swig_setmethods__["X_"] = _Epetra.SerialDenseSVD_X__set
__swig_getmethods__["X_"] = _Epetra.SerialDenseSVD_X__get
if _newclass:X_ = _swig_property(_Epetra.SerialDenseSVD_X__get, _Epetra.SerialDenseSVD_X__set)
__swig_setmethods__["UseTranspose_"] = _Epetra.SerialDenseSVD_UseTranspose__set
__swig_getmethods__["UseTranspose_"] = _Epetra.SerialDenseSVD_UseTranspose__get
if _newclass:UseTranspose_ = _swig_property(_Epetra.SerialDenseSVD_UseTranspose__get, _Epetra.SerialDenseSVD_UseTranspose__set)
SerialDenseSVD_swigregister = _Epetra.SerialDenseSVD_swigregister
SerialDenseSVD_swigregister(SerialDenseSVD)
class NumPyIntSerialDenseMatrix(Epetra_IntSerialDenseMatrix):
"""Proxy of C++ Epetra_NumPyIntSerialDenseMatrix class"""
__swig_setmethods__ = {}
for _s in [Epetra_IntSerialDenseMatrix]: __swig_setmethods__.update(getattr(_s,'__swig_setmethods__',{}))
__setattr__ = lambda self, name, value: _swig_setattr(self, NumPyIntSerialDenseMatrix, name, value)
__swig_getmethods__ = {}
for _s in [Epetra_IntSerialDenseMatrix]: __swig_getmethods__.update(getattr(_s,'__swig_getmethods__',{}))
__getattr__ = lambda self, name: _swig_getattr(self, NumPyIntSerialDenseMatrix, name)
__repr__ = _swig_repr
def __init__(self, *args):
"""
__init__(self) -> NumPyIntSerialDenseMatrix
__init__(self, int numRows, int numCols) -> NumPyIntSerialDenseMatrix
__init__(self, PyObject pyObject) -> NumPyIntSerialDenseMatrix
__init__(self, Epetra_IntSerialDenseMatrix src) -> NumPyIntSerialDenseMatrix
"""
this = _Epetra.new_NumPyIntSerialDenseMatrix(*args)
try: self.this.append(this)
except: self.this = this
__swig_destroy__ = _Epetra.delete_NumPyIntSerialDenseMatrix
__del__ = lambda self : None;
def __call__(self, *args):
"""__call__(self, int rowIndex, int colIndex) -> int"""
return _Epetra.NumPyIntSerialDenseMatrix___call__(self, *args)
def Shape(self, *args):
"""
Shape(self, int numRows, int numCols) -> int
int
Epetra_IntSerialDenseMatrix::Shape(int NumRows, int NumCols)
Set dimensions of a Epetra_IntSerialDenseMatrix object; init values to
zero.
Parameters:
-----------
In: NumRows - Number of rows in object.
In: NumCols - Number of columns in object.
Allows user to define the dimensions of a Epetra_IntSerialDenseMatrix
at any point. This function can be called at any point after
construction. Any values that were previously in this object are
destroyed and the resized matrix starts off with all zero values.
Integer error code, set to 0 if successful.
"""
return _Epetra.NumPyIntSerialDenseMatrix_Shape(self, *args)
def Reshape(self, *args):
"""
Reshape(self, int numRows, int numCols) -> int
int
Epetra_IntSerialDenseMatrix::Reshape(int NumRows, int NumCols)
Reshape a Epetra_IntSerialDenseMatrix object.
Parameters:
-----------
In: NumRows - Number of rows in object.
In: NumCols - Number of columns in object.
Allows user to define the dimensions of a Epetra_IntSerialDenseMatrix
at any point. This function can be called at any point after
construction. Any values that were previously in this object are
copied into the new shape. If the new shape is smaller than the
original, the upper left portion of the original matrix (the principal
submatrix) is copied to the new matrix.
Integer error code, set to 0 if successful.
"""
return _Epetra.NumPyIntSerialDenseMatrix_Reshape(self, *args)
def A(self):
"""
A(self) -> PyObject
int*
Epetra_IntSerialDenseMatrix::A()
Returns pointer to the this matrix.
"""
return _Epetra.NumPyIntSerialDenseMatrix_A(self)
def cleanup():
"""cleanup()"""
return _Epetra.NumPyIntSerialDenseMatrix_cleanup()
if _newclass:cleanup = staticmethod(cleanup)
__swig_getmethods__["cleanup"] = lambda x: cleanup
NumPyIntSerialDenseMatrix_swigregister = _Epetra.NumPyIntSerialDenseMatrix_swigregister
NumPyIntSerialDenseMatrix_swigregister(NumPyIntSerialDenseMatrix)
def NumPyIntSerialDenseMatrix_cleanup():
"""NumPyIntSerialDenseMatrix_cleanup()"""
return _Epetra.NumPyIntSerialDenseMatrix_cleanup()
class IntSerialDenseMatrix(UserArray,NumPyIntSerialDenseMatrix):
def __init__(self, *args):
"""
__init__(self) -> IntSerialDenseMatrix
__init__(self, int numRows, int numCols) -> IntSerialDenseMatrix
__init__(self, PyObject array) -> IntSerialDenseMatrix
__init__(self, IntSerialDenseMatrix source) -> IntSerialDenseMatrix
"""
NumPyIntSerialDenseMatrix.__init__(self, *args)
self.__initArray__()
def __initArray__(self):
self.array = self.A()
self.__protected = True
def __str__(self):
return str(self.array)
def __lt__(self,other):
return numpy.less(self.array,other)
def __le__(self,other):
return numpy.less_equal(self.array,other)
def __eq__(self,other):
return numpy.equal(self.array,other)
def __ne__(self,other):
return numpy.not_equal(self.array,other)
def __gt__(self,other):
return numpy.greater(self.array,other)
def __ge__(self,other):
return numpy.greater_equal(self.array,other)
def __getattr__(self, key):
# This should get called when the IntSerialDenseMatrix is accessed after
# not properly being initialized
if not "array" in self.__dict__:
self.__initArray__()
try:
return self.array.__getattribute__(key)
except AttributeError:
return IntSerialDenseMatrix.__getattribute__(self, key)
def __setattr__(self, key, value):
"Handle 'this' attribute properly and protect the 'array' and 'shape' attributes"
if key == "this":
NumPyIntSerialDenseMatrix.__setattr__(self, key, value)
else:
if key in self.__dict__:
if self.__protected:
if key == "array":
raise AttributeError, \
"Cannot change Epetra.IntSerialDenseMatrix array attribute"
if key == "shape":
raise AttributeError, \
"Cannot change Epetra.IntSerialDenseMatrix shape attribute"
UserArray.__setattr__(self, key, value)
def __getitem__(self, index):
"""
__getitem__(self,int,int) -> int
__getitem__(self,int,slice) -> array
__getitem__(self,slice,int) -> array
__getitem__(self,slice,slice) -> array
"""
return self.array[index]
def Shape(self,numRows,numCols):
"Shape(self, int numRows, int numCols) -> int"
result = NumPyIntSerialDenseMatrix.Shape(self,numRows,numCols)
self.__protected = False
self.__initArray__()
return result
def Reshape(self,numRows,numCols):
"Reshape(self, int numRows, int numCols) -> int"
result = NumPyIntSerialDenseMatrix.Reshape(self,numRows,numCols)
self.__protected = False
self.__initArray__()
return result
_Epetra.NumPyIntSerialDenseMatrix_swigregister(IntSerialDenseMatrix)
class NumPyIntSerialDenseVector(Epetra_IntSerialDenseVector):
"""Proxy of C++ Epetra_NumPyIntSerialDenseVector class"""
__swig_setmethods__ = {}
for _s in [Epetra_IntSerialDenseVector]: __swig_setmethods__.update(getattr(_s,'__swig_setmethods__',{}))
__setattr__ = lambda self, name, value: _swig_setattr(self, NumPyIntSerialDenseVector, name, value)
__swig_getmethods__ = {}
for _s in [Epetra_IntSerialDenseVector]: __swig_getmethods__.update(getattr(_s,'__swig_getmethods__',{}))
__getattr__ = lambda self, name: _swig_getattr(self, NumPyIntSerialDenseVector, name)
__repr__ = _swig_repr
def __init__(self, *args):
"""
__init__(self) -> NumPyIntSerialDenseVector
__init__(self, int length) -> NumPyIntSerialDenseVector
__init__(self, PyObject pyObject) -> NumPyIntSerialDenseVector
__init__(self, Epetra_IntSerialDenseVector src) -> NumPyIntSerialDenseVector
"""
this = _Epetra.new_NumPyIntSerialDenseVector(*args)
try: self.this.append(this)
except: self.this = this
__swig_destroy__ = _Epetra.delete_NumPyIntSerialDenseVector
__del__ = lambda self : None;
def Size(self, *args):
"""
Size(self, int length) -> int
int
Epetra_IntSerialDenseVector::Size(int Length_in)
Set length of a Epetra_IntSerialDenseVector object; init values to
zero.
Parameters:
-----------
In: Length - Length of vector object.
Allows user to define the dimension of a Epetra_IntSerialDenseVector.
This function can be called at any point after construction. Any
values that were previously in this object are destroyed and the
resized vector starts off with all zero values.
Integer error code, set to 0 if successful.
"""
return _Epetra.NumPyIntSerialDenseVector_Size(self, *args)
def Resize(self, *args):
"""
Resize(self, int length) -> int
int
Epetra_IntSerialDenseVector::Resize(int Length_in)
Resize a Epetra_IntSerialDenseVector object.
Parameters:
-----------
In: Length - Length of vector object.
Allows user to define the dimension of a Epetra_IntSerialDenseVector.
This function can be called at any point after construction. Any
values that were previously in this object are copied into the new
size. If the new shape is smaller than the original, the first Length
values are copied to the new vector.
Integer error code, set to 0 if successful.
"""
return _Epetra.NumPyIntSerialDenseVector_Resize(self, *args)
def Values(self):
"""
Values(self) -> PyObject
const
int* Epetra_IntSerialDenseVector::Values() const
Returns const pointer to the values in vector.
"""
return _Epetra.NumPyIntSerialDenseVector_Values(self)
def cleanup():
"""cleanup()"""
return _Epetra.NumPyIntSerialDenseVector_cleanup()
if _newclass:cleanup = staticmethod(cleanup)
__swig_getmethods__["cleanup"] = lambda x: cleanup
NumPyIntSerialDenseVector_swigregister = _Epetra.NumPyIntSerialDenseVector_swigregister
NumPyIntSerialDenseVector_swigregister(NumPyIntSerialDenseVector)
def NumPyIntSerialDenseVector_cleanup():
"""NumPyIntSerialDenseVector_cleanup()"""
return _Epetra.NumPyIntSerialDenseVector_cleanup()
class IntSerialDenseVector(UserArray,NumPyIntSerialDenseVector):
def __init__(self, *args):
"""
__init__(self) -> IntSerialDenseVector
__init__(self, int length) -> IntSerialDenseVector
__init__(self, PyObject array) -> IntSerialDenseVector
__init__(self, IntSerialDenseVector source) -> IntSerialDenseVector
"""
NumPyIntSerialDenseVector.__init__(self, *args)
self.__initArray__()
def __initArray__(self):
self.array = self.Values()
self.__protected = True
def __str__(self):
return str(self.array)
def __lt__(self,other):
return numpy.less(self.array,other)
def __le__(self,other):
return numpy.less_equal(self.array,other)
def __eq__(self,other):
return numpy.equal(self.array,other)
def __ne__(self,other):
return numpy.not_equal(self.array,other)
def __gt__(self,other):
return numpy.greater(self.array,other)
def __ge__(self,other):
return numpy.greater_equal(self.array,other)
def __getattr__(self, key):
# This should get called when the IntSerialDenseVector is accessed after
# not properly being initialized
if not "array" in self.__dict__:
self.__initArray__()
try:
return self.array.__getattribute__(key)
except AttributeError:
return IntSerialDenseVector.__getattribute__(self, key)
def __setattr__(self, key, value):
"Handle 'this' attribute properly and protect the 'array' attribute"
if key == "this":
NumPyIntSerialDenseVector.__setattr__(self, key, value)
else:
if key in self.__dict__:
if self.__protected:
if key == "array":
raise AttributeError, \
"Cannot change Epetra.IntSerialDenseVector array attribute"
UserArray.__setattr__(self, key, value)
def __call__(self,i):
"__call__(self, int i) -> int"
return self.__getitem__(i)
def Size(self,length):
"Size(self, int length) -> int"
result = NumPyIntSerialDenseVector.Size(self,length)
self.__protected = False
self.__initArray__()
return result
def Resize(self,length):
"Resize(self, int length) -> int"
result = NumPyIntSerialDenseVector.Resize(self,length)
self.__protected = False
self.__initArray__()
return result
_Epetra.NumPyIntSerialDenseVector_swigregister(IntSerialDenseVector)
class NumPySerialDenseMatrix(Epetra_SerialDenseMatrix):
"""Proxy of C++ Epetra_NumPySerialDenseMatrix class"""
__swig_setmethods__ = {}
for _s in [Epetra_SerialDenseMatrix]: __swig_setmethods__.update(getattr(_s,'__swig_setmethods__',{}))
__setattr__ = lambda self, name, value: _swig_setattr(self, NumPySerialDenseMatrix, name, value)
__swig_getmethods__ = {}
for _s in [Epetra_SerialDenseMatrix]: __swig_getmethods__.update(getattr(_s,'__swig_getmethods__',{}))
__getattr__ = lambda self, name: _swig_getattr(self, NumPySerialDenseMatrix, name)
__repr__ = _swig_repr
def __init__(self, *args):
"""
__init__(self, int set_object_label = 1) -> NumPySerialDenseMatrix
__init__(self) -> NumPySerialDenseMatrix
__init__(self, int numRows, int numCols, int set_object_label = 1) -> NumPySerialDenseMatrix
__init__(self, int numRows, int numCols) -> NumPySerialDenseMatrix
__init__(self, PyObject pyObject, int set_object_label = 1) -> NumPySerialDenseMatrix
__init__(self, PyObject pyObject) -> NumPySerialDenseMatrix
__init__(self, Epetra_SerialDenseMatrix src) -> NumPySerialDenseMatrix
"""
this = _Epetra.new_NumPySerialDenseMatrix(*args)
try: self.this.append(this)
except: self.this = this
__swig_destroy__ = _Epetra.delete_NumPySerialDenseMatrix
__del__ = lambda self : None;
def __call__(self, *args):
"""__call__(self, int rowIndex, int colIndex) -> double"""
return _Epetra.NumPySerialDenseMatrix___call__(self, *args)
def Shape(self, *args):
"""
Shape(self, int numRows, int numCols) -> int
int
Epetra_SerialDenseMatrix::Shape(int NumRows, int NumCols)
Set dimensions of a Epetra_SerialDenseMatrix object; init values to
zero.
Parameters:
-----------
In: NumRows - Number of rows in object.
In: NumCols - Number of columns in object.
Allows user to define the dimensions of a Epetra_SerialDenseMatrix at
any point. This function can be called at any point after
construction. Any values that were previously in this object are
destroyed and the resized matrix starts off with all zero values.
Integer error code, set to 0 if successful.
"""
return _Epetra.NumPySerialDenseMatrix_Shape(self, *args)
def Reshape(self, *args):
"""
Reshape(self, int numRows, int numCols) -> int
int
Epetra_SerialDenseMatrix::Reshape(int NumRows, int NumCols)
Reshape a Epetra_SerialDenseMatrix object.
Parameters:
-----------
In: NumRows - Number of rows in object.
In: NumCols - Number of columns in object.
Allows user to define the dimensions of a Epetra_SerialDenseMatrix at
any point. This function can be called at any point after
construction. Any values that were previously in this object are
copied into the new shape. If the new shape is smaller than the
original, the upper left portion of the original matrix (the principal
submatrix) is copied to the new matrix.
Integer error code, set to 0 if successful.
"""
return _Epetra.NumPySerialDenseMatrix_Reshape(self, *args)
def A(self):
"""
A(self) -> PyObject
double*
Epetra_SerialDenseMatrix::A()
Returns pointer to the this matrix.
"""
return _Epetra.NumPySerialDenseMatrix_A(self)
def cleanup():
"""cleanup()"""
return _Epetra.NumPySerialDenseMatrix_cleanup()
if _newclass:cleanup = staticmethod(cleanup)
__swig_getmethods__["cleanup"] = lambda x: cleanup
NumPySerialDenseMatrix_swigregister = _Epetra.NumPySerialDenseMatrix_swigregister
NumPySerialDenseMatrix_swigregister(NumPySerialDenseMatrix)
def NumPySerialDenseMatrix_cleanup():
"""NumPySerialDenseMatrix_cleanup()"""
return _Epetra.NumPySerialDenseMatrix_cleanup()
class SerialDenseMatrix(UserArray,NumPySerialDenseMatrix):
def __init__(self, *args):
"""
__init__(self, bool set_object_label=True) -> SerialDenseMatrix
__init__(self, int numRows, int numCols, bool set_object_label=True) -> SerialDenseMatrix
__init__(self, PyObject array, bool set_object_label=True) -> SerialDenseMatrix
__init__(self, SerialDenseMatrix source) -> SerialDenseMatrix
"""
NumPySerialDenseMatrix.__init__(self, *args)
self.__initArray__()
def __initArray__(self):
self.array = self.A()
self.__protected = True
def __str__(self):
return str(self.array)
def __lt__(self,other):
return numpy.less(self.array,other)
def __le__(self,other):
return numpy.less_equal(self.array,other)
def __eq__(self,other):
return numpy.equal(self.array,other)
def __ne__(self,other):
return numpy.not_equal(self.array,other)
def __gt__(self,other):
return numpy.greater(self.array,other)
def __ge__(self,other):
return numpy.greater_equal(self.array,other)
def __getattr__(self, key):
# This should get called when the SerialDenseMatrix is accessed after
# not properly being initialized
if not "array" in self.__dict__:
self.__initArray__()
try:
return self.array.__getattribute__(key)
except AttributeError:
return SerialDenseMatrix.__getattribute__(self, key)
def __setattr__(self, key, value):
"Handle 'this' attribute properly and protect the 'array' and 'shape' attributes"
if key == "this":
NumPySerialDenseMatrix.__setattr__(self, key, value)
else:
if key in self.__dict__:
if self.__protected:
if key == "array":
raise AttributeError, \
"Cannot change Epetra.SerialDenseMatrix array attribute"
if key == "shape":
raise AttributeError, \
"Cannot change Epetra.SerialDenseMatrix shape attribute"
UserArray.__setattr__(self, key, value)
def __getitem__(self, index):
"""
__getitem__(self,int,int) -> int
__getitem__(self,int,slice) -> array
__getitem__(self,slice,int) -> array
__getitem__(self,slice,slice) -> array
"""
return self.array[index]
def Shape(self,numRows,numCols):
"Shape(self, int numRows, int numCols) -> int"
result = NumPySerialDenseMatrix.Shape(self,numRows,numCols)
self.__protected = False
self.__initArray__()
return result
def Reshape(self,numRows,numCols):
"Reshape(self, int numRows, int numCols) -> int"
result = NumPySerialDenseMatrix.Reshape(self,numRows,numCols)
self.__protected = False
self.__initArray__()
return result
_Epetra.NumPySerialDenseMatrix_swigregister(SerialDenseMatrix)
class NumPySerialDenseVector(Epetra_SerialDenseVector):
"""Proxy of C++ Epetra_NumPySerialDenseVector class"""
__swig_setmethods__ = {}
for _s in [Epetra_SerialDenseVector]: __swig_setmethods__.update(getattr(_s,'__swig_setmethods__',{}))
__setattr__ = lambda self, name, value: _swig_setattr(self, NumPySerialDenseVector, name, value)
__swig_getmethods__ = {}
for _s in [Epetra_SerialDenseVector]: __swig_getmethods__.update(getattr(_s,'__swig_getmethods__',{}))
__getattr__ = lambda self, name: _swig_getattr(self, NumPySerialDenseVector, name)
__repr__ = _swig_repr
def __init__(self, *args):
"""
__init__(self) -> NumPySerialDenseVector
__init__(self, int length) -> NumPySerialDenseVector
__init__(self, PyObject pyObject) -> NumPySerialDenseVector
__init__(self, Epetra_SerialDenseVector src) -> NumPySerialDenseVector
"""
this = _Epetra.new_NumPySerialDenseVector(*args)
try: self.this.append(this)
except: self.this = this
__swig_destroy__ = _Epetra.delete_NumPySerialDenseVector
__del__ = lambda self : None;
def Size(self, *args):
"""
Size(self, int length) -> int
int
Epetra_SerialDenseVector::Size(int Length_in)
Set length of a Epetra_SerialDenseVector object; init values to zero.
Parameters:
-----------
In: Length - Length of vector object.
Allows user to define the dimension of a Epetra_SerialDenseVector.
This function can be called at any point after construction. Any
values that were previously in this object are destroyed and the
resized vector starts off with all zero values.
Integer error code, set to 0 if successful.
"""
return _Epetra.NumPySerialDenseVector_Size(self, *args)
def Resize(self, *args):
"""
Resize(self, int length) -> int
int
Epetra_SerialDenseVector::Resize(int Length_in)
Resize a Epetra_SerialDenseVector object.
Parameters:
-----------
In: Length - Length of vector object.
Allows user to define the dimension of a Epetra_SerialDenseVector.
This function can be called at any point after construction. Any
values that were previously in this object are copied into the new
size. If the new shape is smaller than the original, the first Length
values are copied to the new vector.
Integer error code, set to 0 if successful.
"""
return _Epetra.NumPySerialDenseVector_Resize(self, *args)
def Values(self):
"""
Values(self) -> PyObject
double*
Epetra_SerialDenseVector::Values() const
Returns pointer to the values in vector.
"""
return _Epetra.NumPySerialDenseVector_Values(self)
def cleanup():
"""cleanup()"""
return _Epetra.NumPySerialDenseVector_cleanup()
if _newclass:cleanup = staticmethod(cleanup)
__swig_getmethods__["cleanup"] = lambda x: cleanup
NumPySerialDenseVector_swigregister = _Epetra.NumPySerialDenseVector_swigregister
NumPySerialDenseVector_swigregister(NumPySerialDenseVector)
def NumPySerialDenseVector_cleanup():
"""NumPySerialDenseVector_cleanup()"""
return _Epetra.NumPySerialDenseVector_cleanup()
class SerialDenseVector(UserArray,NumPySerialDenseVector):
def __init__(self, *args):
"""
__init__(self) -> SerialDenseVector
__init__(self, int length) -> SerialDenseVector
__init__(self, PyObject array) -> SerialDenseVector
__init__(self, SerialDenseVector source) -> SerialDenseVector
"""
NumPySerialDenseVector.__init__(self, *args)
self.__initArray__()
def __initArray__(self):
self.array = self.Values()
self.__protected = True
def __str__(self):
return str(self.array)
def __lt__(self,other):
return numpy.less(self.array,other)
def __le__(self,other):
return numpy.less_equal(self.array,other)
def __eq__(self,other):
return numpy.equal(self.array,other)
def __ne__(self,other):
return numpy.not_equal(self.array,other)
def __gt__(self,other):
return numpy.greater(self.array,other)
def __ge__(self,other):
return numpy.greater_equal(self.array,other)
def __getattr__(self, key):
# This should get called when the SerialDenseVector is accessed after
# not properly being initialized
if not "array" in self.__dict__:
self.__initArray__()
try:
return self.array.__getattribute__(key)
except AttributeError:
return SerialDenseVector.__getattribute__(self, key)
def __setattr__(self, key, value):
"Handle 'this' attribute properly and protect the 'array' attribute"
if key == "this":
NumPySerialDenseVector.__setattr__(self, key, value)
else:
if key in self.__dict__:
if self.__protected:
if key == "array":
raise AttributeError, \
"Cannot change Epetra.SerialDenseVector array attribute"
UserArray.__setattr__(self, key, value)
def __call__(self,i):
"__call__(self, int i) -> double"
return self.__getitem__(i)
def Size(self,length):
"Size(self, int length) -> int"
result = NumPySerialDenseVector.Size(self,length)
self.__protected = False
self.__initArray__()
return result
def Resize(self,length):
"Resize(self, int length) -> int"
result = NumPySerialDenseVector.Resize(self,length)
self.__protected = False
self.__initArray__()
return result
_Epetra.NumPySerialDenseVector_swigregister(SerialDenseVector)
def Init_Argv(*args):
"""Init_Argv(PyObject args) -> PyObject"""
return _Epetra.Init_Argv(*args)
def Finalize(*args):
"""Finalize() -> PyObject"""
return _Epetra.Finalize(*args)
class Comm(_object):
"""
Epetra_Comm: The Epetra Communication Abstract Base Class.
The Epetra_Comm class is an interface that encapsulates the general
information and services needed for other Epetra classes to run on a
parallel computer. An Epetra_Comm object is required for building all
Epetra Map objects, which in turn are required for all other Epetra
classes.
Epetra_Comm has default implementations, via Epetra_SerialComm and
Epetra_MpiComm, for both serial execution and MPI distributed memory
execution. It is meant to insulate the user from the specifics of
communication that are not required for normal manipulation of linear
algebra objects. Most Epetra_Comm interfaces are similar to MPI
interfaces, except that the type of data is not required as an
argument since C++ can bind to the appropriate interface based on
argument typing.
Any implementation of the Epetra_Comm interface is also responsible
for generating an Epetra_Distributor and Epetra_Directory object.
C++ includes: Epetra_Comm.h
"""
__swig_setmethods__ = {}
__setattr__ = lambda self, name, value: _swig_setattr(self, Comm, name, value)
__swig_getmethods__ = {}
__getattr__ = lambda self, name: _swig_getattr(self, Comm, name)
def __init__(self, *args, **kwargs): raise AttributeError("No constructor defined - class is abstract")
__repr__ = _swig_repr
def Clone(self, *args):
"""
Clone(self) -> Comm
virtual Epetra_Comm*
Epetra_Comm::Clone() const =0
Epetra_Comm clone constructor.
The clone function will return a new heap-allocated Comm instance. It
is the responsibility of the caller to ensure that this new instance
is properly destroyed.
"""
return _Epetra.Comm_Clone(self, *args)
__swig_destroy__ = _Epetra.delete_Comm
__del__ = lambda self : None;
def Barrier(self, *args):
"""
Barrier(self)
virtual void
Epetra_Comm::Barrier() const =0
Epetra_Comm Barrier function.
Each processor must wait at the point the barrier is called until all
processors have arrived.
"""
return _Epetra.Comm_Barrier(self, *args)
def MyPID(self, *args):
"""
MyPID(self) -> int
virtual int
Epetra_Comm::MyPID() const =0
Return my process ID.
In MPI mode returns the rank of the calling process. In serial mode
returns 0.
"""
return _Epetra.Comm_MyPID(self, *args)
def NumProc(self, *args):
"""
NumProc(self) -> int
virtual int
Epetra_Comm::NumProc() const =0
Returns total number of processes.
In MPI mode returns the size of the MPI communicator. In serial mode
returns 1.
"""
return _Epetra.Comm_NumProc(self, *args)
def CreateDistributor(self, *args):
"""
CreateDistributor(self) -> Distributor
virtual
Epetra_Distributor* Epetra_Comm::CreateDistributor() const =0
Create a distributor object.
"""
return _Epetra.Comm_CreateDistributor(self, *args)
def CreateDirectory(self, *args):
"""
CreateDirectory(self, BlockMap Map) -> Directory
virtual
Epetra_Directory* Epetra_Comm::CreateDirectory(const Epetra_BlockMap
&Map) const =0
Create a directory object for the given Epetra_BlockMap.
"""
return _Epetra.Comm_CreateDirectory(self, *args)
def PrintInfo(self, *args):
"""
PrintInfo(self, os)
virtual void
Epetra_Comm::PrintInfo(ostream &os) const =0
Print object to an output stream.
"""
return _Epetra.Comm_PrintInfo(self, *args)
def Broadcast(self, *args):
"""
Broadcast(self, numpy.ndarray myObj, int root)
Argument myObj must be a numpy array, so that the Broadcast can be
performed in-place. Its scalar data type must be int, long, double or
string. In C++, this routine has an integer error return code. In
python, a non-zero return code is converted to an exception.
virtual int
Epetra_Comm::Broadcast(char *MyVals, int Count, int Root) const =0
Epetra_Comm Broadcast function.
Take list of input values from the root processor and sends to all
other processors.
Parameters:
-----------
MyVals: InOut On entry, the root processor contains the list of
values. On exit, all processors will have the same list of values.
Note that values must be allocated on all processor before the
broadcast.
Count: In On entry, contains the length of the list of Values.
Root: In On entry, contains the processor from which all processors
will receive a copy of Values.
"""
return _Epetra.Comm_Broadcast(self, *args)
def GatherAll(self, *args):
"""
GatherAll(self, PyObject myObj) -> PyObject
Argument myObj can be a numpy array or any sequence that can be
converted to a numpy array. Its scalar data type must be int, long or
double. The return argument is a numpy array of the same type. In
C++, this routine has an integer error return code. In python, a
non-zero return code is converted to an exception.
"""
return _Epetra.Comm_GatherAll(self, *args)
def SumAll(self, *args):
"""
SumAll(self, PyObject partialObj) -> PyObject
Argument myObj can be a numpy array or any sequence that can be
converted to a numpy array. Its scalar data type must be int, long or
double. The return argument is a numpy array of the same type. In
C++, this routine has an integer error return code. In python, a
non-zero return code is converted to an exception.
"""
return _Epetra.Comm_SumAll(self, *args)
def MaxAll(self, *args):
"""
MaxAll(self, PyObject partialObj) -> PyObject
Argument myObj can be a numpy array or any sequence that can be
converted to a numpy array. Its scalar data type must be int, long or
double. The return argument is a numpy array of the same type. In
C++, this routine has an integer error return code. In python, a
non-zero return code is converted to an exception.
"""
return _Epetra.Comm_MaxAll(self, *args)
def MinAll(self, *args):
"""
MinAll(self, PyObject partialObj) -> PyObject
Argument myObj can be a numpy array or any sequence that can be
converted to a numpy array. Its scalar data type must be int, long or
double. The return argument is a numpy array of the same type. In
C++, this routine has an integer error return code. In python, a
non-zero return code is converted to an exception.
"""
return _Epetra.Comm_MinAll(self, *args)
def ScanSum(self, *args):
"""
ScanSum(self, PyObject partialObj) -> PyObject
Argument myObj can be a numpy array or any sequence that can be
converted to a numpy array. Its scalar data type must be int, long or
double. The return argument is a numpy array of the same type. In
C++, this routine has an integer error return code. In python, a
non-zero return code is converted to an exception.
"""
return _Epetra.Comm_ScanSum(self, *args)
Comm_swigregister = _Epetra.Comm_swigregister
Comm_swigregister(Comm)
class SerialComm(Object,Comm):
"""
Epetra_SerialComm: The Epetra Serial Communication Class.
The Epetra_SerialComm class is an implementation of Epetra_Comm,
providing the general information and services needed for other Epetra
classes to run on a serial computer.
C++ includes: Epetra_SerialComm.h
"""
__swig_setmethods__ = {}
for _s in [Object,Comm]: __swig_setmethods__.update(getattr(_s,'__swig_setmethods__',{}))
__setattr__ = lambda self, name, value: _swig_setattr(self, SerialComm, name, value)
__swig_getmethods__ = {}
for _s in [Object,Comm]: __swig_getmethods__.update(getattr(_s,'__swig_getmethods__',{}))
__getattr__ = lambda self, name: _swig_getattr(self, SerialComm, name)
__repr__ = _swig_repr
def __init__(self, *args):
"""
__init__(self) -> SerialComm
__init__(self, SerialComm Comm) -> SerialComm
Epetra_SerialComm::Epetra_SerialComm(const Epetra_SerialComm &Comm)
Epetra_SerialComm Copy Constructor.
Makes an exact copy of an existing Epetra_SerialComm instance.
"""
this = _Epetra.new_SerialComm(*args)
try: self.this.append(this)
except: self.this = this
def Clone(self, *args):
"""
Clone(self) -> Comm
Epetra_Comm*
Epetra_SerialComm::Clone() const
Clone method.
"""
return _Epetra.SerialComm_Clone(self, *args)
__swig_destroy__ = _Epetra.delete_SerialComm
__del__ = lambda self : None;
def Barrier(self, *args):
"""
Barrier(self)
void
Epetra_SerialComm::Barrier() const
Epetra_SerialComm Barrier function.
A no-op for a serial communicator.
"""
return _Epetra.SerialComm_Barrier(self, *args)
def MyPID(self, *args):
"""
MyPID(self) -> int
int
Epetra_SerialComm::MyPID() const
Return my process ID.
In MPI mode returns the rank of the calling process. In serial mode
returns 0.
"""
return _Epetra.SerialComm_MyPID(self, *args)
def NumProc(self, *args):
"""
NumProc(self) -> int
int
Epetra_SerialComm::NumProc() const
Returns total number of processes (always returns 1 for SerialComm).
"""
return _Epetra.SerialComm_NumProc(self, *args)
def CreateDistributor(self, *args):
"""
CreateDistributor(self) -> Distributor
Epetra_Distributor * Epetra_SerialComm::CreateDistributor() const
Create a distributor object.
"""
return _Epetra.SerialComm_CreateDistributor(self, *args)
def CreateDirectory(self, *args):
"""
CreateDirectory(self, BlockMap Map) -> Directory
Epetra_Directory * Epetra_SerialComm::CreateDirectory(const
Epetra_BlockMap &Map) const
Create a directory object for the given Epetra_BlockMap.
"""
return _Epetra.SerialComm_CreateDirectory(self, *args)
def PrintInfo(self, *args):
"""
PrintInfo(self, os)
void
Epetra_SerialComm::PrintInfo(ostream &os) const
Print method that implements Epetra_Comm virtual PrintInfo method.
"""
return _Epetra.SerialComm_PrintInfo(self, *args)
def ReferenceCount(self, *args):
"""
ReferenceCount(self) -> int
int
Epetra_SerialComm::ReferenceCount() const
Returns the reference count of SerialCommData.
(Intended for testing purposes.)
"""
return _Epetra.SerialComm_ReferenceCount(self, *args)
def DataPtr(self, *args):
"""
DataPtr(self) -> Epetra_SerialCommData
const
Epetra_SerialCommData* Epetra_SerialComm::DataPtr() const
Returns a pointer to the SerialCommData instance this SerialComm uses.
(Intended for developer use only for testing purposes.)
"""
return _Epetra.SerialComm_DataPtr(self, *args)
SerialComm_swigregister = _Epetra.SerialComm_swigregister
SerialComm_swigregister(SerialComm)
class Distributor(_object):
"""
Epetra_Distributor: The Epetra Gather/Scatter Setup Base Class.
The Epetra_Distributor class is an interface that encapsulates the
general information and services needed for other Epetra classes to
perform gather/scatter operations on a parallel computer. An
Epetra_Distributor object is actually produced by calling a method in
the Epetra_Comm class.
Epetra_Distributor has default implementations, via
Epetra_SerialDistributor and Epetra_MpiDistributor, for both serial
execution and MPI distributed memory execution. It is meant to
insulate the user from the specifics of communication that are not
required for normal manipulation of linear algebra objects..
C++ includes: Epetra_Distributor.h
"""
__swig_setmethods__ = {}
__setattr__ = lambda self, name, value: _swig_setattr(self, Distributor, name, value)
__swig_getmethods__ = {}
__getattr__ = lambda self, name: _swig_getattr(self, Distributor, name)
def __init__(self, *args, **kwargs): raise AttributeError("No constructor defined - class is abstract")
__repr__ = _swig_repr
def Clone(self, *args):
"""
Clone(self) -> Distributor
virtual
Epetra_Distributor* Epetra_Distributor::Clone()=0
Epetra_Distributor clone constructor.
"""
return _Epetra.Distributor_Clone(self, *args)
__swig_destroy__ = _Epetra.delete_Distributor
__del__ = lambda self : None;
def CreateFromSends(self, *args):
"""
CreateFromSends(self, int NumExportIDs, int ExportPIDs, bool Deterministic,
int NumRemoteIDs) -> int
virtual
int Epetra_Distributor::CreateFromSends(const int &NumExportIDs, const
int *ExportPIDs, bool Deterministic, int &NumRemoteIDs)=0
Create Distributor object using list of process IDs to which we
export.
Take a list of Process IDs and construct a plan for efficiently
scattering to these processes. Return the number of IDs being sent to
me.
Parameters:
-----------
NumExportIDs: In Number of IDs that need to be sent from this
processor.
ExportPIDs: In List of processors that will get the exported IDs.
Deterministic: In No op.
NumRemoteIDs: Out Number of IDs this processor will be receiving.
"""
return _Epetra.Distributor_CreateFromSends(self, *args)
def CreateFromRecvs(self, *args):
"""
CreateFromRecvs(self, int NumRemoteIDs, int RemoteGIDs, int RemotePIDs, bool Deterministic,
int NumExportIDs, int ExportGIDs,
int ExportPIDs) -> int
virtual
int Epetra_Distributor::CreateFromRecvs(const int &NumRemoteIDs, const
int *RemoteGIDs, const int *RemotePIDs, bool Deterministic, int
&NumExportIDs, int *&ExportGIDs, int *&ExportPIDs)=0
Create Distributor object using list of Remote global IDs and
corresponding PIDs.
Take a list of global IDs and construct a plan for efficiently
scattering to these processes. Return the number and list of IDs being
sent by me.
Parameters:
-----------
NumRemoteIDs: In Number of IDs this processor will be receiving.
RemoteGIDs: In List of IDs that this processor wants.
RemotePIDs: In List of processors that will send the remote IDs.
Deterministic: In No op.
NumExportIDs: Out Number of IDs that need to be sent from this
processor.
ExportPIDs: Out List of processors that will get the exported IDs.
"""
return _Epetra.Distributor_CreateFromRecvs(self, *args)
def DoWaits(self, *args):
"""
DoWaits(self) -> int
virtual int
Epetra_Distributor::DoWaits()=0
Wait on a set of posts.
"""
return _Epetra.Distributor_DoWaits(self, *args)
def DoReverseWaits(self, *args):
"""
DoReverseWaits(self) -> int
virtual
int Epetra_Distributor::DoReverseWaits()=0
Wait on a reverse set of posts.
"""
return _Epetra.Distributor_DoReverseWaits(self, *args)
def Do(self, *args):
"""
Do(self, char export_objs, int obj_size, int len_import_objs,
char import_objs) -> int
Do(self, char export_objs, int obj_size, int sizes, int len_import_objs,
char import_objs) -> int
virtual int
Epetra_Distributor::Do(char *export_objs, int obj_size, int *&sizes,
int &len_import_objs, char *&import_objs)=0
Execute plan on buffer of export objects in a single step (object size
may vary).
"""
return _Epetra.Distributor_Do(self, *args)
def DoReverse(self, *args):
"""
DoReverse(self, char export_objs, int obj_size, int len_import_objs,
char import_objs) -> int
DoReverse(self, char export_objs, int obj_size, int sizes, int len_import_objs,
char import_objs) -> int
virtual int
Epetra_Distributor::DoReverse(char *export_objs, int obj_size, int
*&sizes, int &len_import_objs, char *&import_objs)=0
Execute reverse of plan on buffer of export objects in a single step
(object size may vary).
"""
return _Epetra.Distributor_DoReverse(self, *args)
def DoPosts(self, *args):
"""
DoPosts(self, char export_objs, int obj_size, int len_import_objs,
char import_objs) -> int
DoPosts(self, char export_objs, int obj_size, int sizes, int len_import_objs,
char import_objs) -> int
virtual int
Epetra_Distributor::DoPosts(char *export_objs, int obj_size, int
*&sizes, int &len_import_objs, char *&import_objs)=0
Post buffer of export objects (can do other local work before
executing Waits).
"""
return _Epetra.Distributor_DoPosts(self, *args)
def DoReversePosts(self, *args):
"""
DoReversePosts(self, char export_objs, int obj_size, int len_import_objs,
char import_objs) -> int
DoReversePosts(self, char export_objs, int obj_size, int sizes, int len_import_objs,
char import_objs) -> int
virtual
int Epetra_Distributor::DoReversePosts(char *export_objs, int
obj_size, int *&sizes, int &len_import_objs, char *&import_objs)=0
Do reverse post of buffer of export objects (can do other local work
before executing Waits).
"""
return _Epetra.Distributor_DoReversePosts(self, *args)
Distributor_swigregister = _Epetra.Distributor_swigregister
Distributor_swigregister(Distributor)
class Epetra_SerialDistributor(Object,Distributor):
"""
Epetra_SerialDistributor: The Epetra Serial implementation of the
Epetra_Distributor Gather/Scatter Setup Class.
The Epetra_SerialDistributor class is an Serial implement of
Epetra_Distributor that is essentially a trivial class since a serial
machine is a trivial parallel machine. An Epetra_SerialDistributor
object is actually produced by calling a method in the
Epetra_SerialComm class.
C++ includes: Epetra_SerialDistributor.h
"""
__swig_setmethods__ = {}
for _s in [Object,Distributor]: __swig_setmethods__.update(getattr(_s,'__swig_setmethods__',{}))
__setattr__ = lambda self, name, value: _swig_setattr(self, Epetra_SerialDistributor, name, value)
__swig_getmethods__ = {}
for _s in [Object,Distributor]: __swig_getmethods__.update(getattr(_s,'__swig_getmethods__',{}))
__getattr__ = lambda self, name: _swig_getattr(self, Epetra_SerialDistributor, name)
__repr__ = _swig_repr
def __init__(self, *args):
"""
__init__(self, SerialComm Comm) -> Epetra_SerialDistributor
__init__(self, Epetra_SerialDistributor Plan) -> Epetra_SerialDistributor
Epetra_SerialDistributor::Epetra_SerialDistributor(const
Epetra_SerialDistributor &Plan)
Epetra_SerialDistributor Copy Constructor.
"""
this = _Epetra.new_Epetra_SerialDistributor(*args)
try: self.this.append(this)
except: self.this = this
def Clone(self, *args):
"""
Clone(self) -> Distributor
Epetra_Distributor* Epetra_SerialDistributor::Clone()
Clone method.
"""
return _Epetra.Epetra_SerialDistributor_Clone(self, *args)
__swig_destroy__ = _Epetra.delete_Epetra_SerialDistributor
__del__ = lambda self : None;
def CreateFromSends(self, *args):
"""
CreateFromSends(self, int NumExportIDs, int ExportPIDs, bool Deterministic,
int NumRemoteIDs) -> int
int
Epetra_SerialDistributor::CreateFromSends(const int &NumExportIDs,
const int *ExportPIDs, bool Deterministic, int &NumRemoteIDs)
Create Distributor object using list of process IDs to which we
export.
Take a list of Process IDs and construct a plan for efficiently
scattering to these processes. Return the number of IDs being sent to
me.
Parameters:
-----------
NumExportIDs: In Number of IDs that need to be sent from this
processor.
ExportPIDs: In List of processors that will get the exported IDs.
Deterministic: In No op.
NumRemoteIDs: Out Number of IDs this processor will be receiving.
"""
return _Epetra.Epetra_SerialDistributor_CreateFromSends(self, *args)
def CreateFromRecvs(self, *args):
"""
CreateFromRecvs(self, int NumRemoteIDs, int RemoteGIDs, int RemotePIDs, bool Deterministic,
int NumExportIDs, int ExportGIDs,
int ExportPIDs) -> int
int
Epetra_SerialDistributor::CreateFromRecvs(const int &NumRemoteIDs,
const int *RemoteGIDs, const int *RemotePIDs, bool Deterministic, int
&NumExportIDs, int *&ExportGIDs, int *&ExportPIDs)
Create Distributor object using list of Remote global IDs and
corresponding PIDs.
Take a list of global IDs and construct a plan for efficiently
scattering to these processes. Return the number and list of IDs being
sent by me.
Parameters:
-----------
NumRemoteIDs: In Number of IDs this processor will be receiving.
RemoteGIDs: In List of IDs that this processor wants.
RemotePIDs: In List of processors that will send the remote IDs.
Deterministic: In No op.
NumExportIDs: Out Number of IDs that need to be sent from this
processor.
ExportPIDs: Out List of processors that will get the exported IDs.
"""
return _Epetra.Epetra_SerialDistributor_CreateFromRecvs(self, *args)
def DoWaits(self, *args):
"""
DoWaits(self) -> int
int
Epetra_SerialDistributor::DoWaits()
Wait on a set of posts.
"""
return _Epetra.Epetra_SerialDistributor_DoWaits(self, *args)
def DoReverseWaits(self, *args):
"""
DoReverseWaits(self) -> int
int
Epetra_SerialDistributor::DoReverseWaits()
Wait on a reverse set of posts.
"""
return _Epetra.Epetra_SerialDistributor_DoReverseWaits(self, *args)
def Do(self, *args):
"""
Do(self, char export_objs, int obj_size, int len_import_objs,
char import_objs) -> int
Do(self, char export_objs, int obj_size, int sizes, int len_import_objs,
char import_objs) -> int
int
Epetra_SerialDistributor::Do(char *export_objs, int obj_size, int
*&sizes, int &len_import_objs, char *&import_objs)
Execute plan on buffer of export objects in a single step (object size
may vary).
"""
return _Epetra.Epetra_SerialDistributor_Do(self, *args)
def DoReverse(self, *args):
"""
DoReverse(self, char export_objs, int obj_size, int len_import_objs,
char import_objs) -> int
DoReverse(self, char export_objs, int obj_size, int sizes, int len_import_objs,
char import_objs) -> int
int
Epetra_SerialDistributor::DoReverse(char *export_objs, int obj_size,
int *&sizes, int &len_import_objs, char *&import_objs)
Execute reverse of plan on buffer of export objects in a single step
(object size may vary).
"""
return _Epetra.Epetra_SerialDistributor_DoReverse(self, *args)
def DoPosts(self, *args):
"""
DoPosts(self, char export_objs, int obj_size, int len_import_objs,
char import_objs) -> int
DoPosts(self, char export_objs, int obj_size, int sizes, int len_import_objs,
char import_objs) -> int
int
Epetra_SerialDistributor::DoPosts(char *export_objs, int obj_size, int
*&sizes, int &len_import_objs, char *&import_objs)
Post buffer of export objects (can do other local work before
executing Waits).
"""
return _Epetra.Epetra_SerialDistributor_DoPosts(self, *args)
def DoReversePosts(self, *args):
"""
DoReversePosts(self, char export_objs, int obj_size, int len_import_objs,
char import_objs) -> int
DoReversePosts(self, char export_objs, int obj_size, int sizes, int len_import_objs,
char import_objs) -> int
int
Epetra_SerialDistributor::DoReversePosts(char *export_objs, int
obj_size, int *&sizes, int &len_import_objs, char *&import_objs)
Do reverse post of buffer of export objects (can do other local work
before executing Waits).
"""
return _Epetra.Epetra_SerialDistributor_DoReversePosts(self, *args)
Epetra_SerialDistributor_swigregister = _Epetra.Epetra_SerialDistributor_swigregister
Epetra_SerialDistributor_swigregister(Epetra_SerialDistributor)
# Call MPI_Init if appropriate
import sys
Init_Argv(sys.argv)
del sys
# Arrange for MPI_Finalize to be called at exit, if appropriate
import atexit
atexit.register(Finalize)
class MpiComm(Object,Comm):
"""
Epetra_MpiComm: The Epetra MPI Communication Class.
The Epetra_MpiComm class is an implementation of Epetra_Comm that
encapsulates the general information and services needed for other
Epetra classes to run on a parallel computer using MPI.
C++ includes: Epetra_MpiComm.h
"""
__swig_setmethods__ = {}
for _s in [Object,Comm]: __swig_setmethods__.update(getattr(_s,'__swig_setmethods__',{}))
__setattr__ = lambda self, name, value: _swig_setattr(self, MpiComm, name, value)
__swig_getmethods__ = {}
for _s in [Object,Comm]: __swig_getmethods__.update(getattr(_s,'__swig_getmethods__',{}))
__getattr__ = lambda self, name: _swig_getattr(self, MpiComm, name)
__repr__ = _swig_repr
def __init__(self, *args):
"""
__init__(self, MPI_Comm comm) -> MpiComm
__init__(self, MpiComm Comm) -> MpiComm
Epetra_MpiComm::Epetra_MpiComm(const Epetra_MpiComm &Comm)
Epetra_MpiComm Copy Constructor.
Makes an exact copy of an existing Epetra_MpiComm instance.
"""
this = _Epetra.new_MpiComm(*args)
try: self.this.append(this)
except: self.this = this
def Clone(self, *args):
"""
Clone(self) -> Comm
Epetra_Comm*
Epetra_MpiComm::Clone() const
Clone method.
"""
return _Epetra.MpiComm_Clone(self, *args)
__swig_destroy__ = _Epetra.delete_MpiComm
__del__ = lambda self : None;
def Barrier(self, *args):
"""
Barrier(self)
void
Epetra_MpiComm::Barrier() const
Epetra_MpiComm Barrier function.
Causes each processor in the communicator to wait until all processors
have arrived.
"""
return _Epetra.MpiComm_Barrier(self, *args)
def Comm(self, *args):
"""
Comm(self) -> MPI_Comm
MPI_Comm
Epetra_MpiComm::Comm() const
Extract MPI Communicator from a Epetra_MpiComm object.
"""
return _Epetra.MpiComm_Comm(self, *args)
def MyPID(self, *args):
"""
MyPID(self) -> int
int
Epetra_MpiComm::MyPID() const
Return my process ID.
In MPI mode returns the rank of the calling process. In serial mode
returns 0.
"""
return _Epetra.MpiComm_MyPID(self, *args)
def NumProc(self, *args):
"""
NumProc(self) -> int
int
Epetra_MpiComm::NumProc() const
Returns total number of processes.
In MPI mode returns the size of the MPI communicator. In serial mode
returns 1.
"""
return _Epetra.MpiComm_NumProc(self, *args)
def CreateDistributor(self, *args):
"""
CreateDistributor(self) -> Distributor
Epetra_Distributor * Epetra_MpiComm::CreateDistributor() const
Create a distributor object.
"""
return _Epetra.MpiComm_CreateDistributor(self, *args)
def CreateDirectory(self, *args):
"""
CreateDirectory(self, BlockMap Map) -> Directory
Epetra_Directory * Epetra_MpiComm::CreateDirectory(const
Epetra_BlockMap &Map) const
Create a directory object for the given Epetra_BlockMap.
"""
return _Epetra.MpiComm_CreateDirectory(self, *args)
def GetMpiTag(self, *args):
"""
GetMpiTag(self) -> int
int
Epetra_MpiComm::GetMpiTag() const
Acquire an MPI tag from the Epetra range of 24050-24099, increment
tag.
"""
return _Epetra.MpiComm_GetMpiTag(self, *args)
def GetMpiComm(self, *args):
"""
GetMpiComm(self) -> MPI_Comm
MPI_Comm
Epetra_MpiComm::GetMpiComm() const
Get the MPI Communicator (identical to Comm() method; used when we
know we are MPI.
"""
return _Epetra.MpiComm_GetMpiComm(self, *args)
def PrintInfo(self, *args):
"""
PrintInfo(self, os)
void
Epetra_MpiComm::PrintInfo(ostream &os) const
Print method that implements Epetra_Comm virtual PrintInfo method.
"""
return _Epetra.MpiComm_PrintInfo(self, *args)
def ReferenceCount(self, *args):
"""
ReferenceCount(self) -> int
int
Epetra_MpiComm::ReferenceCount() const
Returns the reference count of MpiCommData.
(Intended for testing purposes.)
"""
return _Epetra.MpiComm_ReferenceCount(self, *args)
def DataPtr(self, *args):
"""
DataPtr(self) -> Epetra_MpiCommData
const
Epetra_MpiCommData* Epetra_MpiComm::DataPtr() const
Returns a pointer to the MpiCommData instance this MpiComm uses.
(Intended for developer use only for testing purposes.)
"""
return _Epetra.MpiComm_DataPtr(self, *args)
MpiComm_swigregister = _Epetra.MpiComm_swigregister
MpiComm_swigregister(MpiComm)
CommWorld = cvar.CommWorld
class Epetra_MpiDistributor(Object,Distributor):
"""
Epetra_MpiDistributor: The Epetra MPI implementation of the
Epetra_Distributor Gather/Scatter Setup Class.
The Epetra_MpiDistributor class is an MPI implement of
Epetra_Distributor that encapsulates the general information and
services needed for other Epetra classes to perform gather/scatter
operations on a parallel computer. An Epetra_MpiDistributor object is
actually produced by calling a method in the Epetra_MpiComm class.
C++ includes: Epetra_MpiDistributor.h
"""
__swig_setmethods__ = {}
for _s in [Object,Distributor]: __swig_setmethods__.update(getattr(_s,'__swig_setmethods__',{}))
__setattr__ = lambda self, name, value: _swig_setattr(self, Epetra_MpiDistributor, name, value)
__swig_getmethods__ = {}
for _s in [Object,Distributor]: __swig_getmethods__.update(getattr(_s,'__swig_getmethods__',{}))
__getattr__ = lambda self, name: _swig_getattr(self, Epetra_MpiDistributor, name)
__repr__ = _swig_repr
def __init__(self, *args):
"""
__init__(self, MpiComm Comm) -> Epetra_MpiDistributor
__init__(self, Epetra_MpiDistributor Distributor) -> Epetra_MpiDistributor
Epetra_MpiDistributor::Epetra_MpiDistributor(const
Epetra_MpiDistributor &Distributor)
Epetra_Comm Copy Constructor.
"""
this = _Epetra.new_Epetra_MpiDistributor(*args)
try: self.this.append(this)
except: self.this = this
def Clone(self, *args):
"""
Clone(self) -> Distributor
Epetra_Distributor* Epetra_MpiDistributor::Clone()
Clone method.
"""
return _Epetra.Epetra_MpiDistributor_Clone(self, *args)
__swig_destroy__ = _Epetra.delete_Epetra_MpiDistributor
__del__ = lambda self : None;
def CreateFromSends(self, *args):
"""
CreateFromSends(self, int NumExportIDs, int ExportPIDs, bool Deterministic,
int NumRemoteIDs) -> int
int
Epetra_MpiDistributor::CreateFromSends(const int &NumExportIDs, const
int *ExportPIDs, bool Deterministic, int &NumRemoteIDs)
Create Distributor object using list of process IDs to which we
export.
Take a list of Process IDs and construct a plan for efficiently
scattering to these processes. Return the number of IDs being sent to
me.
Parameters:
-----------
NumExportIDs: In Number of IDs that need to be sent from this
processor.
ExportPIDs: In List of processors that will get the exported IDs.
Deterministic: In No Op.
NumRemoteIDs: Out Number of IDs this processor will be receiving.
"""
return _Epetra.Epetra_MpiDistributor_CreateFromSends(self, *args)
def CreateFromRecvs(self, *args):
"""
CreateFromRecvs(self, int NumRemoteIDs, int RemoteGIDs, int RemotePIDs, bool Deterministic,
int NumExportIDs, int ExportGIDs,
int ExportPIDs) -> int
int
Epetra_MpiDistributor::CreateFromRecvs(const int &NumRemoteIDs, const
int *RemoteGIDs, const int *RemotePIDs, bool Deterministic, int
&NumExportIDs, int *&ExportGIDs, int *&ExportPIDs)
Create Distributor object using list of Remote global IDs and
corresponding PIDs.
Take a list of global IDs and construct a plan for efficiently
scattering to these processes. Return the number and list of IDs being
sent by me.
Parameters:
-----------
NumRemoteIDs: In Number of IDs this processor will be receiving.
RemoteGIDs: In List of IDs that this processor wants.
RemotePIDs: In List of processors that will send the remote IDs.
Deterministic: In No Op.
NumExportIDs: Out Number of IDs that need to be sent from this
processor.
ExportGIDs: Out List of processors that will get the exported IDs.
ExportPIDs: Out List of processors that will get the exported IDs.
"""
return _Epetra.Epetra_MpiDistributor_CreateFromRecvs(self, *args)
def DoWaits(self, *args):
"""
DoWaits(self) -> int
int
Epetra_MpiDistributor::DoWaits()
Wait on a set of posts.
"""
return _Epetra.Epetra_MpiDistributor_DoWaits(self, *args)
def DoReverseWaits(self, *args):
"""
DoReverseWaits(self) -> int
int
Epetra_MpiDistributor::DoReverseWaits()
Wait on a reverse set of posts.
"""
return _Epetra.Epetra_MpiDistributor_DoReverseWaits(self, *args)
def Do(self, *args):
"""
Do(self, char export_objs, int obj_size, int len_import_objs,
char import_objs) -> int
Do(self, char export_objs, int obj_size, int sizes, int len_import_objs,
char import_objs) -> int
int
Epetra_MpiDistributor::Do(char *export_objs, int obj_size, int
*&sizes, int &len_import_objs, char *&import_objs)
Execute plan on buffer of export objects in a single step (object size
may vary).
"""
return _Epetra.Epetra_MpiDistributor_Do(self, *args)
def DoReverse(self, *args):
"""
DoReverse(self, char export_objs, int obj_size, int len_import_objs,
char import_objs) -> int
DoReverse(self, char export_objs, int obj_size, int sizes, int len_import_objs,
char import_objs) -> int
int
Epetra_MpiDistributor::DoReverse(char *export_objs, int obj_size, int
*&sizes, int &len_import_objs, char *&import_objs)
Execute reverse of plan on buffer of export objects in a single step
(object size may vary).
"""
return _Epetra.Epetra_MpiDistributor_DoReverse(self, *args)
def DoPosts(self, *args):
"""
DoPosts(self, char export_objs, int obj_size, int len_import_objs,
char import_objs) -> int
DoPosts(self, char export_objs, int obj_size, int sizes, int len_import_objs,
char import_objs) -> int
int
Epetra_MpiDistributor::DoPosts(char *export_objs, int obj_size, int
*&sizes, int &len_import_objs, char *&import_objs)
Post buffer of export objects (can do other local work before
executing Waits).
"""
return _Epetra.Epetra_MpiDistributor_DoPosts(self, *args)
def DoReversePosts(self, *args):
"""
DoReversePosts(self, char export_objs, int obj_size, int len_import_objs,
char import_objs) -> int
DoReversePosts(self, char export_objs, int obj_size, int sizes, int len_import_objs,
char import_objs) -> int
int
Epetra_MpiDistributor::DoReversePosts(char *export_objs, int obj_size,
int *&sizes, int &len_import_objs, char *&import_objs)
Do reverse post of buffer of export objects (can do other local work
before executing Waits).
"""
return _Epetra.Epetra_MpiDistributor_DoReversePosts(self, *args)
Epetra_MpiDistributor_swigregister = _Epetra.Epetra_MpiDistributor_swigregister
Epetra_MpiDistributor_swigregister(Epetra_MpiDistributor)
def PyComm():
"PyComm() -> Epetra.MpiComm(MPI_COMM_WORLD)"
return MpiComm(cvar.CommWorld);
class BlockMap(Object):
"""
Epetra_BlockMap: A class for partitioning block element vectors and
matrices.
It is often the case that multiple matrix and vector objects have an
identical distribution of elements on a parallel machine. The
Epetra_BlockMap class keeps information that describes this
distribution for matrices and vectors that have block elements. The
definition of an element can vary depending on the situation. For
vectors (and multi-vectors), an element is a span of one or more
contiguous entries. For matrices, it is a span of one or more matrix
rows. More generally, an element in the BlockMap class is an ordered
list of points. (NOTE: Points do not have global ID's.) Two additional
definitions useful in understanding the BlockMap class follow:
BlockMap - A distributed ordered list of elements.
First Point - First ordered point in an element
This class has a variety of constructors that can be separated into
two categories: Fixed element size constructors: All map elements have
an identical size. This corresponds to a block partitioning of
matrices and vectors where the element size is the same for all
elements. A common example is multiple degrees of freedom per mesh
node in finite element computations where the number of degrees of
freedom is the same for all nodes.
Variable element size constructor: Map element sizes may vary and are
individually defined via a list of element sizes. This is the most
general case and corresponds to a variable block partitioning of the
matrices and vectors. A common example is multiple degrees of freedom
per mesh node in finite element computations where the number of
degrees of freedom varies. This happens, for example, if regions have
differing material types or there are chemical reactions in the
simulation.
Epetra_BlockMap allows the storage and retrieval of the following
information. Depending on the constructor that is used, some of the
information is defined by the user and some is determined by the
constructor. Once an Epetra_BlockMap is constructed any of the
following can be obtained by calling a query function that has the
same name as the attribute, e.g. to get the value of
NumGlobalElements, you can call a function NumGlobalElements(). For
attributes that are lists, the query functions return the list values
in a user allocated array.
NumGlobalElements - The total number of elements across all
processors. If this parameter and NumMyElements are both passed in to
the constructor, one of the three cases will apply: If
NumGlobalElements = NumMyElements (and not equal to zero) the map is
defined to be a local replicated map. In this case, objects
constructed using this map will be identically replicated across all
processors in the communicator.
If NumGlobalElements = -1 and NumMyElements is passed in then
NumGlobalElements will be computed as the sum of NumMyElements across
all processors.
If neither of the above is true, NumGlobalElements will be checked
against the sum of NumMyElements across all processors. An error is
issued if the comparison is not equal.
NumMyElements - The number of elements owned by the calling processor.
MyGlobalElements - A list of length NumMyElements that contains the
global element IDs of the elements owned by the calling processor.
ElementSize - The size of elements if the size of all elements is the
same. This will be the case if the query function
ConstantElementSize() returns true. Otherwise this value will be set
to zero.
ElementSizeList - A list of the element sizes for elements owned by
the calling processor. This list is always accessible, even if the
element sizes are all one or of constant value. However, in these
cases, the ElementSizeList will not be generated unless a query for
the list is called.
IndexBase - The base integer value for indexed array references.
Typically this is 0 for C/C++ and 1 for Fortran, but it can be set to
any integer value.
Comm - The Epetra_Comm communicator. This communicator can in turn be
queried for processor rank and size information.
In addition to the information above that is passed in to or created
by the Epetra_BlockMap constructor, the following attributes are
computed and available via query to the user using the same scheme as
above, e.g., use NumGlobalPoints() to get the value of
NumGlobalPoints.
NumGlobalPoints - The total number of points across all processors.
NumMyPoints - The number of points on the calling processor.
MinAllGID - The minimum global index value across all processors.
MaxAllGID - The maximum global index value across all processors.
MinMyGID - The minimum global index value on the calling processor.
MaxMyGID - The maximum global index value on the calling processor.
MinLID - The minimum local index value on the calling processor.
MaxLID - The maximum local index value on the calling processor.
MinElementSize - The minimum element size across all processors.
MaxElementSize - The maximum element size across all processors.
The following functions allow boolean tests for certain properties.
ConstantElementSize() - Returns true if the element size for this map
is the same for all elements.
LinearMap() - Returns true if the elements are distributed linear
across processors, i.e., processor 0 gets the first n/p elements,
processor 1 gets the next n/p elements, etc. where n is the number of
elements and p is the number of processors.
DistributedGlobal() - Returns true if the element space of the map
spans more than one processor. This will be true in most cases, but
will be false on in serial and for objects that are created via the
derived Epetra_LocalMap class.
WARNING: A Epetra_Comm object is required for all Epetra_BlockMap
constructors. {error handling}
Most methods in Epetra_BlockMap return an integer error code. If the
error code is 0, then no error occurred. If > 0 then a warning error
occurred. If < 0 then a fatal error occurred.
Epetra_BlockMap constructors will throw an exception of an error
occurrs. These exceptions will alway be negative integer values as
follows: -1 NumGlobalElements < -1. Should be >= -1 (Should be >= 0
for first BlockMap constructor).
-2 NumMyElements < 0. Should be >= 0.
-3 ElementSize <= 0. Should be > 0.
-4 Invalid NumGlobalElements. Should equal sum of MyGlobalElements, or
set to -1 to compute automatically.
-5 Minimum global element index is less than index base.
-99 Internal Epetra_BlockMap error. Contact developer.
For robust code, Epetra_BlockMap constructor calls should be caught
using the try {...} catch {...} mechanism. For example:
try { Epetra_BlockMap * map = new
Epetra_BlockMap(NumGlobalElements, ElementSize, IndexBase, Comm); }
catch (int Error) { if (Error==-1) { // handle error } if
(Error==-2) ...
{ In the current implementation, Epetra_BlockMap is the base class
for: Epetra_Map.
Epetra_LocalBlockMap. }
C++ includes: Epetra_BlockMap.h
"""
__swig_setmethods__ = {}
for _s in [Object]: __swig_setmethods__.update(getattr(_s,'__swig_setmethods__',{}))
__setattr__ = lambda self, name, value: _swig_setattr(self, BlockMap, name, value)
__swig_getmethods__ = {}
for _s in [Object]: __swig_getmethods__.update(getattr(_s,'__swig_getmethods__',{}))
__getattr__ = lambda self, name: _swig_getattr(self, BlockMap, name)
__repr__ = _swig_repr
__swig_destroy__ = _Epetra.delete_BlockMap
__del__ = lambda self : None;
def LID(self, *args):
"""
LID(self, int GID) -> int
int
Epetra_BlockMap::LID(int GID) const
Returns local ID of global ID, return -1 if not found on this
processor.
"""
return _Epetra.BlockMap_LID(self, *args)
def GID(self, *args):
"""
GID(self, int LID) -> int
int
Epetra_BlockMap::GID(int LID) const
Returns global ID of local ID, return IndexBase-1 if not found on this
processor.
"""
return _Epetra.BlockMap_GID(self, *args)
def MyGID(self, *args):
"""
MyGID(self, int GID_in) -> bool
bool
Epetra_BlockMap::MyGID(int GID_in) const
Returns true if the GID passed in belongs to the calling processor in
this map, otherwise returns false.
"""
return _Epetra.BlockMap_MyGID(self, *args)
def MyLID(self, *args):
"""
MyLID(self, int LID_in) -> bool
bool
Epetra_BlockMap::MyLID(int LID_in) const
Returns true if the LID passed in belongs to the calling processor in
this map, otherwise returns false.
"""
return _Epetra.BlockMap_MyLID(self, *args)
def MinAllGID(self, *args):
"""
MinAllGID(self) -> int
int
Epetra_BlockMap::MinAllGID() const
Returns the minimum global ID across the entire map.
"""
return _Epetra.BlockMap_MinAllGID(self, *args)
def MaxAllGID(self, *args):
"""
MaxAllGID(self) -> int
int
Epetra_BlockMap::MaxAllGID() const
Returns the maximum global ID across the entire map.
"""
return _Epetra.BlockMap_MaxAllGID(self, *args)
def MinMyGID(self, *args):
"""
MinMyGID(self) -> int
int
Epetra_BlockMap::MinMyGID() const
Returns the maximum global ID owned by this processor.
"""
return _Epetra.BlockMap_MinMyGID(self, *args)
def MaxMyGID(self, *args):
"""
MaxMyGID(self) -> int
int
Epetra_BlockMap::MaxMyGID() const
Returns the maximum global ID owned by this processor.
"""
return _Epetra.BlockMap_MaxMyGID(self, *args)
def MinLID(self, *args):
"""
MinLID(self) -> int
int
Epetra_BlockMap::MinLID() const
The minimum local index value on the calling processor.
"""
return _Epetra.BlockMap_MinLID(self, *args)
def MaxLID(self, *args):
"""
MaxLID(self) -> int
int
Epetra_BlockMap::MaxLID() const
The maximum local index value on the calling processor.
"""
return _Epetra.BlockMap_MaxLID(self, *args)
def NumGlobalElements(self, *args):
"""
NumGlobalElements(self) -> int
int
Epetra_BlockMap::NumGlobalElements() const
Number of elements across all processors.
"""
return _Epetra.BlockMap_NumGlobalElements(self, *args)
def NumMyElements(self, *args):
"""
NumMyElements(self) -> int
int
Epetra_BlockMap::NumMyElements() const
Number of elements on the calling processor.
"""
return _Epetra.BlockMap_NumMyElements(self, *args)
def ElementSize(self, *args):
"""
ElementSize(self) -> int
ElementSize(self, int LID) -> int
int
Epetra_BlockMap::ElementSize(int LID) const
Size of element for specified LID.
"""
return _Epetra.BlockMap_ElementSize(self, *args)
def FirstPointInElement(self, *args):
"""
FirstPointInElement(self, int LID) -> int
int
Epetra_BlockMap::FirstPointInElement(int LID) const
Returns the requested entry in the FirstPointInElementList; see
FirstPointInElementList() for details.
This function provides similar functionality to
FirstPointInElementList(), but for simple maps may avoid the explicit
construction of the FirstPointInElementList array. Returns -1 if LID
is out-of-range.
"""
return _Epetra.BlockMap_FirstPointInElement(self, *args)
def IndexBase(self, *args):
"""
IndexBase(self) -> int
int
Epetra_BlockMap::IndexBase() const
Index base for this map.
"""
return _Epetra.BlockMap_IndexBase(self, *args)
def NumGlobalPoints(self, *args):
"""
NumGlobalPoints(self) -> int
int
Epetra_BlockMap::NumGlobalPoints() const
Number of global points for this map; equals the sum of all element
sizes across all processors.
"""
return _Epetra.BlockMap_NumGlobalPoints(self, *args)
def NumMyPoints(self, *args):
"""
NumMyPoints(self) -> int
int
Epetra_BlockMap::NumMyPoints() const
Number of local points for this map; equals the sum of all element
sizes on the calling processor.
"""
return _Epetra.BlockMap_NumMyPoints(self, *args)
def MinMyElementSize(self, *args):
"""
MinMyElementSize(self) -> int
int
Epetra_BlockMap::MinMyElementSize() const
Minimum element size on the calling processor.
"""
return _Epetra.BlockMap_MinMyElementSize(self, *args)
def MaxMyElementSize(self, *args):
"""
MaxMyElementSize(self) -> int
int
Epetra_BlockMap::MaxMyElementSize() const
Maximum element size on the calling processor.
"""
return _Epetra.BlockMap_MaxMyElementSize(self, *args)
def MinElementSize(self, *args):
"""
MinElementSize(self) -> int
int
Epetra_BlockMap::MinElementSize() const
Minimum element size across all processors.
"""
return _Epetra.BlockMap_MinElementSize(self, *args)
def MaxElementSize(self, *args):
"""
MaxElementSize(self) -> int
int
Epetra_BlockMap::MaxElementSize() const
Maximum element size across all processors.
"""
return _Epetra.BlockMap_MaxElementSize(self, *args)
def UniqueGIDs(self, *args):
"""
UniqueGIDs(self) -> bool
bool
Epetra_BlockMap::UniqueGIDs() const
Returns true if map GIDs are 1-to-1.
Certain operations involving Epetra_BlockMap and Epetra_Map objects
are well-defined only if the map GIDs are uniquely present in the map.
In other words, if a GID occurs in the map, it occurs only once on a
single processor and nowhere else. This boolean test returns true if
this property is true, otherwise it returns false.
"""
return _Epetra.BlockMap_UniqueGIDs(self, *args)
def ConstantElementSize(self, *args):
"""
ConstantElementSize(self) -> bool
bool
Epetra_BlockMap::ConstantElementSize() const
Returns true if map has constant element size.
"""
return _Epetra.BlockMap_ConstantElementSize(self, *args)
def SameAs(self, *args):
"""
SameAs(self, BlockMap Map) -> bool
bool
Epetra_BlockMap::SameAs(const Epetra_BlockMap &Map) const
Returns true if this and Map are identical maps.
"""
return _Epetra.BlockMap_SameAs(self, *args)
def PointSameAs(self, *args):
"""
PointSameAs(self, BlockMap Map) -> bool
bool
Epetra_BlockMap::PointSameAs(const Epetra_BlockMap &Map) const
Returns true if this and Map have identical point-wise structure.
If both maps have the same number of global points and the same point
distribution across processors then this method returns true.
"""
return _Epetra.BlockMap_PointSameAs(self, *args)
def LinearMap(self, *args):
"""
LinearMap(self) -> bool
bool
Epetra_BlockMap::LinearMap() const
Returns true if the global ID space is contiguously divided (but not
necessarily uniformly) across all processors.
"""
return _Epetra.BlockMap_LinearMap(self, *args)
def DistributedGlobal(self, *args):
"""
DistributedGlobal(self) -> bool
bool
Epetra_BlockMap::DistributedGlobal() const
Returns true if map is defined across more than one processor.
"""
return _Epetra.BlockMap_DistributedGlobal(self, *args)
def Comm(self, *args):
"""
Comm(self) -> Comm
const Epetra_Comm&
Epetra_BlockMap::Comm() const
Access function for Epetra_Comm communicator.
"""
return _Epetra.BlockMap_Comm(self, *args)
def IsOneToOne(self, *args):
"""
IsOneToOne(self) -> bool
bool
Epetra_BlockMap::IsOneToOne() const
"""
return _Epetra.BlockMap_IsOneToOne(self, *args)
def __init__(self, *args):
"""
__init__(self, int numGlobalElements, int elementSize, int indexBase,
Comm comm) -> BlockMap
BlockMap constructor with implicit local elements and constant element
size. Arguments are:
numGlobalElements - Total number of elements over all processors.
Specify -1 to have the constructor compute
the number of global elements
elementSize - The number of degrees of freedom associated
with every element.
indexBase - The base integer value for indexed array
references. Typically this is 0 for C/C++ and 1
for Fortran, but it can be set to any integer
value.
comm - The Epetra.Comm communicator. This communicator
can in turn be queried for processor rank and
size information.
__init__(self, int numGlobalElements, int numMyElements, int elementSize,
int indexBase, Comm comm) -> BlockMap
BlockMap constructor with specified number of local elements and
constant element size. Arguments are:
numGlobalElements - Total number of elements over all processors.
Specify -1 to have the constructor compute
the number of global elements
numMyElements - Number of local elements on this processor.
elementSize - The number of degrees of freedom associated
with every element.
indexBase - The base integer value for indexed array
references. Typically this is 0 for C/C++ and 1
for Fortran, but it can be set to any integer
value.
comm - The Epetra.Comm communicator. This communicator
can in turn be queried for processor rank and
size information.
__init__(self, int numGlobalElements, PySequence myGlobalElements,
int elementSize, int indexBase, Comm comm) -> BlockMap
BlockMap constructor with specified list of local elements and
constant element size. Arguments are:
numGlobalElements - Total number of elements over all processors.
Specify -1 to have the constructor compute
the number of global elements
myGlobalElements - A sequence of integers specifying the global
element indexes on this processor.
elementSize - The number of degrees of freedom associated
with every element.
indexBase - The base integer value for indexed array
references. Typically this is 0 for C/C++ and 1
for Fortran, but it can be set to any integer
value.
comm - The Epetra.Comm communicator. This communicator
can in turn be queried for processor rank and
size information.
__init__(self, BlockMap map) -> BlockMap
BlockMap copy constructor.
__init__(self, int numGlobalElements, PySequence myGlobalElements,
PySequence elementsSizes, int indexBase, Comm comm) -> BlockMap
BlockMap constructor with specified list of local elements and
specified list of element sizes. Arguments are:
numGlobalElements - Total number of elements over all processors.
Specify -1 to have the constructor compute
the number of global elements
myGlobalElements - A sequence of integers specifying the global
element indexes on this processor.
elementSizes - A sequence of integers specifying the number of
degrees of freedom associated with each element
on this processor.
indexBase - The base integer value for indexed array
references. Typically this is 0 for C/C++ and 1
for Fortran, but it can be set to any integer
value.
comm - The Epetra.Comm communicator. This communicator
can in turn be queried for processor rank and
size information.
Epetra_BlockMap::Epetra_BlockMap(const Epetra_BlockMap &map)
Epetra_BlockMap copy constructor.
"""
this = _Epetra.new_BlockMap(*args)
try: self.this.append(this)
except: self.this = this
def RemoteIDList(self, *args):
"""
RemoteIDList(self, PyObject GIDList) -> PyObject
``GIDList`` is a sequence of integer global IDs, and the return
argument is the three-tuple ``(PIDList, LIDList, sizeList)``, which
are ``numpy.ndarray`` objects of integers representing the processor
IDs, local IDs and element sizes, respectively.
"""
return _Epetra.BlockMap_RemoteIDList(self, *args)
def FindLocalElementID(self, *args):
"""
FindLocalElementID(self, int pointID) -> PyObject
Returns a tuple containing the local ID of the element that contains
the given local pointID, and the offset of the point in that element.
"""
return _Epetra.BlockMap_FindLocalElementID(self, *args)
def MyGlobalElements(self, *args):
"""
MyGlobalElements(self) -> PyObject
Returns a numpy array of integers specifying the list of global IDs on
the processor.
"""
return _Epetra.BlockMap_MyGlobalElements(self, *args)
def FirstPointInElementList(self, *args):
"""
FirstPointInElementList(self) -> PyObject
Returns a numpy array of integer first local point numbers for all of
the local elements.
"""
return _Epetra.BlockMap_FirstPointInElementList(self, *args)
def ElementSizeList(self, *args):
"""
ElementSizeList(self) -> PyObject
Returns a numpy array of integer sizes for each local element.
"""
return _Epetra.BlockMap_ElementSizeList(self, *args)
def PointToElementList(self, *args):
"""
PointToElementList(self) -> PyObject
Returns a numpy array of integers such that for each local point, it
indicates the local element ID that the point belongs to.
"""
return _Epetra.BlockMap_PointToElementList(self, *args)
BlockMap_swigregister = _Epetra.BlockMap_swigregister
BlockMap_swigregister(BlockMap)
class Map(BlockMap):
"""
Epetra_Map: A class for partitioning vectors and matrices.
It is often the case that multiple matrix and vector objects have an
identical distribution of elements on a parallel machine. The
Epetra_Map class keep information that describes this distribution for
matrices and vectors.
Epetra_Map allows the storage and retrieval of the following
information. Depending on the constructor that is used, some of the
information is defined by the user and some is determined by the
constructor. Once a Epetra_Map is constructed any of the following
attributes can be obtained by calling a query function that has the
name as the attribute, e.g. to get the value of NumGlobalElements, you
can call a function NumGlobalElements(). For attributes that are
lists, the query functions return the list values in a user allocated
array.
NumGlobalElements - The total number of elements across all
processors. If this parameter and NumMyElements are both passed into
the constructor, one of the three cases will apply: If
NumGlobalElements = NumMyElements (and not equal to zero) the map is
defined to be a local replicated map. In this case, objects
constructed using this map will be identically replicated across all
processors in the communicator.
If NumGlobalElements = -1 and NumMyElements is passed in then
NumGlobalElements will be computed as the sum of NumMyElements across
all processors.
If neither of the above is true, NumGlobalElements will be checked
against the sum of NumMyElements across all processors. An error is
issued if the comparison is not equal.
NumMyElements - The number of elements owned by the calling processor.
MyGlobalElements - A list of length NumMyElements that contains the
global element IDs of the elements owned by the calling processor.
IndexBase - The base integer value for indexed array references.
Typically this is 0 for C/C++ and 1 for Fortran, but it can be set to
any integer value.
Comm - The Epetra_Comm communicator. This communicator can in turn be
queried for processor rank and size information.
In addition to the information above that is passed in to or created
by the Epetra_Map constructor, the following attributes are computed
and available via query to the user using the same scheme as above,
e.g., use NumGlobalPoints() to get the value of NumGlobalPoints.
NumGlobalPoints - The total number of points across all processors.
NumMyPoints - The number of points on the calling processor.
MinAllGID - The minimum global index value across all processors.
MaxAllGID - The maximum global index value across all processors.
MinMyGID - The minimum global index value on the calling processor.
MaxMyGID - The maximum global index value on the calling processor.
MinLID - The minimum local index value on the calling processor.
MaxLID - The maximum local index value on the calling processor.
The following functions allow boolean tests for certain properties.
LinearMap() - Returns true if the elements are distributed linear
across processors, i.e., processor 0 gets the first n/p elements,
processor 1 gets the next n/p elements, etc. where n is the number of
elements and p is the number of processors.
DistributedGlobal() - Returns true if the element space of the map
spans more than one processor. This will be true in most cases, but
will be false in serial cases and for objects that are created via the
derived Epetra_LocalMap class.
WARNING: An Epetra_Comm object is required for all Epetra_Map
constructors.
In the current implementation, Epetra_BlockMap is the base class for
Epetra_Map.
C++ includes: Epetra_Map.h
"""
__swig_setmethods__ = {}
for _s in [BlockMap]: __swig_setmethods__.update(getattr(_s,'__swig_setmethods__',{}))
__setattr__ = lambda self, name, value: _swig_setattr(self, Map, name, value)
__swig_getmethods__ = {}
for _s in [BlockMap]: __swig_getmethods__.update(getattr(_s,'__swig_getmethods__',{}))
__getattr__ = lambda self, name: _swig_getattr(self, Map, name)
__repr__ = _swig_repr
def __init__(self, *args):
"""
__init__(self, int numGlobalElements, int indexBase, Comm comm) -> Map
Map constructor with implicit number of elements per processor.
Arguments are:
numGlobalElements - Total number of elements over all processors.
Specify -1 to have the constructor compute
the number of global elements
indexBase - The base integer value for indexed array
references. Typically this is 0 for C/C++ and 1
for Fortran, but it can be set to any integer
value.
comm - The Epetra.Comm communicator. This communicator
can in turn be queried for processor rank and
size information.
__init__(self, int numGlobalElements, int numMyElements, int indexBase,
Comm comm) -> Map
Map constructor with specified number of elements per processor.
Arguments are:
numGlobalElements - Total number of elements over all processors.
Specify -1 to have the constructor compute
the number of global elements
numMyElements - Number of local elements on this processor.
indexBase - The base integer value for indexed array
references. Typically this is 0 for C/C++ and 1
for Fortran, but it can be set to any integer
value.
comm - The Epetra.Comm communicator. This communicator
can in turn be queried for processor rank and
size information.
__init__(self, int numGlobalElements, PySequence myGlobalElements,
int indexBase, Comm comm) -> Map
Map constructor with specified list of global element IDs for each
processor. Arguments are:
numGlobalElements - Total number of elements over all processors.
Specify -1 to have the constructor compute
the number of global elements
myGlobalElements - A sequence of integers specifying the global
element indexes on this processor.
indexBase - The base integer value for indexed array
references. Typically this is 0 for C/C++ and 1
for Fortran, but it can be set to any integer
value.
comm - The Epetra.Comm communicator. This communicator
can in turn be queried for processor rank and
size information.
__init__(self, Map map) -> Map
Map copy constructor.
Epetra_Map::Epetra_Map(const Epetra_Map &map)
Epetra_Map copy constructor.
"""
this = _Epetra.new_Map(*args)
try: self.this.append(this)
except: self.this = this
__swig_destroy__ = _Epetra.delete_Map
__del__ = lambda self : None;
Map_swigregister = _Epetra.Map_swigregister
Map_swigregister(Map)
class LocalMap(Map):
"""
Epetra_LocalMap: A class for replicating vectors and matrices across
multiple processors.
Small matrix and vector objects are often replicated on distributed
memory parallel machines. The Epetra_LocalMap class allows
construction of these replicated local objects and keeps information
that describes this distribution.
Epetra_LocalMap allows the storage and retrieval of the following
information. Once a Epetra_Map is constructed any of the following
attributes can be obtained by calling a query function that has the
name as the attribute, e.g. to get the value of NumGlobalPoints, you
can call a function NumGlobalElements(). For attributes that are
lists, the query functions return the list values in a user allocated
array.
NumMyElements - The number of elements owned by the calling processor.
IndexBase - The base integer value for indexed array references.
Typically this is 0 for C/C++ and 1 for Fortran, but it can be set to
any integer value.
Comm - The Epetra_Comm communicator. This communicator can in turn be
queried for processor rank and size information.
The Epetra_LocalMap class is actually a derived class of Epetra_Map.
Epetra_Map is in turn derived from Epetra_BlockMap. As such,
Epetra_LocalMap has full access to all the functions in these other
map classes.
In particular, the following function allows a boolean test:
DistributedGlobal() - Returns false for a Epetra_LocalMap object.
WARNING: A Epetra_Comm object is required for all Epetra_LocalMap
constructors.
C++ includes: Epetra_LocalMap.h
"""
__swig_setmethods__ = {}
for _s in [Map]: __swig_setmethods__.update(getattr(_s,'__swig_setmethods__',{}))
__setattr__ = lambda self, name, value: _swig_setattr(self, LocalMap, name, value)
__swig_getmethods__ = {}
for _s in [Map]: __swig_getmethods__.update(getattr(_s,'__swig_getmethods__',{}))
__getattr__ = lambda self, name: _swig_getattr(self, LocalMap, name)
__repr__ = _swig_repr
def __init__(self, *args):
"""
__init__(self, int NumMyElements, int IndexBase, Comm Comm) -> LocalMap
__init__(self, LocalMap map) -> LocalMap
Epetra_LocalMap::Epetra_LocalMap(const Epetra_LocalMap &map)
Epetra_LocalMap copy constructor.
"""
this = _Epetra.new_LocalMap(*args)
try: self.this.append(this)
except: self.this = this
__swig_destroy__ = _Epetra.delete_LocalMap
__del__ = lambda self : None;
LocalMap_swigregister = _Epetra.LocalMap_swigregister
LocalMap_swigregister(LocalMap)
class Directory(_object):
"""
Epetra_Directory: This class is a pure virtual class whose interface
allows Epetra_Map and Epetr_BlockMap objects to reference non-local
elements.
For Epetra_BlockMap objects, a Epetra_Directory object must be created
by a call to the Epetra_Comm CreateDirectory method. The Directory is
needed to allow referencing of non-local elements.
C++ includes: Epetra_Directory.h
"""
__swig_setmethods__ = {}
__setattr__ = lambda self, name, value: _swig_setattr(self, Directory, name, value)
__swig_getmethods__ = {}
__getattr__ = lambda self, name: _swig_getattr(self, Directory, name)
def __init__(self, *args, **kwargs): raise AttributeError("No constructor defined - class is abstract")
__repr__ = _swig_repr
__swig_destroy__ = _Epetra.delete_Directory
__del__ = lambda self : None;
def GetDirectoryEntries(self, *args):
"""
GetDirectoryEntries(self, BlockMap Map, int NumEntries, int GlobalEntries, int Procs,
int LocalEntries, int EntrySizes, bool high_rank_sharing_procs = False) -> int
virtual
int Epetra_Directory::GetDirectoryEntries(const Epetra_BlockMap &Map,
const int NumEntries, const int *GlobalEntries, int *Procs, int
*LocalEntries, int *EntrySizes, bool high_rank_sharing_procs=false)
const =0
GetDirectoryEntries : Returns proc and local id info for non-local map
entries.
Given a list of Global Entry IDs, this function returns the list of
processor IDs and local IDs on the owning processor that correspond to
the list of entries. If LocalEntries is 0, then local IDs are not
returned. If EntrySizes is nonzero, it will contain a list of
corresponding element sizes for the requested global entries.
Parameters:
-----------
In: NumEntries - Number of Global IDs being passed in.
In: GlobalEntries - List of Global IDs being passed in.
InOut: Procs - User allocated array of length at least NumEntries. On
return contains list of processors owning the Global IDs in question.
InOut: LocalEntries - User allocated array of length at least
NumEntries. On return contains the local ID of the global on the
owning processor. If LocalEntries is zero, no local ID information is
returned.
InOut: EntrySizes - User allocated array of length at least
NumEntries. On return contains the size of the object associated with
this global ID. If LocalEntries is zero, no size information is
returned.
In: high_rank_sharing_procs Optional argument, defaults to true. If
any GIDs appear on multiple processors (referred to as "sharing
procs"), this specifies whether the lowest-rank proc or the highest-
rank proc is chosen as the "owner".
Integer error code, set to 0 if successful.
"""
return _Epetra.Directory_GetDirectoryEntries(self, *args)
def GIDsAllUniquelyOwned(self, *args):
"""
GIDsAllUniquelyOwned(self) -> bool
virtual bool Epetra_Directory::GIDsAllUniquelyOwned() const =0
GIDsAllUniquelyOwned: returns true if all GIDs appear on just one
processor.
If any GIDs are owned by multiple processors, returns false.
"""
return _Epetra.Directory_GIDsAllUniquelyOwned(self, *args)
Directory_swigregister = _Epetra.Directory_swigregister
Directory_swigregister(Directory)
class BasicDirectory(Directory):
"""
Epetra_BasicDirectory: This class allows Epetra_Map objects to
reference non-local elements.
For Epetra_BlockMap objects, a Epetra_Directory object must be created
to allow referencing of non-local elements. The Epetra_BasicDirectory
produces and contains a uniform linear Epetra_BlockMap and a ProcList_
allowing blocks of non-local elements to be accessed by dereferencing
throught the Epetra_BasicDirectory.
This class currently has one constructor, taking a Epetra_BlockMap
object.
C++ includes: Epetra_BasicDirectory.h
"""
__swig_setmethods__ = {}
for _s in [Directory]: __swig_setmethods__.update(getattr(_s,'__swig_setmethods__',{}))
__setattr__ = lambda self, name, value: _swig_setattr(self, BasicDirectory, name, value)
__swig_getmethods__ = {}
for _s in [Directory]: __swig_getmethods__.update(getattr(_s,'__swig_getmethods__',{}))
__getattr__ = lambda self, name: _swig_getattr(self, BasicDirectory, name)
__repr__ = _swig_repr
def __init__(self, *args):
"""
__init__(self, BlockMap Map) -> BasicDirectory
__init__(self, BasicDirectory Directory) -> BasicDirectory
Epetra_BasicDirectory::Epetra_BasicDirectory(const
Epetra_BasicDirectory &Directory)
Epetra_BasicDirectory copy constructor.
"""
this = _Epetra.new_BasicDirectory(*args)
try: self.this.append(this)
except: self.this = this
__swig_destroy__ = _Epetra.delete_BasicDirectory
__del__ = lambda self : None;
def GetDirectoryEntries(self, *args):
"""
GetDirectoryEntries(self, BlockMap Map, int NumEntries, int GlobalEntries, int Procs,
int LocalEntries, int EntrySizes, bool high_rank_sharing_procs = False) -> int
int Epetra_BasicDirectory::GetDirectoryEntries(const Epetra_BlockMap
&Map, const int NumEntries, const int *GlobalEntries, int *Procs, int
*LocalEntries, int *EntrySizes, bool high_rank_sharing_procs=false)
const
GetDirectoryEntries : Returns proc and local id info for non-local map
entries.
Given a list of Global Entry IDs, this function returns the list of
processor IDs and local IDs on the owning processor that correspond to
the list of entries. If LocalEntries is 0, then local IDs are not
returned. If EntrySizes is nonzero, it will contain a list of
corresponding element sizes for the requested global entries.
Parameters:
-----------
In: NumEntries - Number of Global IDs being passed in.
In: GlobalEntries - List of Global IDs being passed in.
InOut: Procs - User allocated array of length at least NumEntries. On
return contains list of processors owning the Global IDs in question.
If any of the GIDs is shared by more than one processor, then the
lowest- numbered processor is listed in this array, unless the
optional argument 'high_rank_sharing_procs' is given as true.
InOut: LocalEntries - User allocated array of length at least
NumEntries. On return contains the local ID of the global on the
owning processor. If LocalEntries is zero, no local ID information is
returned.
InOut: EntrySizes - User allocated array of length at least
NumEntries. On return contains the size of the object associated with
this global ID. If LocalEntries is zero, no size information is
returned.
In: high_rank_sharing_procs Optional argument, defaults to true. If
any GIDs appear on multiple processors (referred to as "sharing
procs"), this specifies whether the lowest-rank proc or the highest-
rank proc is chosen as the "owner".
Integer error code, set to 0 if successful.
"""
return _Epetra.BasicDirectory_GetDirectoryEntries(self, *args)
def GIDsAllUniquelyOwned(self, *args):
"""
GIDsAllUniquelyOwned(self) -> bool
bool Epetra_BasicDirectory::GIDsAllUniquelyOwned() const
GIDsAllUniquelyOwned: returns true if all GIDs appear on just one
processor.
If any GIDs are owned by multiple processors, returns false.
"""
return _Epetra.BasicDirectory_GIDsAllUniquelyOwned(self, *args)
BasicDirectory_swigregister = _Epetra.BasicDirectory_swigregister
BasicDirectory_swigregister(BasicDirectory)
class Import(Object):
"""
Epetra_Import: This class builds an import object for efficient
importing of off- processor elements.
Epetra_Import is used to construct a communication plan that can be
called repeatedly by computational classes such the Epetra matrix,
vector and multivector classes to efficiently obtain off-processor
elements.
This class currently has one constructor, taking two Epetra_Map or
Epetra_BlockMap objects. The first map specifies the global IDs of
elements that we want to import later. The second map specifies the
global IDs that are owned by the calling processor.
C++ includes: Epetra_Import.h
"""
__swig_setmethods__ = {}
for _s in [Object]: __swig_setmethods__.update(getattr(_s,'__swig_setmethods__',{}))
__setattr__ = lambda self, name, value: _swig_setattr(self, Import, name, value)
__swig_getmethods__ = {}
for _s in [Object]: __swig_getmethods__.update(getattr(_s,'__swig_getmethods__',{}))
__getattr__ = lambda self, name: _swig_getattr(self, Import, name)
__repr__ = _swig_repr
def __init__(self, *args):
"""
__init__(self, BlockMap TargetMap, BlockMap SourceMap) -> Import
__init__(self, Import Importer) -> Import
Epetra_Import::Epetra_Import(const Epetra_Import &Importer)
Epetra_Import copy constructor.
"""
this = _Epetra.new_Import(*args)
try: self.this.append(this)
except: self.this = this
__swig_destroy__ = _Epetra.delete_Import
__del__ = lambda self : None;
def NumSameIDs(self, *args):
"""
NumSameIDs(self) -> int
int
Epetra_Import::NumSameIDs() const
Returns the number of elements that are identical between the source
and target maps, up to the first different ID.
"""
return _Epetra.Import_NumSameIDs(self, *args)
def NumPermuteIDs(self, *args):
"""
NumPermuteIDs(self) -> int
int
Epetra_Import::NumPermuteIDs() const
Returns the number of elements that are local to the calling
processor, but not part of the first NumSameIDs() elements.
"""
return _Epetra.Import_NumPermuteIDs(self, *args)
def NumRemoteIDs(self, *args):
"""
NumRemoteIDs(self) -> int
int
Epetra_Import::NumRemoteIDs() const
Returns the number of elements that are not on the calling processor.
"""
return _Epetra.Import_NumRemoteIDs(self, *args)
def NumExportIDs(self, *args):
"""
NumExportIDs(self) -> int
int
Epetra_Import::NumExportIDs() const
Returns the number of elements that must be sent by the calling
processor to other processors.
"""
return _Epetra.Import_NumExportIDs(self, *args)
def NumSend(self, *args):
"""
NumSend(self) -> int
int
Epetra_Import::NumSend() const
Total number of elements to be sent.
"""
return _Epetra.Import_NumSend(self, *args)
def NumRecv(self, *args):
"""
NumRecv(self) -> int
int
Epetra_Import::NumRecv() const
Total number of elements to be received.
"""
return _Epetra.Import_NumRecv(self, *args)
def SourceMap(self, *args):
"""
SourceMap(self) -> BlockMap
const
Epetra_BlockMap& Epetra_Import::SourceMap() const
Returns the SourceMap used to construct this importer.
"""
return _Epetra.Import_SourceMap(self, *args)
def TargetMap(self, *args):
"""
TargetMap(self) -> BlockMap
const
Epetra_BlockMap& Epetra_Import::TargetMap() const
Returns the TargetMap used to construct this importer.
"""
return _Epetra.Import_TargetMap(self, *args)
def Distributor(self, *args):
"""
Distributor(self) -> Distributor
Epetra_Distributor& Epetra_Import::Distributor() const
"""
return _Epetra.Import_Distributor(self, *args)
def PermuteFromLIDs(self, *args):
"""
PermuteFromLIDs(self) -> PyObject
int*
Epetra_Import::PermuteFromLIDs() const
List of elements in the source map that are permuted.
"""
return _Epetra.Import_PermuteFromLIDs(self, *args)
def PermuteToLIDs(self, *args):
"""
PermuteToLIDs(self) -> PyObject
int*
Epetra_Import::PermuteToLIDs() const
List of elements in the target map that are permuted.
"""
return _Epetra.Import_PermuteToLIDs(self, *args)
def RemoteLIDs(self, *args):
"""
RemoteLIDs(self) -> PyObject
int*
Epetra_Import::RemoteLIDs() const
List of elements in the target map that are coming from other
processors.
"""
return _Epetra.Import_RemoteLIDs(self, *args)
def ExportLIDs(self, *args):
"""
ExportLIDs(self) -> PyObject
int*
Epetra_Import::ExportLIDs() const
List of elements that will be sent to other processors.
"""
return _Epetra.Import_ExportLIDs(self, *args)
def ExportPIDs(self, *args):
"""
ExportPIDs(self) -> PyObject
int*
Epetra_Import::ExportPIDs() const
List of processors to which elements will be sent, ExportLIDs() [i]
will be sent to processor ExportPIDs() [i].
"""
return _Epetra.Import_ExportPIDs(self, *args)
Import_swigregister = _Epetra.Import_swigregister
Import_swigregister(Import)
class Export(Object):
"""
Epetra_Export: This class builds an export object for efficient
exporting of off- processor elements.
Epetra_Export is used to construct a communication plan that can be
called repeatedly by computational classes such the Epetra matrix,
vector and multivector classes to efficiently send data to a target
processor.
This class currently has one constructor, taking two Epetra_Map or
Epetra_BlockMap objects. The first map specifies the global IDs that
are owned by the calling processor. The second map specifies the
global IDs of elements that we want to export to later.
C++ includes: Epetra_Export.h
"""
__swig_setmethods__ = {}
for _s in [Object]: __swig_setmethods__.update(getattr(_s,'__swig_setmethods__',{}))
__setattr__ = lambda self, name, value: _swig_setattr(self, Export, name, value)
__swig_getmethods__ = {}
for _s in [Object]: __swig_getmethods__.update(getattr(_s,'__swig_getmethods__',{}))
__getattr__ = lambda self, name: _swig_getattr(self, Export, name)
__repr__ = _swig_repr
def __init__(self, *args):
"""
__init__(self, BlockMap SourceMap, BlockMap TargetMap) -> Export
__init__(self, Export Exporter) -> Export
Epetra_Export::Epetra_Export(const Epetra_Export &Exporter)
Epetra_Export copy constructor.
"""
this = _Epetra.new_Export(*args)
try: self.this.append(this)
except: self.this = this
__swig_destroy__ = _Epetra.delete_Export
__del__ = lambda self : None;
def NumSameIDs(self, *args):
"""
NumSameIDs(self) -> int
int
Epetra_Export::NumSameIDs() const
Returns the number of elements that are identical between the source
and target maps, up to the first different ID.
"""
return _Epetra.Export_NumSameIDs(self, *args)
def NumPermuteIDs(self, *args):
"""
NumPermuteIDs(self) -> int
int
Epetra_Export::NumPermuteIDs() const
Returns the number of elements that are local to the calling
processor, but not part of the first NumSameIDs() elements.
"""
return _Epetra.Export_NumPermuteIDs(self, *args)
def NumRemoteIDs(self, *args):
"""
NumRemoteIDs(self) -> int
int
Epetra_Export::NumRemoteIDs() const
Returns the number of elements that are not on the calling processor.
"""
return _Epetra.Export_NumRemoteIDs(self, *args)
def NumExportIDs(self, *args):
"""
NumExportIDs(self) -> int
int
Epetra_Export::NumExportIDs() const
Returns the number of elements that must be sent by the calling
processor to other processors.
"""
return _Epetra.Export_NumExportIDs(self, *args)
def NumSend(self, *args):
"""
NumSend(self) -> int
int
Epetra_Export::NumSend() const
Total number of elements to be sent.
"""
return _Epetra.Export_NumSend(self, *args)
def NumRecv(self, *args):
"""
NumRecv(self) -> int
int
Epetra_Export::NumRecv() const
Total number of elements to be received.
"""
return _Epetra.Export_NumRecv(self, *args)
def SourceMap(self, *args):
"""
SourceMap(self) -> BlockMap
const
Epetra_BlockMap& Epetra_Export::SourceMap() const
Returns the SourceMap used to construct this exporter.
"""
return _Epetra.Export_SourceMap(self, *args)
def TargetMap(self, *args):
"""
TargetMap(self) -> BlockMap
const
Epetra_BlockMap& Epetra_Export::TargetMap() const
Returns the TargetMap used to construct this exporter.
"""
return _Epetra.Export_TargetMap(self, *args)
def Distributor(self, *args):
"""
Distributor(self) -> Distributor
Epetra_Distributor& Epetra_Export::Distributor() const
"""
return _Epetra.Export_Distributor(self, *args)
def PermuteFromLIDs(self, *args):
"""
PermuteFromLIDs(self) -> PyObject
int*
Epetra_Export::PermuteFromLIDs() const
List of elements in the source map that are permuted.
"""
return _Epetra.Export_PermuteFromLIDs(self, *args)
def PermuteToLIDs(self, *args):
"""
PermuteToLIDs(self) -> PyObject
int*
Epetra_Export::PermuteToLIDs() const
List of elements in the target map that are permuted.
"""
return _Epetra.Export_PermuteToLIDs(self, *args)
def RemoteLIDs(self, *args):
"""
RemoteLIDs(self) -> PyObject
int*
Epetra_Export::RemoteLIDs() const
List of elements in the target map that are coming from other
processors.
"""
return _Epetra.Export_RemoteLIDs(self, *args)
def ExportLIDs(self, *args):
"""
ExportLIDs(self) -> PyObject
int*
Epetra_Export::ExportLIDs() const
List of elements that will be sent to other processors.
"""
return _Epetra.Export_ExportLIDs(self, *args)
def ExportPIDs(self, *args):
"""
ExportPIDs(self) -> PyObject
int*
Epetra_Export::ExportPIDs() const
List of processors to which elements will be sent, ExportLIDs() [i]
will be sent to processor ExportPIDs() [i].
"""
return _Epetra.Export_ExportPIDs(self, *args)
Export_swigregister = _Epetra.Export_swigregister
Export_swigregister(Export)
class IntVector(_object):
"""Proxy of C++ IntVector class"""
__swig_setmethods__ = {}
__setattr__ = lambda self, name, value: _swig_setattr(self, IntVector, name, value)
__swig_getmethods__ = {}
__getattr__ = lambda self, name: _swig_getattr(self, IntVector, name)
__repr__ = _swig_repr
def __init__(self, *args):
"""__init__(self) -> IntVector"""
this = _Epetra.new_IntVector(*args)
try: self.this.append(this)
except: self.this = this
__swig_destroy__ = _Epetra.delete_IntVector
__del__ = lambda self : None;
IntVector_swigregister = _Epetra.IntVector_swigregister
IntVector_swigregister(IntVector)
class Epetra_IntVector(DistObject):
"""
Epetra_IntVector: A class for constructing and using dense integer
vectors on a parallel computer.
The Epetra_IntVector class enables the construction and use of integer
dense vectors in a distributed memory environment. The distribution of
the dense vector is determined in part by a Epetra_Comm object and a
Epetra_Map (or Epetra_LocalMap or Epetra_BlockMap).
Distributed Global vs. Replicated Local Distributed Global Vectors -
In most instances, a multi-vector will be partitioned across multiple
memory images associated with multiple processors. In this case, there
is a unique copy of each element and elements are spread across all
processors specified by the Epetra_Comm communicator.
Replicated Local Vectors - Some algorithms use vectors that are too
small to be distributed across all processors. Replicated local
vectors handle these types of situation.
Constructing Epetra_IntVectors
There are four Epetra_IntVector constructors. The first is a basic
constructor that allocates space and sets all values to zero, the
second is a copy constructor. The third and fourth constructors work
with user data. These constructors have two data access modes: Copy
mode - Allocates memory and makes a copy of the user-provided data. In
this case, the user data is not needed after construction.
View mode - Creates a "view" of the user data. In this case, the
user data is required to remain intact for the life of the vector.
WARNING: View mode is extremely dangerous from a data hiding
perspective. Therefore, we strongly encourage users to develop code
using Copy mode first and only use the View mode in a secondary
optimization phase. All Epetra_IntVector constructors require a map
argument that describes the layout of elements on the parallel
machine. Specifically, map is a Epetra_Map, Epetra_LocalMap or
Epetra_BlockMap object describing the desired memory layout for the
vector.
There are four different Epetra_IntVector constructors: Basic - All
values are zero.
Copy - Copy an existing vector.
Copy from or make view of user int array.
Extracting Data from Epetra_IntVectors
Once a Epetra_IntVector is constructed, it is possible to extract a
copy of the values or create a view of them.
WARNING: ExtractView functions are extremely dangerous from a data
hiding perspective. For both ExtractView fuctions, there is a
corresponding ExtractCopy function. We strongly encourage users to
develop code using ExtractCopy functions first and only use the
ExtractView functions in a secondary optimization phase. There are
two Extract functions: ExtractCopy - Copy values into a user-provided
array.
ExtractView - Set user-provided array to point to Epetra_IntVector
data.
WARNING: A Epetra_Map, Epetra_LocalMap or Epetra_BlockMap object is
required for all Epetra_IntVector constructors.
C++ includes: Epetra_IntVector.h
"""
__swig_setmethods__ = {}
for _s in [DistObject]: __swig_setmethods__.update(getattr(_s,'__swig_setmethods__',{}))
__setattr__ = lambda self, name, value: _swig_setattr(self, Epetra_IntVector, name, value)
__swig_getmethods__ = {}
for _s in [DistObject]: __swig_getmethods__.update(getattr(_s,'__swig_getmethods__',{}))
__getattr__ = lambda self, name: _swig_getattr(self, Epetra_IntVector, name)
__repr__ = _swig_repr
def __init__(self, *args):
"""
__init__(self, BlockMap Map, bool zeroOut = True) -> Epetra_IntVector
__init__(self, Epetra_IntVector Source) -> Epetra_IntVector
__init__(self, Epetra_DataAccess CV, BlockMap Map, int V) -> Epetra_IntVector
Epetra_IntVector::Epetra_IntVector(Epetra_DataAccess CV, const
Epetra_BlockMap &Map, int *V)
Set vector values from user array.
Parameters:
-----------
In: Epetra_DataAccess - Enumerated type set to Copy or View.
In: Map - A Epetra_LocalMap, Epetra_Map or Epetra_BlockMap.
In: V - Pointer to an array of integer numbers..
Integer error code, set to 0 if successful. See Detailed Description
section for further discussion.
"""
this = _Epetra.new_Epetra_IntVector(*args)
try: self.this.append(this)
except: self.this = this
__swig_destroy__ = _Epetra.delete_Epetra_IntVector
__del__ = lambda self : None;
def PutValue(self, *args):
"""
PutValue(self, int Value) -> int
int
Epetra_IntVector::PutValue(int Value)
Set all elements of the vector to Value.
"""
return _Epetra.Epetra_IntVector_PutValue(self, *args)
def ExtractCopy(self, *args):
"""
ExtractCopy(self, int V) -> int
int
Epetra_IntVector::ExtractCopy(int *V) const
Put vector values into user-provided array.
Parameters:
-----------
Out: V - Pointer to memory space that will contain the vector values.
Integer error code, set to 0 if successful.
"""
return _Epetra.Epetra_IntVector_ExtractCopy(self, *args)
def ExtractView(self, *args):
"""
ExtractView(self, int V) -> int
int
Epetra_IntVector::ExtractView(int **V) const
Set user-provided address of V.
Parameters:
-----------
Out: V - Address of a pointer to that will be set to point to the
values of the vector.
Integer error code, set to 0 if successful.
"""
return _Epetra.Epetra_IntVector_ExtractView(self, *args)
def MaxValue(self, *args):
"""
MaxValue(self) -> int
int
Epetra_IntVector::MaxValue()
Find maximum value.
Maximum value across all processors.
"""
return _Epetra.Epetra_IntVector_MaxValue(self, *args)
def MinValue(self, *args):
"""
MinValue(self) -> int
int
Epetra_IntVector::MinValue()
Find minimum value.
Minimum value across all processors.
"""
return _Epetra.Epetra_IntVector_MinValue(self, *args)
def Values(self, *args):
"""
Values(self) -> int
int*
Epetra_IntVector::Values() const
Returns a pointer to an array containing the values of this vector.
"""
return _Epetra.Epetra_IntVector_Values(self, *args)
def MyLength(self, *args):
"""
MyLength(self) -> int
int
Epetra_IntVector::MyLength() const
Returns the local vector length on the calling processor of vectors in
the multi-vector.
"""
return _Epetra.Epetra_IntVector_MyLength(self, *args)
def GlobalLength(self, *args):
"""
GlobalLength(self) -> int
int
Epetra_IntVector::GlobalLength() const
Returns the global vector length of vectors in the multi-vector.
"""
return _Epetra.Epetra_IntVector_GlobalLength(self, *args)
Epetra_IntVector_swigregister = _Epetra.Epetra_IntVector_swigregister
Epetra_IntVector_swigregister(Epetra_IntVector)
class MultiVector(_object):
"""Proxy of C++ MultiVector class"""
__swig_setmethods__ = {}
__setattr__ = lambda self, name, value: _swig_setattr(self, MultiVector, name, value)
__swig_getmethods__ = {}
__getattr__ = lambda self, name: _swig_getattr(self, MultiVector, name)
__repr__ = _swig_repr
def __init__(self, *args):
"""__init__(self) -> MultiVector"""
this = _Epetra.new_MultiVector(*args)
try: self.this.append(this)
except: self.this = this
__swig_destroy__ = _Epetra.delete_MultiVector
__del__ = lambda self : None;
MultiVector_swigregister = _Epetra.MultiVector_swigregister
MultiVector_swigregister(MultiVector)
class Epetra_MultiVector(DistObject,CompObject,BLAS):
"""
Epetra_MultiVector: A class for constructing and using dense multi-
vectors, vectors and matrices in parallel.
The Epetra_MultiVector class enables the construction and use of real-
valued, double- precision dense vectors, multi-vectors, and matrices
in a distributed memory environment. The dimensions and distribution
of the dense multi-vectors is determined in part by a Epetra_Comm
object, a Epetra_Map (or Epetra_LocalMap or Epetra_BlockMap) and the
number of vectors passed to the constructors described below.
There are several concepts that important for understanding the
Epetra_MultiVector class:
Multi-vectors, Vectors and Matrices. Vector - A list of real-valued,
double-precision numbers. Also a multi-vector with one vector.
Multi-Vector - A collection of one or more vectors, all having the
same length and distribution.
(Dense) Matrix - A special form of multi-vector such that stride in
memory between any two consecutive vectors in the multi-vector is the
same for all vectors. This is identical to a two-dimensional array in
Fortran and plays an important part in high performance computations.
Distributed Global vs. Replicated Local. Distributed Global Multi-
vectors - In most instances, a multi-vector will be partitioned across
multiple memory images associated with multiple processors. In this
case, there is a unique copy of each element and elements are spread
across all processors specified by the Epetra_Comm communicator.
Replicated Local Multi-vectors - Some algorithms use multi-vectors
that are too small to be distributed across all processors, the
Hessenberg matrix in a GMRES computation. In other cases, such as with
block iterative methods, block dot product functions produce small
dense matrices that are required by all processors. Replicated local
multi-vectors handle these types of situation.
Multi-vector Functions vs. Dense Matrix Functions. Multi-vector
functions - These functions operate simultaneously but independently
on each vector in the multi-vector and produce individual results for
each vector.
Dense matrix functions - These functions operate on the multi-vector
as a matrix, providing access to selected dense BLAS and LAPACK
operations.
Constructing Epetra_MultiVectors
Except for the basic constructor and copy constructor,
Epetra_MultiVector constructors have two data access modes: Copy mode
- Allocates memory and makes a copy of the user-provided data. In this
case, the user data is not needed after construction.
View mode - Creates a "view" of the user data. In this case, the
user data is required to remain intact for the life of the multi-
vector.
WARNING: View mode is extremely dangerous from a data hiding
perspective. Therefore, we strongly encourage users to develop code
using Copy mode first and only use the View mode in a secondary
optimization phase. All Epetra_MultiVector constructors require a map
argument that describes the layout of elements on the parallel
machine. Specifically, map is a Epetra_Map, Epetra_LocalMap or
Epetra_BlockMap object describing the desired memory layout for the
multi-vector.
There are six different Epetra_MultiVector constructors: Basic - All
values are zero.
Copy - Copy an existing multi-vector.
Copy from or make view of two-dimensional Fortran style array.
Copy from or make view of an array of pointers.
Copy or make view of a list of vectors from another Epetra_MultiVector
object.
Copy or make view of a range of vectors from another
Epetra_MultiVector object.
Extracting Data from Epetra_MultiVectors
Once a Epetra_MultiVector is constructed, it is possible to extract a
copy of the values or create a view of them.
WARNING: ExtractView functions are extremely dangerous from a data
hiding perspective. For both ExtractView fuctions, there is a
corresponding ExtractCopy function. We strongly encourage users to
develop code using ExtractCopy functions first and only use the
ExtractView functions in a secondary optimization phase. There are
four Extract functions: ExtractCopy - Copy values into a user-provided
two-dimensional array.
ExtractCopy - Copy values into a user-provided array of pointers.
ExtractView - Set user-provided two-dimensional array parameters to
point to Epetra_MultiVector data.
ExtractView - Set user-provided array of pointer parameters to point
to Epetra_MultiVector data.
Vector, Matrix and Utility Functions
Once a Epetra_MultiVector is constructed, a variety of mathematical
functions can be applied to the individual vectors. Specifically: Dot
Products.
Vector Updates.
p Norms.
Weighted Norms.
Minimum, Maximum and Average Values.
In addition, a matrix-matrix multiply function supports a variety of
operations on any viable combination of global distributed and local
replicated multi-vectors using calls to DGEMM, a high performance
kernel for matrix operations. In the near future we will add support
for calls to other selected BLAS and LAPACK functions.
Counting Floating Point Operations
Each Epetra_MultiVector object keep track of the number of serial
floating point operations performed using the specified object as the
this argument to the function. The Flops() function returns this
number as a double precision number. Using this information, in
conjunction with the Epetra_Time class, one can get accurate parallel
performance numbers. The ResetFlops() function resets the floating
point counter.
WARNING: A Epetra_Map, Epetra_LocalMap or Epetra_BlockMap object is
required for all Epetra_MultiVector constructors.
C++ includes: Epetra_MultiVector.h
"""
__swig_setmethods__ = {}
for _s in [DistObject,CompObject,BLAS]: __swig_setmethods__.update(getattr(_s,'__swig_setmethods__',{}))
__setattr__ = lambda self, name, value: _swig_setattr(self, Epetra_MultiVector, name, value)
__swig_getmethods__ = {}
for _s in [DistObject,CompObject,BLAS]: __swig_getmethods__.update(getattr(_s,'__swig_getmethods__',{}))
__getattr__ = lambda self, name: _swig_getattr(self, Epetra_MultiVector, name)
__repr__ = _swig_repr
def __init__(self, *args):
"""
__init__(self, BlockMap Map, int NumVectors, bool zeroOut = True) -> Epetra_MultiVector
__init__(self, Epetra_MultiVector Source) -> Epetra_MultiVector
__init__(self, Epetra_DataAccess CV, BlockMap Map, double A, int MyLDA,
int NumVectors) -> Epetra_MultiVector
__init__(self, Epetra_DataAccess CV, BlockMap Map, double ArrayOfPointers,
int NumVectors) -> Epetra_MultiVector
__init__(self, Epetra_DataAccess CV, Epetra_MultiVector Source, int Indices,
int NumVectors) -> Epetra_MultiVector
__init__(self, Epetra_DataAccess CV, Epetra_MultiVector Source, int StartIndex,
int NumVectors) -> Epetra_MultiVector
Epetra_MultiVector::Epetra_MultiVector(Epetra_DataAccess CV, const
Epetra_MultiVector &Source, int StartIndex, int NumVectors)
Set multi-vector values from range of vectors in an existing
Epetra_MultiVector.
Parameters:
-----------
In: Epetra_DataAccess - Enumerated type set to Copy or View.
In: Source - An existing fully constructed Epetra_MultiVector.
In: StartIndex - First of the vectors to copy.
In: NumVectors - Number of vectors in multi-vector.
Integer error code, set to 0 if successful. See Detailed Description
section for further discussion.
"""
this = _Epetra.new_Epetra_MultiVector(*args)
try: self.this.append(this)
except: self.this = this
__swig_destroy__ = _Epetra.delete_Epetra_MultiVector
__del__ = lambda self : None;
def ReplaceGlobalValue(self, *args):
"""
ReplaceGlobalValue(self, int GlobalRow, int VectorIndex, double ScalarValue) -> int
ReplaceGlobalValue(self, int GlobalBlockRow, int BlockRowOffset, int VectorIndex,
double ScalarValue) -> int
int
Epetra_MultiVector::ReplaceGlobalValue(int GlobalBlockRow, int
BlockRowOffset, int VectorIndex, double ScalarValue)
Replace current value at the specified (GlobalBlockRow,
BlockRowOffset, VectorIndex) location with ScalarValue.
Replaces the existing value for a single entry in the multivector. The
specified global block row and block row offset must correspond to a
GID owned by the map of the multivector on the calling processor. In
other words, this method does not perform cross-processor
communication.
Parameters:
-----------
In: GlobalBlockRow - BlockRow of Multivector to modify in global
index space.
In: BlockRowOffset - Offset into BlockRow of Multivector to modify in
global index space.
In: VectorIndex - Vector within MultiVector that should to modify.
In: ScalarValue - Value to add to existing value.
Integer error code, set to 0 if successful, set to 1 if GlobalRow not
associated with calling processor set to -1 if VectorIndex >=
NumVectors(), set to -2 if BlockRowOffset is out-of-range.
"""
return _Epetra.Epetra_MultiVector_ReplaceGlobalValue(self, *args)
def SumIntoGlobalValue(self, *args):
"""
SumIntoGlobalValue(self, int GlobalRow, int VectorIndex, double ScalarValue) -> int
SumIntoGlobalValue(self, int GlobalBlockRow, int BlockRowOffset, int VectorIndex,
double ScalarValue) -> int
int
Epetra_MultiVector::SumIntoGlobalValue(int GlobalBlockRow, int
BlockRowOffset, int VectorIndex, double ScalarValue)
Adds ScalarValue to existing value at the specified (GlobalBlockRow,
BlockRowOffset, VectorIndex) location.
Sums the given value into the existing value for a single entry in the
multivector. The specified global block row and block row offset must
correspond to a GID owned by the map of the multivector on the calling
processor. In other words, this method does not perform cross-
processor communication.
Parameters:
-----------
In: GlobalBlockRow - BlockRow of Multivector to modify in global
index space.
In: BlockRowOffset - Offset into BlockRow of Multivector to modify in
global index space.
In: VectorIndex - Vector within MultiVector that should to modify.
In: ScalarValue - Value to add to existing value.
Integer error code, set to 0 if successful, set to 1 if GlobalRow not
associated with calling processor set to -1 if VectorIndex >=
NumVectors(), set to -2 if BlockRowOffset is out-of-range.
"""
return _Epetra.Epetra_MultiVector_SumIntoGlobalValue(self, *args)
def ReplaceMyValue(self, *args):
"""
ReplaceMyValue(self, int MyRow, int VectorIndex, double ScalarValue) -> int
ReplaceMyValue(self, int MyBlockRow, int BlockRowOffset, int VectorIndex,
double ScalarValue) -> int
int
Epetra_MultiVector::ReplaceMyValue(int MyBlockRow, int BlockRowOffset,
int VectorIndex, double ScalarValue)
Replace current value at the specified (MyBlockRow, BlockRowOffset,
VectorIndex) location with ScalarValue.
Replaces the existing value for a single entry in the multivector. The
specified local block row and block row offset must correspond to a
GID owned by the map of the multivector on the calling processor. In
other words, this method does not perform cross-processor
communication.
Parameters:
-----------
In: MyBlockRow - BlockRow of Multivector to modify in local index
space.
In: BlockRowOffset - Offset into BlockRow of Multivector to modify in
local index space.
In: VectorIndex - Vector within MultiVector that should to modify.
In: ScalarValue - Value to add to existing value.
Integer error code, set to 0 if successful, set to 1 if MyRow not
associated with calling processor set to -1 if VectorIndex >=
NumVectors(), set to -2 if BlockRowOffset is out-of-range.
"""
return _Epetra.Epetra_MultiVector_ReplaceMyValue(self, *args)
def SumIntoMyValue(self, *args):
"""
SumIntoMyValue(self, int MyRow, int VectorIndex, double ScalarValue) -> int
SumIntoMyValue(self, int MyBlockRow, int BlockRowOffset, int VectorIndex,
double ScalarValue) -> int
int
Epetra_MultiVector::SumIntoMyValue(int MyBlockRow, int BlockRowOffset,
int VectorIndex, double ScalarValue)
Adds ScalarValue to existing value at the specified (MyBlockRow,
BlockRowOffset, VectorIndex) location.
Sums the given value into the existing value for a single entry in the
multivector. The specified local block row and block row offset must
correspond to a GID owned by the map of the multivector on the calling
processor. In other words, this method does not perform cross-
processor communication.
Parameters:
-----------
In: MyBlockRow - BlockRow of Multivector to modify in local index
space.
In: BlockRowOffset - Offset into BlockRow of Multivector to modify in
local index space.
In: VectorIndex - Vector within MultiVector that should to modify.
In: ScalarValue - Value to add to existing value.
Integer error code, set to 0 if successful, set to 1 if MyRow not
associated with calling processor set to -1 if VectorIndex >=
NumVectors(), set to -2 if BlockRowOffset is out-of-range.
"""
return _Epetra.Epetra_MultiVector_SumIntoMyValue(self, *args)
def PutScalar(self, *args):
"""
PutScalar(self, double ScalarConstant) -> int
int
Epetra_MultiVector::PutScalar(double ScalarConstant)
Initialize all values in a multi-vector with constant value.
Parameters:
-----------
In: ScalarConstant - Value to use.
Integer error code, set to 0 if successful.
"""
return _Epetra.Epetra_MultiVector_PutScalar(self, *args)
def Random(self, *args):
"""
Random(self) -> int
int
Epetra_MultiVector::Random()
Set multi-vector values to random numbers.
MultiVector uses the random number generator provided by Epetra_Util.
The multi-vector values will be set to random values on the interval
(-1.0, 1.0).
Integer error code, set to 0 if successful.
"""
return _Epetra.Epetra_MultiVector_Random(self, *args)
def Abs(self, *args):
"""
Abs(self, Epetra_MultiVector A) -> int
int
Epetra_MultiVector::Abs(const Epetra_MultiVector &A)
Puts element-wise absolute values of input Multi-vector in target.
Parameters:
-----------
In: A - Input Multi-vector.
Out: this will contain the absolute values of the entries of A.
Integer error code, set to 0 if successful. Note: It is possible to
use the same argument for A and this.
"""
return _Epetra.Epetra_MultiVector_Abs(self, *args)
def Reciprocal(self, *args):
"""
Reciprocal(self, Epetra_MultiVector A) -> int
int
Epetra_MultiVector::Reciprocal(const Epetra_MultiVector &A)
Puts element-wise reciprocal values of input Multi-vector in target.
Parameters:
-----------
In: A - Input Multi-vector.
Out: this will contain the element-wise reciprocal values of the
entries of A.
Integer error code, set to 0 if successful. Returns 2 if some entry is
too small, but not zero. Returns 1 if some entry is zero. Note: It is
possible to use the same argument for A and this. Also, if a given
value of A is smaller than Epetra_DoubleMin (defined in
Epetra_Epetra.h), but nonzero, then the return code is 2. If an entry
is zero, the return code is 1. However, in all cases the reciprocal
value is still used, even if a NaN is the result.
"""
return _Epetra.Epetra_MultiVector_Reciprocal(self, *args)
def Scale(self, *args):
"""
Scale(self, double ScalarValue) -> int
Scale(self, double ScalarA, Epetra_MultiVector A) -> int
int
Epetra_MultiVector::Scale(double ScalarA, const Epetra_MultiVector &A)
Replace multi-vector values with scaled values of A, this = ScalarA*A.
Parameters:
-----------
In: ScalarA - Scale value.
In: A - Multi-vector to copy.
Out: This - Multi-vector with values overwritten by scaled values of
A.
Integer error code, set to 0 if successful.
"""
return _Epetra.Epetra_MultiVector_Scale(self, *args)
def Update(self, *args):
"""
Update(self, double ScalarA, Epetra_MultiVector A, double ScalarThis) -> int
Update(self, double ScalarA, Epetra_MultiVector A, double ScalarB,
Epetra_MultiVector B, double ScalarThis) -> int
int
Epetra_MultiVector::Update(double ScalarA, const Epetra_MultiVector
&A, double ScalarB, const Epetra_MultiVector &B, double ScalarThis)
Update multi-vector with scaled values of A and B, this = ScalarThis*
this + ScalarA*A + ScalarB*B.
Parameters:
-----------
In: ScalarA - Scale value for A.
In: A - Multi-vector to add.
In: ScalarB - Scale value for B.
In: B - Multi-vector to add.
In: ScalarThis - Scale value for this.
Out: This - Multi-vector with updatede values.
Integer error code, set to 0 if successful.
"""
return _Epetra.Epetra_MultiVector_Update(self, *args)
def Multiply(self, *args):
"""
Multiply(self, char TransA, char TransB, double ScalarAB, Epetra_MultiVector A,
Epetra_MultiVector B, double ScalarThis) -> int
Multiply(self, double ScalarAB, Epetra_MultiVector A, Epetra_MultiVector B,
double ScalarThis) -> int
int
Epetra_MultiVector::Multiply(double ScalarAB, const Epetra_MultiVector
&A, const Epetra_MultiVector &B, double ScalarThis)
Multiply a Epetra_MultiVector with another, element-by-element.
This function supports diagonal matrix multiply. A is usually a single
vector while B and this may have one or more columns. Note that B and
this must have the same shape. A can be one vector or have the same
shape as B. The actual computation is this = ScalarThis * this +
ScalarAB * B @ A where @ denotes element-wise multiplication.
"""
return _Epetra.Epetra_MultiVector_Multiply(self, *args)
def ReciprocalMultiply(self, *args):
"""
ReciprocalMultiply(self, double ScalarAB, Epetra_MultiVector A, Epetra_MultiVector B,
double ScalarThis) -> int
int
Epetra_MultiVector::ReciprocalMultiply(double ScalarAB, const
Epetra_MultiVector &A, const Epetra_MultiVector &B, double ScalarThis)
Multiply a Epetra_MultiVector by the reciprocal of another, element-
by-element.
This function supports diagonal matrix scaling. A is usually a single
vector while B and this may have one or more columns. Note that B and
this must have the same shape. A can be one vector or have the same
shape as B. The actual computation is this = ScalarThis * this +
ScalarAB * B @ A where @ denotes element-wise division.
"""
return _Epetra.Epetra_MultiVector_ReciprocalMultiply(self, *args)
def SetSeed(self, *args):
"""
SetSeed(self, unsigned int Seed_in) -> int
int
Epetra_MultiVector::SetSeed(unsigned int Seed_in)
Set seed for Random function.
Parameters:
-----------
In: Seed - Should be an integer on the interval (0, 2^31-1).
Integer error code, set to 0 if successful.
"""
return _Epetra.Epetra_MultiVector_SetSeed(self, *args)
def Seed(self, *args):
"""
Seed(self) -> unsigned int
unsigned int
Epetra_MultiVector::Seed()
Get seed from Random function.
Current random number seed.
"""
return _Epetra.Epetra_MultiVector_Seed(self, *args)
def __call__(self, *args):
"""__call__(self, int i) -> Epetra_Vector"""
return _Epetra.Epetra_MultiVector___call__(self, *args)
def NumVectors(self, *args):
"""
NumVectors(self) -> int
int
Epetra_MultiVector::NumVectors() const
Returns the number of vectors in the multi-vector.
"""
return _Epetra.Epetra_MultiVector_NumVectors(self, *args)
def MyLength(self, *args):
"""
MyLength(self) -> int
int
Epetra_MultiVector::MyLength() const
Returns the local vector length on the calling processor of vectors in
the multi-vector.
"""
return _Epetra.Epetra_MultiVector_MyLength(self, *args)
def GlobalLength(self, *args):
"""
GlobalLength(self) -> int
int
Epetra_MultiVector::GlobalLength() const
Returns the global vector length of vectors in the multi-vector.
"""
return _Epetra.Epetra_MultiVector_GlobalLength(self, *args)
def Stride(self, *args):
"""
Stride(self) -> int
int
Epetra_MultiVector::Stride() const
Returns the stride between vectors in the multi-vector (only
meaningful if ConstantStride() is true).
"""
return _Epetra.Epetra_MultiVector_Stride(self, *args)
def ConstantStride(self, *args):
"""
ConstantStride(self) -> bool
bool
Epetra_MultiVector::ConstantStride() const
Returns true if this multi-vector has constant stride between vectors.
"""
return _Epetra.Epetra_MultiVector_ConstantStride(self, *args)
def ReplaceMap(self, *args):
"""
ReplaceMap(self, BlockMap map) -> int
int
Epetra_MultiVector::ReplaceMap(const Epetra_BlockMap &map)
Replace map, only if new map has same point-structure as current map.
return 0 if map is replaced, -1 if not.
"""
return _Epetra.Epetra_MultiVector_ReplaceMap(self, *args)
def Values(self, *args):
"""
Values(self) -> double
double*
Epetra_MultiVector::Values() const
Get pointer to MultiVector values.
"""
return _Epetra.Epetra_MultiVector_Values(self, *args)
def Reduce(self, *args):
"""
Reduce(self) -> int
int
Epetra_MultiVector::Reduce()
"""
return _Epetra.Epetra_MultiVector_Reduce(self, *args)
Epetra_MultiVector_swigregister = _Epetra.Epetra_MultiVector_swigregister
Epetra_MultiVector_swigregister(Epetra_MultiVector)
class Vector(_object):
"""Proxy of C++ Vector class"""
__swig_setmethods__ = {}
__setattr__ = lambda self, name, value: _swig_setattr(self, Vector, name, value)
__swig_getmethods__ = {}
__getattr__ = lambda self, name: _swig_getattr(self, Vector, name)
__repr__ = _swig_repr
def __init__(self, *args):
"""__init__(self) -> Vector"""
this = _Epetra.new_Vector(*args)
try: self.this.append(this)
except: self.this = this
__swig_destroy__ = _Epetra.delete_Vector
__del__ = lambda self : None;
Vector_swigregister = _Epetra.Vector_swigregister
Vector_swigregister(Vector)
class Epetra_Vector(Epetra_MultiVector):
"""
Epetra_Vector: A class for constructing and using dense vectors on a
parallel computer.
The Epetra_Vector class enables the construction and use of real-
valued, double- precision dense vectors in a distributed memory
environment. The distribution of the dense vector is determined in
part by a Epetra_Comm object and a Epetra_Map (or Epetra_LocalMap or
Epetra_BlockMap).
This class is derived from the Epetra_MultiVector class. As such, it
has full access to all of the functionality provided in the
Epetra_MultiVector class.
Distributed Global vs. Replicated Local Distributed Global Vectors -
In most instances, a multi-vector will be partitioned across multiple
memory images associated with multiple processors. In this case, there
is a unique copy of each element and elements are spread across all
processors specified by the Epetra_Comm communicator.
Replicated Local Vectors - Some algorithms use vectors that are too
small to be distributed across all processors. Replicated local
vectors handle these types of situation.
Constructing Epetra_Vectors
There are four Epetra_Vector constructors. The first is a basic
constructor that allocates space and sets all values to zero, the
second is a copy constructor. The third and fourth constructors work
with user data. These constructors have two data access modes: Copy
mode - Allocates memory and makes a copy of the user-provided data. In
this case, the user data is not needed after construction.
View mode - Creates a "view" of the user data. In this case, the
user data is required to remain intact for the life of the vector.
WARNING: View mode is extremely dangerous from a data hiding
perspective. Therefore, we strongly encourage users to develop code
using Copy mode first and only use the View mode in a secondary
optimization phase. All Epetra_Vector constructors require a map
argument that describes the layout of elements on the parallel
machine. Specifically, map is a Epetra_Map, Epetra_LocalMap or
Epetra_BlockMap object describing the desired memory layout for the
vector.
There are four different Epetra_Vector constructors: Basic - All
values are zero.
Copy - Copy an existing vector.
Copy from or make view of user double array.
Copy or make view of a vector from a Epetra_MultiVector object.
Extracting Data from Epetra_Vectors
Once a Epetra_Vector is constructed, it is possible to extract a copy
of the values or create a view of them.
WARNING: ExtractView functions are extremely dangerous from a data
hiding perspective. For both ExtractView fuctions, there is a
corresponding ExtractCopy function. We strongly encourage users to
develop code using ExtractCopy functions first and only use the
ExtractView functions in a secondary optimization phase. There are
two Extract functions: ExtractCopy - Copy values into a user-provided
array.
ExtractView - Set user-provided array to point to Epetra_Vector data.
Vector and Utility Functions
Once a Epetra_Vector is constructed, a variety of mathematical
functions can be applied to the vector. Specifically: Dot Products.
Vector Updates.
p Norms.
Weighted Norms.
Minimum, Maximum and Average Values.
The final useful function is Flops(). Each Epetra_Vector object keep
track of the number of serial floating point operations performed
using the specified object as the this argument to the function. The
Flops() function returns this number as a double precision number.
Using this information, in conjunction with the Epetra_Time class, one
can get accurate parallel performance numbers.
WARNING: A Epetra_Map, Epetra_LocalMap or Epetra_BlockMap object is
required for all Epetra_Vector constructors.
C++ includes: Epetra_Vector.h
"""
__swig_setmethods__ = {}
for _s in [Epetra_MultiVector]: __swig_setmethods__.update(getattr(_s,'__swig_setmethods__',{}))
__setattr__ = lambda self, name, value: _swig_setattr(self, Epetra_Vector, name, value)
__swig_getmethods__ = {}
for _s in [Epetra_MultiVector]: __swig_getmethods__.update(getattr(_s,'__swig_getmethods__',{}))
__getattr__ = lambda self, name: _swig_getattr(self, Epetra_Vector, name)
__repr__ = _swig_repr
def __init__(self, *args):
"""
__init__(self, BlockMap Map, bool zeroOut = True) -> Epetra_Vector
__init__(self, Epetra_Vector Source) -> Epetra_Vector
__init__(self, Epetra_DataAccess CV, BlockMap Map, double V) -> Epetra_Vector
__init__(self, Epetra_DataAccess CV, Epetra_MultiVector Source, int Index) -> Epetra_Vector
Epetra_Vector::Epetra_Vector(Epetra_DataAccess CV, const
Epetra_MultiVector &Source, int Index)
Set vector values from a vector in an existing Epetra_MultiVector.
Parameters:
-----------
In: Epetra_DataAccess - Enumerated type set to Copy or View.
In: Map - A Epetra_LocalMap, Epetra_Map or Epetra_BlockMap.
In: Source - An existing fully constructed Epetra_MultiVector.
In: Index - Index of vector to access.
Integer error code, set to 0 if successful. See Detailed Description
section for further discussion.
"""
this = _Epetra.new_Epetra_Vector(*args)
try: self.this.append(this)
except: self.this = this
__swig_destroy__ = _Epetra.delete_Epetra_Vector
__del__ = lambda self : None;
def ReplaceGlobalValues(self, *args):
"""
ReplaceGlobalValues(self, int NumEntries, double Values, int Indices) -> int
ReplaceGlobalValues(self, int NumEntries, int BlockOffset, double Values, int Indices) -> int
int
Epetra_Vector::ReplaceGlobalValues(int NumEntries, int BlockOffset,
double *Values, int *Indices)
Replace values in a vector with a given indexed list of values at the
specified BlockOffset, indices are in global index space.
Replace the Indices[i] entry in the this object with Values[i], for
i=0; i<NumEntries. The indices are in global index space. This method
is intended for vector that are defined using block maps. In this
situation, an index value is associated with one or more vector
entries, depending on the element size of the given index. The
BlockOffset argument indicates which vector entry to modify as an
offset from the first vector entry associated with the given index.
The offset is used for each entry in the input list.
Parameters:
-----------
In: NumEntries - Number of vector entries to modify.
In: BlockOffset - Offset from the first vector entry associated with
each of the given indices.
In: Values - Values which will replace existing values in vector, of
length NumEntries.
In: Indices - Indices in global index space corresponding to Values.
Integer error code, set to 0 if successful, set to 1 if one or more
indices are not associated with calling processor.
"""
return _Epetra.Epetra_Vector_ReplaceGlobalValues(self, *args)
def ReplaceMyValues(self, *args):
"""
ReplaceMyValues(self, int NumEntries, double Values, int Indices) -> int
ReplaceMyValues(self, int NumEntries, int BlockOffset, double Values, int Indices) -> int
int
Epetra_Vector::ReplaceMyValues(int NumEntries, int BlockOffset, double
*Values, int *Indices)
Replace values in a vector with a given indexed list of values at the
specified BlockOffset, indices are in local index space.
Replace the (Indices[i], BlockOffset) entry in the this object with
Values[i], for i=0; i<NumEntries. The indices are in local index
space. This method is intended for vector that are defined using block
maps. In this situation, an index value is associated with one or more
vector entries, depending on the element size of the given index. The
BlockOffset argument indicates which vector entry to modify as an
offset from the first vector entry associated with the given index.
The offset is used for each entry in the input list.
Parameters:
-----------
In: NumEntries - Number of vector entries to modify.
In: BlockOffset - Offset from the first vector entry associated with
each of the given indices.
In: Values - Values which will replace existing values in vector, of
length NumEntries.
In: Indices - Indices in local index space corresponding to Values.
Integer error code, set to 0 if successful, set to 1 if one or more
indices are not associated with calling processor.
"""
return _Epetra.Epetra_Vector_ReplaceMyValues(self, *args)
def SumIntoGlobalValues(self, *args):
"""
SumIntoGlobalValues(self, int NumEntries, double Values, int Indices) -> int
SumIntoGlobalValues(self, int NumEntries, int BlockOffset, double Values, int Indices) -> int
int
Epetra_Vector::SumIntoGlobalValues(int NumEntries, int BlockOffset,
double *Values, int *Indices)
Sum values into a vector with a given indexed list of values at the
specified BlockOffset, indices are in global index space.
Sum Values[i] into the Indices[i] entry in the this object, for i=0;
i<NumEntries. The indices are in global index space. This method is
intended for vector that are defined using block maps. In this
situation, an index value is associated with one or more vector
entries, depending on the element size of the given index. The
BlockOffset argument indicates which vector entry to modify as an
offset from the first vector entry associated with the given index.
The offset is used for each entry in the input list.
Parameters:
-----------
In: NumEntries - Number of vector entries to modify.
In: BlockOffset - Offset from the first vector entry associated with
each of the given indices.
In: Values - Values which will replace existing values in vector, of
length NumEntries.
In: Indices - Indices in global index space corresponding to Values.
Integer error code, set to 0 if successful, set to 1 if one or more
indices are not associated with calling processor.
"""
return _Epetra.Epetra_Vector_SumIntoGlobalValues(self, *args)
def SumIntoMyValues(self, *args):
"""
SumIntoMyValues(self, int NumEntries, double Values, int Indices) -> int
SumIntoMyValues(self, int NumEntries, int BlockOffset, double Values, int Indices) -> int
int
Epetra_Vector::SumIntoMyValues(int NumEntries, int BlockOffset, double
*Values, int *Indices)
Sum values into a vector with a given indexed list of values at the
specified BlockOffset, indices are in local index space.
Sum Values[i] into the Indices[i] entry in the this object, for i=0;
i<NumEntries. The indices are in local index space. This method is
intended for vector that are defined using block maps. In this
situation, an index value is associated with one or more vector
entries, depending on the element size of the given index. The
BlockOffset argument indicates which vector entry to modify as an
offset from the first vector entry associated with the given index.
The offset is used for each entry in the input list.
Parameters:
-----------
In: NumEntries - Number of vector entries to modify.
In: BlockOffset - Offset from the first vector entry associated with
each of the given indices.
In: Values - Values which will replace existing values in vector, of
length NumEntries.
In: Indices - Indices in local index space corresponding to Values.
Integer error code, set to 0 if successful, set to 1 if one or more
indices are not associated with calling processor.
"""
return _Epetra.Epetra_Vector_SumIntoMyValues(self, *args)
Epetra_Vector_swigregister = _Epetra.Epetra_Vector_swigregister
Epetra_Vector_swigregister(Epetra_Vector)
class FEVector(_object):
"""Proxy of C++ FEVector class"""
__swig_setmethods__ = {}
__setattr__ = lambda self, name, value: _swig_setattr(self, FEVector, name, value)
__swig_getmethods__ = {}
__getattr__ = lambda self, name: _swig_getattr(self, FEVector, name)
__repr__ = _swig_repr
def __init__(self, *args):
"""__init__(self) -> FEVector"""
this = _Epetra.new_FEVector(*args)
try: self.this.append(this)
except: self.this = this
__swig_destroy__ = _Epetra.delete_FEVector
__del__ = lambda self : None;
FEVector_swigregister = _Epetra.FEVector_swigregister
FEVector_swigregister(FEVector)
class Epetra_FEVector(Epetra_MultiVector):
"""
Epetra Finite-Element Vector. This class inherits Epetra_MultiVector
and thus provides all Epetra_MultiVector functionality.
The added functionality provided by Epetra_FEVector is the ability to
perform finite-element style vector assembly. It accepts sub-vector
contributions, such as those that would come from element-load
vectors, etc., and these sub-vectors need not be owned by the local
processor. In other words, the user can assemble overlapping data
(e.g., corresponding to shared finite-element nodes). When the user is
finished assembling their vector data, they then call the method
Epetra_FEVector::GlobalAssemble() which gathers the overlapping data
(all non-local data that was input on each processor) into the data-
distribution specified by the map that the Epetra_FEVector is
constructed with.
C++ includes: Epetra_FEVector.h
"""
__swig_setmethods__ = {}
for _s in [Epetra_MultiVector]: __swig_setmethods__.update(getattr(_s,'__swig_setmethods__',{}))
__setattr__ = lambda self, name, value: _swig_setattr(self, Epetra_FEVector, name, value)
__swig_getmethods__ = {}
for _s in [Epetra_MultiVector]: __swig_getmethods__.update(getattr(_s,'__swig_getmethods__',{}))
__getattr__ = lambda self, name: _swig_getattr(self, Epetra_FEVector, name)
__repr__ = _swig_repr
def __init__(self, *args):
"""
__init__(self, BlockMap Map, int numVectors = 1, bool ignoreNonLocalEntries = False) -> Epetra_FEVector
__init__(self, Epetra_FEVector source) -> Epetra_FEVector
Epetra_FEVector::Epetra_FEVector(const Epetra_FEVector &source)
Copy constructor.
"""
this = _Epetra.new_Epetra_FEVector(*args)
try: self.this.append(this)
except: self.this = this
__swig_destroy__ = _Epetra.delete_Epetra_FEVector
__del__ = lambda self : None;
def SumIntoGlobalValues(self, *args):
"""
SumIntoGlobalValues(self, int numIDs, int GIDs, double values, int vectorIndex = 0) -> int
SumIntoGlobalValues(self, Epetra_IntSerialDenseVector GIDs, Epetra_SerialDenseVector values,
int vectorIndex = 0) -> int
SumIntoGlobalValues(self, int numIDs, int GIDs, int numValuesPerID, double values,
int vectorIndex = 0) -> int
int
Epetra_FEVector::SumIntoGlobalValues(int numIDs, const int *GIDs,
const int *numValuesPerID, const double *values, int vectorIndex=0)
"""
return _Epetra.Epetra_FEVector_SumIntoGlobalValues(self, *args)
def ReplaceGlobalValues(self, *args):
"""
ReplaceGlobalValues(self, int numIDs, int GIDs, double values, int vectorIndex = 0) -> int
ReplaceGlobalValues(self, Epetra_IntSerialDenseVector GIDs, Epetra_SerialDenseVector values,
int vectorIndex = 0) -> int
ReplaceGlobalValues(self, int numIDs, int GIDs, int numValuesPerID, double values,
int vectorIndex = 0) -> int
int
Epetra_FEVector::ReplaceGlobalValues(int numIDs, const int *GIDs,
const int *numValuesPerID, const double *values, int vectorIndex=0)
"""
return _Epetra.Epetra_FEVector_ReplaceGlobalValues(self, *args)
def GlobalAssemble(self, *args):
"""
GlobalAssemble(self, Epetra_CombineMode mode = Add) -> int
int
Epetra_FEVector::GlobalAssemble(Epetra_CombineMode mode=Add)
Gather any overlapping/shared data into the non-overlapping
partitioning defined by the Map that was passed to this vector at
construction time. Data imported from other processors is stored on
the owning processor with a "sumInto" or accumulate operation. This
is a collective method -- every processor must enter it before any
will complete it.
"""
return _Epetra.Epetra_FEVector_GlobalAssemble(self, *args)
def setIgnoreNonLocalEntries(self, *args):
"""
setIgnoreNonLocalEntries(self, bool flag)
void Epetra_FEVector::setIgnoreNonLocalEntries(bool flag)
Set whether or not non-local data values should be ignored.
"""
return _Epetra.Epetra_FEVector_setIgnoreNonLocalEntries(self, *args)
Epetra_FEVector_swigregister = _Epetra.Epetra_FEVector_swigregister
Epetra_FEVector_swigregister(Epetra_FEVector)
class NumPyIntVector(Epetra_IntVector):
"""Proxy of C++ Epetra_NumPyIntVector class"""
__swig_setmethods__ = {}
for _s in [Epetra_IntVector]: __swig_setmethods__.update(getattr(_s,'__swig_setmethods__',{}))
__setattr__ = lambda self, name, value: _swig_setattr(self, NumPyIntVector, name, value)
__swig_getmethods__ = {}
for _s in [Epetra_IntVector]: __swig_getmethods__.update(getattr(_s,'__swig_getmethods__',{}))
__getattr__ = lambda self, name: _swig_getattr(self, NumPyIntVector, name)
__repr__ = _swig_repr
__swig_destroy__ = _Epetra.delete_NumPyIntVector
__del__ = lambda self : None;
def ExtractCopy(self, *args):
"""
ExtractCopy(self) -> PyObject
Return a numpy.ndarray that is a copy of the IntVector.
"""
return _Epetra.NumPyIntVector_ExtractCopy(self, *args)
def ExtractView(self, *args):
"""
ExtractView(self) -> PyObject
Return a numpy.ndarray that is a view of the IntVector.
"""
return _Epetra.NumPyIntVector_ExtractView(self, *args)
def Values(self, *args):
"""
Values(self) -> PyObject
Return a numpy.ndarray that is a view of the IntVector.
"""
return _Epetra.NumPyIntVector_Values(self, *args)
def cleanup(*args):
"""cleanup()"""
return _Epetra.NumPyIntVector_cleanup(*args)
if _newclass:cleanup = staticmethod(cleanup)
__swig_getmethods__["cleanup"] = lambda x: cleanup
def __init__(self, *args):
"""
__init__(self, PyObject arg1) -> NumPyIntVector
__init__(self, PyObject arg1, PyObject arg2) -> NumPyIntVector
"""
this = _Epetra.new_NumPyIntVector(*args)
try: self.this.append(this)
except: self.this = this
NumPyIntVector_swigregister = _Epetra.NumPyIntVector_swigregister
NumPyIntVector_swigregister(NumPyIntVector)
def NumPyIntVector_cleanup(*args):
"""NumPyIntVector_cleanup()"""
return _Epetra.NumPyIntVector_cleanup(*args)
class IntVector(UserArray,NumPyIntVector):
"""
Epetra.IntVector: A class for constructing and using dense integer vectors
on a parallel computer.
The Epetra.IntVector class enables the construction and use of integer dense
vectors in a distributed memory environment. The distribution of the dense
vector is determined in part by a Epetra.Comm object and a Epetra.Map (or
Epetra.LocalMap or Epetra.BlockMap).
Distributed Global vs. Replicated Local Distributed Global Vectors -
In most instances, a multi-vector will be partitioned across multiple
memory images associated with multiple processors. In this case, there
is a unique copy of each element and elements are spread across all
processors specified by the Epetra.Comm communicator.
Replicated Local Vectors - Some algorithms use vectors that are too
small to be distributed across all processors. Replicated local
vectors handle these types of situation.
In the python implementation, the IntVector stores an underlying numpy
array, with which it shares the data buffer. Also, almost all numpy array
methods and operators are supported.
"""
def __init__(self, *args):
"""
__init__(self, BlockMap map, bool zeroOut=True) -> IntVector
__init__(self, IntVector source) -> IntVector
__init__(self, BlockMap map, PyObject array) -> IntVector
__init__(self, PyObject array) -> IntVector
Arguments:
map - BlockMap describing domain decomposition
zeroOut - Flag controlling whether to initialize IntVector to 0
source - Source IntVector for copy constructor
array - Python sequence that can be converted to a numpy array of
integers for initialization
"""
NumPyIntVector.__init__(self, *args)
self.__initArray__()
def __initArray__(self):
"""
__initArray__(self)
Initialize the underlying numpy array.
"""
UserArray.__init__(self, self.ExtractView(), dtype="i", copy=False)
def __str__(self):
"""
__str__(self)__ -> string
Return a numpy-style string representation of the IntVector.
"""
return str(self.array)
def __lt__(self,other):
"""
__lt__(self, other) -> bool
Less-than operator (<).
"""
return numpy.less(self.array,other)
def __le__(self,other):
"""
__le__(self, other) -> bool
Less-than-or-equal operator (<=).
"""
return numpy.less_equal(self.array,other)
def __eq__(self,other):
"""
__eq__(self, other) -> bool
Equal operator (==).
"""
return numpy.equal(self.array,other)
def __ne__(self,other):
"""
__ne__(self, other) -> bool
Not-equal operator (!=).
"""
return numpy.not_equal(self.array,other)
def __gt__(self,other):
"""
__gt__(self, other) -> bool
Greater-than operator (>).
"""
return numpy.greater(self.array,other)
def __ge__(self,other):
"""
__ge__(self, other) -> bool
Greater-than-or-equal operator (>=).
"""
return numpy.greater_equal(self.array,other)
def __getattr__(self, key):
# This should get called when the IntVector is accessed after not
# properly being initialized
if not "array" in self.__dict__:
self.__initArray__()
try:
return self.array.__getattribute__(key)
except AttributeError:
return IntVector.__getattribute__(self, key)
def __setattr__(self, key, value):
"Handle 'this' properly and protect the 'array' attribute"
if key == "this":
NumPyIntVector.__setattr__(self, key, value)
else:
if key == "array":
if key in self.__dict__:
raise AttributeError, \
"Cannot change Epetra.IntVector array attribute"
UserArray.__setattr__(self, key, value)
_Epetra.NumPyIntVector_swigregister(IntVector)
class NumPyMultiVector(Epetra_MultiVector):
"""Proxy of C++ Epetra_NumPyMultiVector class"""
__swig_setmethods__ = {}
for _s in [Epetra_MultiVector]: __swig_setmethods__.update(getattr(_s,'__swig_setmethods__',{}))
__setattr__ = lambda self, name, value: _swig_setattr(self, NumPyMultiVector, name, value)
__swig_getmethods__ = {}
for _s in [Epetra_MultiVector]: __swig_getmethods__.update(getattr(_s,'__swig_getmethods__',{}))
__getattr__ = lambda self, name: _swig_getattr(self, NumPyMultiVector, name)
__repr__ = _swig_repr
def __init__(self, *args):
"""
__init__(self, BlockMap blockMap, int numVectors, bool zeroOut = True) -> NumPyMultiVector
__init__(self, Epetra_MultiVector source) -> NumPyMultiVector
__init__(self, BlockMap blockMap, PyObject pyObject) -> NumPyMultiVector
__init__(self, Epetra_DataAccess CV, NumPyMultiVector source, PyObject range = None) -> NumPyMultiVector
__init__(self, Epetra_DataAccess CV, Epetra_MultiVector source, PyObject range = None) -> NumPyMultiVector
__init__(self, PyObject pyObject) -> NumPyMultiVector
"""
this = _Epetra.new_NumPyMultiVector(*args)
try: self.this.append(this)
except: self.this = this
__swig_destroy__ = _Epetra.delete_NumPyMultiVector
__del__ = lambda self : None;
def ExtractCopy(self, *args):
"""
ExtractCopy(self) -> PyObject
Return a numpy.ndarray that is a copy of the MultiVector.
"""
return _Epetra.NumPyMultiVector_ExtractCopy(self, *args)
def ExtractView(self, *args):
"""
ExtractView(self) -> PyObject
Return a numpy.ndarray that is a view of the MultiVector.
"""
return _Epetra.NumPyMultiVector_ExtractView(self, *args)
def Dot(self, *args):
"""
Dot(self, Epetra_MultiVector a) -> PyObject
Return a numpy.ndarray of the dot products of the MultiVector and a.
"""
return _Epetra.NumPyMultiVector_Dot(self, *args)
def Norm1(self, *args):
"""
Norm1(self) -> PyObject
Return a numpy.ndarray of the L-1 norms of MultiVector.
"""
return _Epetra.NumPyMultiVector_Norm1(self, *args)
def Norm2(self, *args):
"""
Norm2(self) -> PyObject
Return a numpy.ndarray of the the L-2 norms of MultiVector.
"""
return _Epetra.NumPyMultiVector_Norm2(self, *args)
def NormInf(self, *args):
"""
NormInf(self) -> PyObject
Return a numpy.ndarray of the L-infinity norms of MultiVector.
"""
return _Epetra.NumPyMultiVector_NormInf(self, *args)
def NormWeighted(self, *args):
"""
NormWeighted(self, Epetra_MultiVector weights) -> PyObject
Return a numpy.ndarray of the weighted norms of MultiVector.
"""
return _Epetra.NumPyMultiVector_NormWeighted(self, *args)
def MinValue(self, *args):
"""
MinValue(self) -> PyObject
Return a numpy.ndarray of the minimum values in MultiVector.
"""
return _Epetra.NumPyMultiVector_MinValue(self, *args)
def MaxValue(self, *args):
"""
MaxValue(self) -> PyObject
Return a numpy.ndarray of the maximum values in MultiVector.
"""
return _Epetra.NumPyMultiVector_MaxValue(self, *args)
def MeanValue(self, *args):
"""
MeanValue(self) -> PyObject
Return a numpy.ndarray of the mean values of the MultiVector.
"""
return _Epetra.NumPyMultiVector_MeanValue(self, *args)
def cleanup(*args):
"""cleanup()"""
return _Epetra.NumPyMultiVector_cleanup(*args)
if _newclass:cleanup = staticmethod(cleanup)
__swig_getmethods__["cleanup"] = lambda x: cleanup
NumPyMultiVector_swigregister = _Epetra.NumPyMultiVector_swigregister
NumPyMultiVector_swigregister(NumPyMultiVector)
def NumPyMultiVector_cleanup(*args):
"""NumPyMultiVector_cleanup()"""
return _Epetra.NumPyMultiVector_cleanup(*args)
class MultiVector(UserArray,NumPyMultiVector):
"""
Epetra.MultiVector: A class for constructing and using dense multi- vectors,
vectors and matrices in parallel.
The Epetra.MultiVector class enables the construction and use of real-
valued, double- precision dense vectors, multi-vectors, and matrices in a
distributed memory environment. The dimensions and distribution of the dense
multi-vectors is determined in part by a Epetra.Comm object, a Epetra.Map
(or Epetra.LocalMap or Epetra.BlockMap) and the number of vectors passed to
the constructors described below.
There are several concepts that important for understanding the
Epetra.MultiVector class:
Multi-vectors, Vectors and Matrices. Vector - A list of real-valued,
double-precision numbers. Also a multi-vector with one vector.
Multi-Vector - A collection of one or more vectors, all having the same
length and distribution.
(Dense) Matrix - A special form of multi-vector such that stride in memory
between any two consecutive vectors in the multi-vector is the same for all
vectors. This is identical to a two-dimensional array in Fortran and plays
an important part in high performance computations.
Distributed Global vs. Replicated Local. Distributed Global Multi- vectors -
In most instances, a multi-vector will be partitioned across multiple memory
images associated with multiple processors. In this case, there is a unique
copy of each element and elements are spread across all processors specified
by the Epetra.Comm communicator.
Replicated Local Multi-vectors - Some algorithms use multi-vectors that are
too small to be distributed across all processors, the Hessenberg matrix in
a GMRES computation. In other cases, such as with block iterative methods,
block dot product functions produce small dense matrices that are required
by all processors. Replicated local multi-vectors handle these types of
situation.
Multi-vector Functions vs. Dense Matrix Functions. Multi-vector functions -
These functions operate simultaneously but independently on each vector in
the multi-vector and produce individual results for each vector.
Dense matrix functions - These functions operate on the multi-vector as a
matrix, providing access to selected dense BLAS and LAPACK operations.
In the python implementation, the MultiVector stores an underlying numpy
array, with which it shares the data buffer. This underlying numpy array
has at least two dimensions, and the first dimension corresponds to the
number of vectors. Also, almost all numpy array methods and operators are
supported.
"""
def __init__(self, *args):
"""
__init__(self, BlockMap map, int numVectors,
bool zeroOut=True) -> MultiVector
__init__(self, MultiVector source) -> MultiVector
__init__(self, BlockMap map, PyObject array) -> MultiVector
__init__(self, DataAccess CV, MultiVector source) -> MultiVector
__init__(self, DataAccess CV, MultiVector source,
PyObject range) -> MultiVector
__init__(self, PyObject array) -> MultiVector
Arguments:
map - BlockMap describing domain decomposition
numVectors - Number of vectors
zeroOut - Flag controlling whether to initialize MultiVector to
zero
source - Source MultiVector for copy constructors
array - Python sequence that can be converted to a numpy array
of doubles for initialization
CV - Epetra.Copy or Epetra.View
range - Python sequence specifying range of vector indexes
"""
NumPyMultiVector.__init__(self, *args)
self.__initArray__()
def __initArray__(self):
"""
__initArray__(self)
Initialize the underlying numpy array.
"""
UserArray.__init__(self, self.ExtractView(), dtype="d", copy=False)
def __expand_index__(self, index):
result = [slice(None, None, None)] * len(self.shape)
if isinstance(index, tuple):
for i in range(len(index)):
result[i] = index[i]
else:
result[0] = index
return tuple(result)
def __getitem__(self,index):
"""
x.__getitem__(y) <==> x[y]
"""
result = UserArray.__getitem__(self,index)
# If the result is an array (not a scalar), then we must take steps to
# ensure that the resulting MultiVector has an accurate BlockMap
if hasattr(result,"__len__"):
# Obtain the new global IDs by getting a slice (based on index) from
# an array of the old global IDs. Use the new global IDs to build a
# new BlockMap, upon which the new result will be based.
index = self.__expand_index__(index)
newIndex = index[1:]
oldShape = self.shape[1:]
oldMap = self.Map()
gids = oldMap.MyGlobalElements()
gids.shape = oldShape
elemSizes = oldMap.ElementSizeList()
elemSizes.shape = oldShape
newMap = BlockMap(-1,
gids[newIndex].ravel(),
elemSizes[newIndex].ravel(),
oldMap.IndexBase(),
self.Comm())
newShape = result.shape
if not (isinstance(index[0],slice) or hasattr(index[0],"__len__")):
newShape = (1,) + newShape
rarray = result.array.ravel()
rarray.shape = newShape
result = MultiVector(newMap, rarray)
return result
def __getslice__(self, i, j):
"""
x.__getslice__(i,j) <==> x[i:j]
"""
return self.__getitem__(slice(i,j))
def __str__(self):
"""
__str__(self) -> string
Return the numpy-style string representation of the MultiVector.
"""
return str(self.array)
def __lt__(self,other):
"""
__lt__(self, other) -> bool
Less-than operator (<).
"""
return numpy.less(self.array,other)
def __le__(self,other):
"""
__le__(self, other) -> bool
Less-than-or-equal operator (<=).
"""
return numpy.less_equal(self.array,other)
def __eq__(self,other):
"""
__eq__(self, other) -> bool
Equal operator (==).
"""
return numpy.equal(self.array,other)
def __ne__(self,other):
"""
__ne__(self, other) -> bool
Not-equal operator (!=).
"""
return numpy.not_equal(self.array,other)
def __gt__(self,other):
"""
__gt__(self, other) -> bool
Greater-than operator (>).
"""
return numpy.greater(self.array,other)
def __ge__(self,other):
"""
__ge__(self, other) -> bool
Greater-than or equal operator (>=).
"""
return numpy.greater_equal(self.array,other)
def __getattr__(self, key):
# This should get called when the MultiVector is accessed after not
# properly being initialized
if not "array" in self.__dict__:
self.__initArray__()
try:
return self.array.__getattribute__(key)
except AttributeError:
return MultiVector.__getattribute__(self, key)
def __setattr__(self, key, value):
"Handle 'this' properly and protect the 'array' and 'shape' attributes"
if key == "this":
NumPyMultiVector.__setattr__(self, key, value)
else:
if key == "array":
if key in self.__dict__:
raise AttributeError, \
"Cannot change Epetra.MultiVector array attribute"
elif key == "shape":
value = tuple(value)
if len(value) < 2:
raise ValueError, "Epetra.MultiVector shape is " + \
str(value) + " but must have minimum of 2 elements"
UserArray.__setattr__(self, key, value)
_Epetra.NumPyMultiVector_swigregister(MultiVector)
class NumPyVector(Epetra_Vector):
"""Proxy of C++ Epetra_NumPyVector class"""
__swig_setmethods__ = {}
for _s in [Epetra_Vector]: __swig_setmethods__.update(getattr(_s,'__swig_setmethods__',{}))
__setattr__ = lambda self, name, value: _swig_setattr(self, NumPyVector, name, value)
__swig_getmethods__ = {}
for _s in [Epetra_Vector]: __swig_getmethods__.update(getattr(_s,'__swig_getmethods__',{}))
__getattr__ = lambda self, name: _swig_getattr(self, NumPyVector, name)
__repr__ = _swig_repr
__swig_destroy__ = _Epetra.delete_NumPyVector
__del__ = lambda self : None;
def ExtractCopy(self, *args):
"""
ExtractCopy(self) -> PyObject
Return a numpy.ndarray that is a copy of the Vector.
"""
return _Epetra.NumPyVector_ExtractCopy(self, *args)
def ExtractView(self, *args):
"""
ExtractView(self) -> PyObject
Return a numpy.ndarray that is a view of the Vector.
"""
return _Epetra.NumPyVector_ExtractView(self, *args)
def Dot(self, *args):
"""
Dot(self, Epetra_Vector A) -> double
Return the dot product of the Vector and a.
"""
return _Epetra.NumPyVector_Dot(self, *args)
def Norm1(self, *args):
"""
Norm1(self) -> double
Return the L-1 norm of Vector.
"""
return _Epetra.NumPyVector_Norm1(self, *args)
def Norm2(self, *args):
"""
Norm2(self) -> double
Return the the L-2 norm of Vector.
"""
return _Epetra.NumPyVector_Norm2(self, *args)
def NormInf(self, *args):
"""
NormInf(self) -> double
Return the L-infinity norm of Vector.
"""
return _Epetra.NumPyVector_NormInf(self, *args)
def NormWeighted(self, *args):
"""
NormWeighted(self, Epetra_Vector weights) -> double
Return the weighted norm of Vector.
"""
return _Epetra.NumPyVector_NormWeighted(self, *args)
def MinValue(self, *args):
"""
MinValue(self) -> double
Return the minimum values in Vector.
"""
return _Epetra.NumPyVector_MinValue(self, *args)
def MaxValue(self, *args):
"""
MaxValue(self) -> double
Return the maximum values in Vector.
"""
return _Epetra.NumPyVector_MaxValue(self, *args)
def MeanValue(self, *args):
"""
MeanValue(self) -> double
Return the mean value of the Vector.
"""
return _Epetra.NumPyVector_MeanValue(self, *args)
def ReplaceGlobalValues(self, *args):
"""
ReplaceGlobalValues(self, PyObject values, PyObject indices) -> int
ReplaceGlobalValues(self, int blockOffset, PyObject values, PyObject indices) -> int
Replace global values at specified index (and offset)
"""
return _Epetra.NumPyVector_ReplaceGlobalValues(self, *args)
def ReplaceMyValues(self, *args):
"""
ReplaceMyValues(self, PyObject values, PyObject indices) -> int
ReplaceMyValues(self, int blockOffset, PyObject values, PyObject indices) -> int
Replace local values at specified index (and offset)
"""
return _Epetra.NumPyVector_ReplaceMyValues(self, *args)
def SumIntoGlobalValues(self, *args):
"""
SumIntoGlobalValues(self, PyObject values, PyObject indices) -> int
SumIntoGlobalValues(self, int blockOffset, PyObject values, PyObject indices) -> int
Sum into global values at specified indices (and offset)
"""
return _Epetra.NumPyVector_SumIntoGlobalValues(self, *args)
def SumIntoMyValues(self, *args):
"""
SumIntoMyValues(self, PyObject values, PyObject indices) -> int
SumIntoMyValues(self, int blockOffset, PyObject values, PyObject indices) -> int
Sum into local values at specified indices (and offset)
"""
return _Epetra.NumPyVector_SumIntoMyValues(self, *args)
def cleanup(*args):
"""cleanup()"""
return _Epetra.NumPyVector_cleanup(*args)
if _newclass:cleanup = staticmethod(cleanup)
__swig_getmethods__["cleanup"] = lambda x: cleanup
def __init__(self, *args):
"""
__init__(self, Epetra_DataAccess CV, Epetra_MultiVector source, int index) -> NumPyVector
__init__(self, PyObject arg1) -> NumPyVector
__init__(self, PyObject arg1, PyObject arg2) -> NumPyVector
"""
this = _Epetra.new_NumPyVector(*args)
try: self.this.append(this)
except: self.this = this
NumPyVector_swigregister = _Epetra.NumPyVector_swigregister
NumPyVector_swigregister(NumPyVector)
def NumPyVector_cleanup(*args):
"""NumPyVector_cleanup()"""
return _Epetra.NumPyVector_cleanup(*args)
class Vector(UserArray,NumPyVector):
"""
Epetra.Vector: A class for constructing and using dense vectors on a
parallel computer.
The Epetra.Vector class enables the construction and use of real- valued,
double- precision dense vectors in a distributed memory environment. The
distribution of the dense vector is determined in part by a Epetra.Comm
object and a Epetra.Map (or Epetra.LocalMap or Epetra.BlockMap).
This class is derived from the Epetra.MultiVector class. As such, it has
full access to all of the functionality provided in the Epetra.MultiVector
class.
Distributed Global vs. Replicated Local Distributed Global Vectors - In most
instances, a multi-vector will be partitioned across multiple memory images
associated with multiple processors. In this case, there is a unique copy of
each element and elements are spread across all processors specified by the
Epetra.Comm communicator.
Replicated Local Vectors - Some algorithms use vectors that are too small to
be distributed across all processors. Replicated local vectors handle these
types of situation.
In the python implementation, the Vector stores an underlying numpy array,
with which it shares the data buffer. Also, almost all numpy array methods
and operators are supported.
"""
def __init__(self, *args):
"""
__init__(self, BlockMap map, bool zeroOut=True) -> Vector
__init__(self, Vector source) -> Vector
__init__(self, BlockMap map, PyObject array) -> Vector
__init__(self, DataAccess CV, Vector source) -> Vector
__init__(self, DataAccess CV, MultiVector source, PyObject index) -> Vector
__init__(self, PyObject array) -> Vector
Arguments:
map - BlockMap describing domain decomposition
zeroOut - Flag controlling whether to initialize MultiVector to
zero
source - Source Vector or MultiVector for copy constructors
array - Python sequence that can be converted to a numpy array
of doubles for initialization
CV - Epetra.Copy or Epetra.View
index - MultiVector vector index for copy constructor
"""
NumPyVector.__init__(self, *args)
self.__initArray__()
def __initArray__(self):
"""
__initArray__(self)
Initialize the underlying numpy array.
"""
UserArray.__init__(self, self.ExtractView(), dtype="d", copy=False)
def __getitem__(self,index):
"""
x.__getitem__(y) <==> x[y]
"""
result = UserArray.__getitem__(self,index)
# If the result is an array (not a scalar) then we must take steps to
# ensure that the resulting Vector has an accurate BlockMap
if hasattr(result,"__len__"):
# Obtain the new global IDs by getting a slice (based on index) from
# an array of the old global IDs. Use the new global IDs to build a
# new BlockMap, upon which the new result will be based.
oldMap = self.Map()
gids = oldMap.MyGlobalElements()
gids.shape = self.shape
elemSizes = oldMap.ElementSizeList()
elemSizes.shape = self.shape
newMap = BlockMap(-1,
gids[index].ravel(),
elemSizes[index].ravel(),
oldMap.IndexBase(),
self.Comm())
newShape = result.shape
rarray = result.array.ravel()
rarray.shape = newShape
result = Vector(newMap, rarray)
return result
def __getslice__(self, i, j):
"""
x.__getslice__(i,j) <==> x[i:j]
"""
return self.__getitem__(slice(i,j))
def __str__(self):
"""
__str__(self) -> string
Return the numpy-style string representation of the MultiVector.
"""
return str(self.array)
def __lt__(self,other):
"""
__lt__(self, other) -> bool
Less-than operator (<).
"""
return numpy.less(self.array,other)
def __le__(self,other):
"""
__le__(self, other) -> bool
Less-than-or-equal operator (<=).
"""
return numpy.less_equal(self.array,other)
def __eq__(self,other):
"""
__eq__(self, other) -> bool
Equal operator (==).
"""
return numpy.equal(self.array,other)
def __ne__(self,other):
"""
__ne__(self, other) -> bool
Not-equal operator (!=).
"""
return numpy.not_equal(self.array,other)
def __gt__(self,other):
"""
__gt__(self, other) -> bool
Greater-than operator (>).
"""
return numpy.greater(self.array,other)
def __ge__(self,other):
"""
__ge__(self, other) -> bool
Greater-than or equal operator (>=).
"""
return numpy.greater_equal(self.array,other)
def __getattr__(self, key):
# This should get called when the Vector is accessed after not properly
# being initialized
if not "array" in self.__dict__:
self.__initArray__()
try:
return self.array.__getattribute__(key)
except AttributeError:
return Vector.__getattribute__(self, key)
def __setattr__(self, key, value):
"Handle 'this' properly and protect the 'array' attribute"
if key == "this":
NumPyVector.__setattr__(self, key, value)
else:
if key == "array":
if key in self.__dict__:
raise AttributeError, \
"Cannot change Epetra.Vector array attribute"
UserArray.__setattr__(self, key, value)
_Epetra.NumPyVector_swigregister(Vector)
class NumPyFEVector(Epetra_FEVector):
"""Proxy of C++ Epetra_NumPyFEVector class"""
__swig_setmethods__ = {}
for _s in [Epetra_FEVector]: __swig_setmethods__.update(getattr(_s,'__swig_setmethods__',{}))
__setattr__ = lambda self, name, value: _swig_setattr(self, NumPyFEVector, name, value)
__swig_getmethods__ = {}
for _s in [Epetra_FEVector]: __swig_getmethods__.update(getattr(_s,'__swig_getmethods__',{}))
__getattr__ = lambda self, name: _swig_getattr(self, NumPyFEVector, name)
__repr__ = _swig_repr
def __init__(self, *args):
"""
__init__(self, BlockMap blockMap, int numVectors, bool ignoreNonLocalEntries = False) -> NumPyFEVector
__init__(self, Epetra_FEVector source) -> NumPyFEVector
"""
this = _Epetra.new_NumPyFEVector(*args)
try: self.this.append(this)
except: self.this = this
__swig_destroy__ = _Epetra.delete_NumPyFEVector
__del__ = lambda self : None;
def ExtractCopy(self, *args):
"""
ExtractCopy(self) -> PyObject
Return a numpy.ndarray that is a copy of the FEVector.
"""
return _Epetra.NumPyFEVector_ExtractCopy(self, *args)
def ExtractView(self, *args):
"""
ExtractView(self) -> PyObject
Return a numpy.ndarray that is a view of the FEVector.
"""
return _Epetra.NumPyFEVector_ExtractView(self, *args)
def Dot(self, *args):
"""
Dot(self, Epetra_FEVector A) -> double
Return the dot product of the FEVector and a.
"""
return _Epetra.NumPyFEVector_Dot(self, *args)
def Norm1(self, *args):
"""
Norm1(self) -> double
Return the L-1 norm of FEVector.
"""
return _Epetra.NumPyFEVector_Norm1(self, *args)
def Norm2(self, *args):
"""
Norm2(self) -> double
Return the the L-2 norm of FEVector.
"""
return _Epetra.NumPyFEVector_Norm2(self, *args)
def NormInf(self, *args):
"""
NormInf(self) -> double
Return the L-infinity norm of FEVector.
"""
return _Epetra.NumPyFEVector_NormInf(self, *args)
def NormWeighted(self, *args):
"""
NormWeighted(self, Epetra_FEVector weights) -> double
Return the weighted norm of FEVector.
"""
return _Epetra.NumPyFEVector_NormWeighted(self, *args)
def MinValue(self, *args):
"""
MinValue(self) -> double
Return the minimum values in FEVector.
"""
return _Epetra.NumPyFEVector_MinValue(self, *args)
def MaxValue(self, *args):
"""
MaxValue(self) -> double
Return the maximum values in FEVector.
"""
return _Epetra.NumPyFEVector_MaxValue(self, *args)
def MeanValue(self, *args):
"""
MeanValue(self) -> double
Return the mean value of the FEVector.
"""
return _Epetra.NumPyFEVector_MeanValue(self, *args)
def ReplaceGlobalValues(self, *args):
"""
ReplaceGlobalValues(self, PyObject indices, PyObject values) -> int
Replace global values at specified index (and offset)
"""
return _Epetra.NumPyFEVector_ReplaceGlobalValues(self, *args)
def SumIntoGlobalValues(self, *args):
"""
SumIntoGlobalValues(self, PyObject indices, PyObject values) -> int
Sum into global values at specified indices (and offset)
"""
return _Epetra.NumPyFEVector_SumIntoGlobalValues(self, *args)
def cleanup(*args):
"""cleanup()"""
return _Epetra.NumPyFEVector_cleanup(*args)
if _newclass:cleanup = staticmethod(cleanup)
__swig_getmethods__["cleanup"] = lambda x: cleanup
NumPyFEVector_swigregister = _Epetra.NumPyFEVector_swigregister
NumPyFEVector_swigregister(NumPyFEVector)
def NumPyFEVector_cleanup(*args):
"""NumPyFEVector_cleanup()"""
return _Epetra.NumPyFEVector_cleanup(*args)
class FEVector(UserArray,NumPyFEVector):
"""
Epetra Finite-Element Vector. This class inherits Epetra.MultiVector and
thus provides all Epetra.MultiVector functionality, with one restriction:
currently an Epetra.FEVector only has 1 internal vector.
The added functionality provided by Epetra.FEVector is the ability to
perform finite-element style vector assembly. It accepts sub-vector
contributions, such as those that would come from element-load vectors,
etc., and these sub-vectors need not be wholly locally owned. In other
words, the user can assemble overlapping data (e.g., corresponding to shared
finite-element nodes). When the user is finished assembling their vector
data, they then call the method Epetra.FEVector::GlobalAssemble() which
gathers the overlapping data (all non-local data that was input on each
processor) into the data- distribution specified by the map that the
Epetra.FEVector is constructed with.
Note: At the current time (Sept 6, 2002) the methods in this implementation
assume that there is only 1 point associated with each map element. This
limitation will be removed in the near future.
In the python implementation, the FEVector stores an underlying numpy array,
with which it shares the data buffer. Also, almost all numpy array methods
and operators are supported.
"""
def __init__(self, *args):
"""
__init__(self, BlockMap map, bool zeroOut=True) -> FEVector
__init__(self, FEVector source) -> FEVector
__init__(self, BlockMap map, PyObject array) -> FEVector
__init__(self, DataAccess CV, Vector source) -> FEVector
__init__(self, DataAccess CV, MultiVector source, PyObject index) -> FEVector
__init__(self, PyObject array) -> FEVector
Arguments:
map - BlockMap describing domain decomposition
zeroOut - Flag controlling whether to initialize MultiVector to
zero
source - Source Vector or MultiVector for copy constructors
array - Python sequence that can be converted to a numpy array
of doubles for initialization
CV - Epetra.Copy or Epetra.View
index - MultiVector vector index for copy constructor
"""
NumPyFEVector.__init__(self, *args)
self.__initArray__()
def __initArray__(self):
"""
__initArray__(self)
Initialize the underlying numpy array.
"""
UserArray.__init__(self, self.ExtractView(), dtype="d", copy=False)
def __str__(self):
"""
__str__(self) -> string
Return the numpy-style string representation of the MultiVector.
"""
return str(self.array)
def __lt__(self,other):
"""
__lt__(self, other) -> bool
Less-than operator (<).
"""
return numpy.less(self.array,other)
def __le__(self,other):
"""
__le__(self, other) -> bool
Less-than-or-equal operator (<=).
"""
return numpy.less_equal(self.array,other)
def __eq__(self,other):
"""
__eq__(self, other) -> bool
Equal operator (==).
"""
return numpy.equal(self.array,other)
def __ne__(self,other):
"""
__ne__(self, other) -> bool
Not-equal operator (!=).
"""
return numpy.not_equal(self.array,other)
def __gt__(self,other):
"""
__gt__(self, other) -> bool
Greater-than operator (>).
"""
return numpy.greater(self.array,other)
def __ge__(self,other):
"""
__ge__(self, other) -> bool
Greater-than or equal operator (>=).
"""
return numpy.greater_equal(self.array,other)
def __getattr__(self, key):
# This should get called when the FEVector is accessed after not properly
# being initialized
if not "array" in self.__dict__:
self.__initArray__()
try:
return self.array.__getattribute__(key)
except AttributeError:
return FEVector.__getattribute__(self, key)
def __setattr__(self, key, value):
"Handle 'this' properly and protect the 'array' attribute"
if key == "this":
NumPyFEVector.__setattr__(self, key, value)
else:
if key == "array":
if key in self.__dict__:
raise AttributeError, "Cannot change Epetra.FEVector array attribute"
UserArray.__setattr__(self, key, value)
_Epetra.NumPyFEVector_swigregister(FEVector)
class CrsGraph(DistObject):
"""
Epetra_CrsGraph: A class for constructing and using sparse compressed
row graphs.
Epetra_CrsGraph enables the piecewise construction and use of sparse
matrix graphs (the integer structure without values) where entries are
intended for row access.
Epetra_CrsGraph is an attribute of all Epetra row-based matrix
classes, defining their nonzero structure and also holding their
Epetra_Map attributes.
Constructing Epetra_CrsGraph objects
Constructing Epetra_CrsGraph objects is a multi-step process. The
basic steps are as follows: Create Epetra_CrsGraph instance, including
some initial storage, via constructor. In addition to the copy
constructor, Epetra_CrsGraph has four different constructors. All four
of these constructors have an argument, StaticProfile, which by
default is set to false. If it is set to true, then the profile (the
number of indices per row as defined by NumIndicesPerRow) will be
rigidly enforced. Although this takes away flexibility, it allows a
single array to be allocated for all indices. This decreases memory
fragmentation and improves performance across many operations. A more
detailed discussion of the StaticProfile option is found below. User-
provided row map, variable nonzero profile: This constructor is used
to define the row distribution of the graph and specify a varying
number of nonzero entries per row. It is best to use this constructor
when the user will be inserting entries using global index values and
wants every column index to be included in the graph. Note that in
this case, the column map will be built for the user when
FillComplete() is called. This constructor is also appropriate for
when there is a large variation in the number of indices per row. If
this is not the case, the next constructor may be more convenient to
use.
User-provided row map, fixed nonzero profile: This constructor is used
to define the row distribution of the graph and specify a fixed number
of nonzero entries per row. It is best to use this constructor when
the user will be inserting entries using global index values and wants
every column index to be included in the graph. Note that in this
case, the column map will be built for the user when FillComplete() is
called. This constructor is also appropriate for when there is little
or no variation in the number of indices per row.
User-provided row map, user-provided column map and variable nonzero
profile: This constructor is used to define the row and column
distribution of the graph, and specify a varying number of nonzero
entries per row. It is best to use this constructor when the user will
be inserting entries and already knows which columns of the matrix
should be included on each processor. Note that in this case, the
column map will not be built for the user when FillComplete() is
called. Also, if the user attempts to insert a column index whose GID
is not part of the column map on that process, the index will be
discarded. This property can be used to "filter out" column entries
that should be ignored. This constructor is also appropriate for when
there is a large variation in the number of indices per row. If this
is not the case, the next constructor may be more convenient to use.
User-provided row map, user-provided column map and fixed nonzero
profile: This constructor is used to define the row and column
distribution of the graph, and specify a fixed number of nonzero
entries per row. It is best to use this constructor when the user will
be inserting entries and already knows which columns of the matrix
should be included on each processor. Note that in this case, the
column map will not be built for the user when FillComplete() is
called. Also, if the user attempts to insert a column index whose GID
is not part of the column map on that process, the index will be
discarded. This constructor is also appropriate for when there is
little or no variation in the number of indices per row.
Enter row and column entry information via calls to the
InsertGlobalIndices method.
Complete construction via FillComplete call, which performs the
following tasks: Transforms indices to local index space (after this,
IndicesAreLocal()==true)
Sorts column-indices within each row
Compresses out any redundant indices within rows
Computes global data such as num-nonzeros, maximum row-lengths, etc.
(Optional) Optimize the graph storage via a call to OptimizeStorage.
Performance Enhancement Issues
The Epetra_CrsGraph class attempts to address four basic types of
situations, depending on the user's primary concern:
Simple, flexible construction over minimal memory use or control of
column indices: In this case the user wants to provide only a row
distribution of the graph and insert indices without worrying about
memory allocation performance. This type of user is best served by the
constructor that requires only a row map, and a fixed number of
indices per row. In fact, setting NumIndicesPerRow=0 is probably the
best option.
Stronger control over memory allocation performance and use over
flexibility and simplicity: In this case the user explicitly set
StaticProfile to true and will provide values, either a single global
int or an array of int's, for NumIndicesPerRow, such that the actual
number of indices submitted to the graph will not exceed the
estimates. Because we know that NumIndicesPerRow will not be exceeded,
we can pre-allocate all of the storage for the graph as a single
array. This is typically much more efficient.
Explicit control over column indices: In this case the user prescribes
the column map. Given the column map, any index that is submitted for
entry into the graph will be included only if they are present in the
list of GIDs for the column map on the processor that submits the
index. This feature allows the user to define a filter such that only
certain columns will be kept. The user also prescribes the local
ordering via this technique, since the ordering of GIDs in the column
map imposes the local ordering.
Construction using local indices only: In some situations, users may
want to build a graph using local index values only. In this case, the
user must explicitly assign GIDs. This is done by prescribing the
column map, in the same way as the previous situation.
Notes: In all but the most advanced uses, users will typically not
specify the column map. In other words, graph entries will be
submitted using GIDs not LIDs and all entries that are submitted are
intended to be inserted into the graph.
If a user is not particularly worried about performance, or really
needs the flexibility associated with the first situation, then there
is no need to explicitly manage the NumIndicesPerRow values or set
StaticProfile to true. In this case, it is best to set
NumIndicesPerRow to zero.
Users who are concerned about performance should carefully manage
NumIndicesPerRow and set StaticProfile to true. This will give the
best performance and use the least amount of memory.
A compromise approach would be to not set StaticProfile to true,
giving the user flexibility, but then calling OptimizeStorage() once
FillComplete() has been called. This approach requires additional
temporary memory because the graph will be copied into an efficient
data structure and the old memory deleted. However, once the copy has
been made, the resulting data structure is as efficient as when
StaticProfile is used.
Epetra_Map attributes
Epetra_CrsGraph objects have four Epetra_Map attributes.
The Epetra_Map attributes can be obtained via these accessor methods:
RowMap() Describes the numbering and distribution of the rows of the
graph. The row-map exists and is valid for the entire life of the
graph, having been passed in as a constructor argument. The set of
graph rows is defined by the row-map and may not be changed. Rows may
not be inserted or deleted by the user. The only change that may be
made is that the user can replace the row-map with a compatible row-
map (which is the same except for re-numbering) by calling the
ReplaceRowMap() method.
ColMap() Describes the set of column-indices that appear in the rows
in each processor's portion of the graph. Unless provided by the user
at construction time, a valid column-map doesn't exist until
FillComplete() is called.
RangeMap() Describes the range of the matrix operator. e.g., for a
matrix-vector product operation, the result vector's map must be
compatible with the range-map of the matrix operator. The range-map is
usually the same as the row-map. The range-map is set equal to the
row-map at graph creation time, but may be specified by the user when
FillComplete() is called.
DomainMap() Describes the domain of the matrix operator. The domain-
map can be specified by the user when FillComplete() is called. Until
then, it is set equal to the row-map.
It is important to note that while the row-map and the range-map are
often the same, the column-map and the domain-map are almost never the
same. The set of entries in a distributed column-map almost always
form overlapping sets, with entries being associated with more than
one processor. A domain-map, on the other hand, must be a 1-to-1 map,
with entries being associated with only a single processor.
Global versus Local indices
After creation and before FillComplete() has been called, the column-
indices of the graph are in the global space as received from the
user. One of the tasks performed by FillComplete() is to transform the
indices to a local index space. The query methods IndicesAreGlobal()
and IndicesAreLocal() return true or false depending on whether this
transformation has been performed or not.
Note the behavior of several graph methods: InsertGlobalIndices()
returns an error if IndicesAreLocal()==true or
StorageOptimized()==true
InsertMyIndices() returns an error if IndicesAreGlobal()==true or
StorageOptimized()==true
RemoveGlobalIndices() returns an error if IndicesAreLocal()==true or
if graph was constructed in View mode
RemoveMyIndices() returns an error if IndicesAreGlobal()==true or if
graph was constructed in View mode
ExtractGlobalRowCopy() works regardless of state of indices
ExtractMyRowCopy() returns an error if IndicesAreGlobal()==true
ExtractGlobalRowView() returns an error if IndicesAreLocal()==true
ExtractMyRowView() returns an error if IndicesAreGlobal()==true
Note that even after a graph is constructed, it is possible to add or
remove entries. However, FillComplete must then be called again to
restore the graph to a consistent state.
C++ includes: Epetra_CrsGraph.h
"""
__swig_setmethods__ = {}
for _s in [DistObject]: __swig_setmethods__.update(getattr(_s,'__swig_setmethods__',{}))
__setattr__ = lambda self, name, value: _swig_setattr(self, CrsGraph, name, value)
__swig_getmethods__ = {}
for _s in [DistObject]: __swig_getmethods__.update(getattr(_s,'__swig_getmethods__',{}))
__getattr__ = lambda self, name: _swig_getattr(self, CrsGraph, name)
__repr__ = _swig_repr
__swig_destroy__ = _Epetra.delete_CrsGraph
__del__ = lambda self : None;
def InsertGlobalIndices(self, *args):
"""
InsertGlobalIndices(self, int globalRow, PySequence indices) -> int
Insert a sequence of global indices into the set of nonzero columns
for the specified global row. Argument indices can be a numpy array
of integers or any python sequence that can be converted to a numpy
array of integers. The integers represent global IDs that are to be
inserted into the graph. An integer error/warning code is returned.
int
Epetra_CrsGraph::InsertGlobalIndices(int GlobalRow, int NumIndices,
int *Indices)
Enter a list of elements in a specified global row of the graph.
Parameters:
-----------
Row: - (In) Global row number of indices.
NumIndices: - (In) Number of Indices.
Indices: - (In) Global column indices to insert.
Integer error code, set to 0 if successful. If the insertion requires
that additional memory be allocated for the row, a positive error code
of 1 is returned. If the graph is a 'View' mode graph, then a positive
warning code of 2 will be returned if the specified row already
exists. Returns 1 if underlying graph data is shared by multiple graph
instances.
IndicesAreGlobal()==true, StorageOptimized()==false
"""
return _Epetra.CrsGraph_InsertGlobalIndices(self, *args)
def RemoveGlobalIndices(self, *args):
"""
RemoveGlobalIndices(self, int globalRow, PySequence indices) -> int
Remove a sequence of global indices from the set of nonzero columns
for the specified global row. Argument indices can be a numpy array
of integers or any python sequence that can be converted to a numpy
array of integers. The integers represent global IDs that are to be
removed from the graph. An integer error/warning code is returned.
RemoveGlobalIndices(self, int Row) -> int
int
Epetra_CrsGraph::RemoveGlobalIndices(int Row)
Remove all indices from a specified global row of the graph.
Parameters:
-----------
Row: - (In) Global row number of indices.
Integer error code, set to 0 if successful. Returns 1 if data is
shared.
IndicesAreGlobal()==true, StorageOptimized()==false
"""
return _Epetra.CrsGraph_RemoveGlobalIndices(self, *args)
def InsertMyIndices(self, *args):
"""
InsertMyIndices(self, int localRow, PySequence indices) -> int
Insert a sequence of local indices into the set of nonzero columns for
the specified local row. Argument indices can be a numpy array of
integers or any python sequence that can be converted to a numpy array
of integers. The integers represent local IDs that are to be inserted
into the graph. An integer error/warning code is returned.
int
Epetra_CrsGraph::InsertMyIndices(int LocalRow, int NumIndices, int
*Indices)
Enter a list of elements in a specified local row of the graph.
Parameters:
-----------
Row: - (In) Local row number of indices.
NumIndices: - (In) Number of Indices.
Indices: - (In) Local column indices to insert.
Integer error code, set to 0 if successful. If the insertion requires
that additional memory be allocated for the row, a positive error code
of 1 is returned. If one or more of the indices is ignored (due to not
being contained in the column-map), then a positive warning code of 2
is returned. If the graph is a 'View' mode graph, then a positive
warning code of 3 will be returned if the specified row already
exists. Returns 1 if underlying graph data is shared by multiple graph
instances.
IndicesAreLocal()==true, StorageOptimized()==false
"""
return _Epetra.CrsGraph_InsertMyIndices(self, *args)
def RemoveMyIndices(self, *args):
"""
RemoveMyIndices(self, int localRow, PySequence indices) -> int
Remove a sequence of local indices from the set of nonzero columns for
the specified local row. Argument indices can be a numpy array of
integers or any python sequence that can be converted to a numpy array
of integers. The integers represent local IDs that are to be removed
from the graph. An integer error/warning code is returned.
RemoveMyIndices(self, int Row) -> int
int
Epetra_CrsGraph::RemoveMyIndices(int Row)
Remove all indices from a specified local row of the graph.
Parameters:
-----------
Row: - (In) Local row number of indices.
Integer error code, set to 0 if successful. Returns 1 if data is
shared.
IndicesAreLocal()==true, StorageOptimized()==false
"""
return _Epetra.CrsGraph_RemoveMyIndices(self, *args)
def FillComplete(self, *args):
"""
FillComplete(self) -> int
FillComplete(self, BlockMap DomainMap, BlockMap RangeMap) -> int
int
Epetra_CrsGraph::FillComplete(const Epetra_BlockMap &DomainMap, const
Epetra_BlockMap &RangeMap)
Transform to local index space using specified Domain/Range maps.
Perform other operations to allow optimal matrix operations.
Performs this sequence of operations: Transform indices to local index
space
Sort column-indices within each row
Compress out any redundant indices within rows
Compute global data such as num-nonzeros, maximum row-lengths, etc.
Integer error code, set to 0 if successful. Returns 1 if data is
shared (i.e., if the underlying graph-data object has a reference-
count greater than 1).
IndicesAreLocal()==true, Filled()==true
"""
return _Epetra.CrsGraph_FillComplete(self, *args)
def OptimizeStorage(self, *args):
"""
OptimizeStorage(self) -> int
int
Epetra_CrsGraph::OptimizeStorage()
Make consecutive row index sections contiguous, minimize internal
storage used for constructing graph.
After construction and during initialization (when indices are being
added via InsertGlobalIndices() etc.), the column- indices for each
row are held in a separate piece of allocated memory. This method
moves the column-indices for all rows into one large contiguous array
and eliminates internal storage that is not needed after graph
construction. Calling this method can have a significant impact on
memory costs and machine performance.
If this object was constructed in View mode then this method can't
make non-contiguous indices contiguous and will return a warning code
of 1 if the viewed data isn't already contiguous. Integer error code,
set to 0 if successful.
Filled()==true.
If CV=View when the graph was constructed, then this method will be
effective if the indices of the graph were already contiguous. In
this case, the indices are left untouched and internal storage for the
graph is minimized.
StorageOptimized()==true, if successful
"""
return _Epetra.CrsGraph_OptimizeStorage(self, *args)
def Filled(self, *args):
"""
Filled(self) -> bool
bool
Epetra_CrsGraph::Filled() const
If FillComplete() has been called, this query returns true, otherwise
it returns false.
"""
return _Epetra.CrsGraph_Filled(self, *args)
def StorageOptimized(self, *args):
"""
StorageOptimized(self) -> bool
bool
Epetra_CrsGraph::StorageOptimized() const
If OptimizeStorage() has been called, this query returns true,
otherwise it returns false.
"""
return _Epetra.CrsGraph_StorageOptimized(self, *args)
def IndicesAreGlobal(self, *args):
"""
IndicesAreGlobal(self) -> bool
bool
Epetra_CrsGraph::IndicesAreGlobal() const
If column indices are in global range, this query returns true,
otherwise it returns false.
"""
return _Epetra.CrsGraph_IndicesAreGlobal(self, *args)
def IndicesAreLocal(self, *args):
"""
IndicesAreLocal(self) -> bool
bool
Epetra_CrsGraph::IndicesAreLocal() const
If column indices are in local range, this query returns true,
otherwise it returns false.
"""
return _Epetra.CrsGraph_IndicesAreLocal(self, *args)
def LowerTriangular(self, *args):
"""
LowerTriangular(self) -> bool
bool
Epetra_CrsGraph::LowerTriangular() const
If graph is lower triangular in local index space, this query returns
true, otherwise it returns false.
Filled()==true
"""
return _Epetra.CrsGraph_LowerTriangular(self, *args)
def UpperTriangular(self, *args):
"""
UpperTriangular(self) -> bool
bool
Epetra_CrsGraph::UpperTriangular() const
If graph is upper triangular in local index space, this query returns
true, otherwise it returns false.
Filled()==true
"""
return _Epetra.CrsGraph_UpperTriangular(self, *args)
def NoDiagonal(self, *args):
"""
NoDiagonal(self) -> bool
bool
Epetra_CrsGraph::NoDiagonal() const
If graph has no diagonal entries in global index space, this query
returns true, otherwise it returns false.
Filled()==true
"""
return _Epetra.CrsGraph_NoDiagonal(self, *args)
def MyGlobalRow(self, *args):
"""
MyGlobalRow(self, int GID) -> bool
bool
Epetra_CrsGraph::MyGlobalRow(int GID) const
Returns true of GID is owned by the calling processor, otherwise it
returns false.
"""
return _Epetra.CrsGraph_MyGlobalRow(self, *args)
def HaveColMap(self, *args):
"""
HaveColMap(self) -> bool
bool
Epetra_CrsGraph::HaveColMap() const
Returns true if we have a well-defined ColMap, and returns false
otherwise.
We have a well-defined ColMap if a) a ColMap was passed in at
construction, or b) the MakeColMap function has been called. (Calling
either of the FillComplete functions will result in MakeColMap being
called.)
"""
return _Epetra.CrsGraph_HaveColMap(self, *args)
def NumMyRows(self, *args):
"""
NumMyRows(self) -> int
int
Epetra_CrsGraph::NumMyRows() const
Returns the number of matrix rows on this processor.
"""
return _Epetra.CrsGraph_NumMyRows(self, *args)
def NumGlobalRows(self, *args):
"""
NumGlobalRows(self) -> int
int
Epetra_CrsGraph::NumGlobalRows() const
Returns the number of matrix rows in global matrix.
"""
return _Epetra.CrsGraph_NumGlobalRows(self, *args)
def NumMyCols(self, *args):
"""
NumMyCols(self) -> int
int
Epetra_CrsGraph::NumMyCols() const
Returns the number of entries in the set of column-indices that appear
on this processor.
The set of column-indices that appear on this processor is the union
of column-indices that appear in all local rows. The size of this set
isn't available until FillComplete() has been called. Filled()==true
"""
return _Epetra.CrsGraph_NumMyCols(self, *args)
def NumGlobalCols(self, *args):
"""
NumGlobalCols(self) -> int
int
Epetra_CrsGraph::NumGlobalCols() const
Returns the number of matrix columns in global matrix.
Filled()==true
"""
return _Epetra.CrsGraph_NumGlobalCols(self, *args)
def NumGlobalNonzeros(self, *args):
"""
NumGlobalNonzeros(self) -> int
int
Epetra_CrsGraph::NumGlobalNonzeros() const
Returns the number of indices in the global graph.
Note that if the graph's maps are defined such that some nonzeros
appear on more than one processor, then those nonzeros will be counted
more than once. If the user wishes to assemble a graph from
overlapping data, they can use Epetra_FECrsGraph. Filled()==true
"""
return _Epetra.CrsGraph_NumGlobalNonzeros(self, *args)
def NumGlobalDiagonals(self, *args):
"""
NumGlobalDiagonals(self) -> int
int
Epetra_CrsGraph::NumGlobalDiagonals() const
Returns the number of diagonal entries in the global graph, based on
global row/column index comparisons.
Filled()==true
"""
return _Epetra.CrsGraph_NumGlobalDiagonals(self, *args)
def NumMyDiagonals(self, *args):
"""
NumMyDiagonals(self) -> int
int
Epetra_CrsGraph::NumMyDiagonals() const
Returns the number of diagonal entries in the local graph, based on
global row/column index comparisons.
Filled()==true
"""
return _Epetra.CrsGraph_NumMyDiagonals(self, *args)
def NumMyBlockRows(self, *args):
"""
NumMyBlockRows(self) -> int
int
Epetra_CrsGraph::NumMyBlockRows() const
Returns the number of block matrix rows on this processor.
"""
return _Epetra.CrsGraph_NumMyBlockRows(self, *args)
def NumGlobalBlockRows(self, *args):
"""
NumGlobalBlockRows(self) -> int
int
Epetra_CrsGraph::NumGlobalBlockRows() const
Returns the number of Block matrix rows in global matrix.
"""
return _Epetra.CrsGraph_NumGlobalBlockRows(self, *args)
def NumMyBlockCols(self, *args):
"""
NumMyBlockCols(self) -> int
int
Epetra_CrsGraph::NumMyBlockCols() const
Returns the number of Block matrix columns on this processor.
Filled()==true
"""
return _Epetra.CrsGraph_NumMyBlockCols(self, *args)
def NumGlobalBlockCols(self, *args):
"""
NumGlobalBlockCols(self) -> int
int
Epetra_CrsGraph::NumGlobalBlockCols() const
Returns the number of Block matrix columns in global matrix.
Filled()==true
"""
return _Epetra.CrsGraph_NumGlobalBlockCols(self, *args)
def NumMyBlockDiagonals(self, *args):
"""
NumMyBlockDiagonals(self) -> int
int
Epetra_CrsGraph::NumMyBlockDiagonals() const
Returns the number of Block diagonal entries in the local graph, based
on global row/column index comparisons.
Filled()==true
"""
return _Epetra.CrsGraph_NumMyBlockDiagonals(self, *args)
def NumGlobalBlockDiagonals(self, *args):
"""
NumGlobalBlockDiagonals(self) -> int
int
Epetra_CrsGraph::NumGlobalBlockDiagonals() const
Returns the number of Block diagonal entries in the global graph,
based on global row/column index comparisons.
Filled()==true
"""
return _Epetra.CrsGraph_NumGlobalBlockDiagonals(self, *args)
def NumGlobalEntries(self, *args):
"""
NumGlobalEntries(self) -> int
int
Epetra_CrsGraph::NumGlobalEntries() const
Returns the number of entries in the global graph.
Filled()==true
"""
return _Epetra.CrsGraph_NumGlobalEntries(self, *args)
def NumMyEntries(self, *args):
"""
NumMyEntries(self) -> int
int
Epetra_CrsGraph::NumMyEntries() const
Returns the number of entries on this processor.
Filled()==true
"""
return _Epetra.CrsGraph_NumMyEntries(self, *args)
def MaxRowDim(self, *args):
"""
MaxRowDim(self) -> int
int
Epetra_CrsGraph::MaxRowDim() const
Returns the max row dimension of block entries on the processor.
Filled()==true
"""
return _Epetra.CrsGraph_MaxRowDim(self, *args)
def GlobalMaxRowDim(self, *args):
"""
GlobalMaxRowDim(self) -> int
int
Epetra_CrsGraph::GlobalMaxRowDim() const
Returns the max row dimension of block entries across all processors.
Filled()==true
"""
return _Epetra.CrsGraph_GlobalMaxRowDim(self, *args)
def MaxColDim(self, *args):
"""
MaxColDim(self) -> int
int
Epetra_CrsGraph::MaxColDim() const
Returns the max column dimension of block entries on the processor.
Filled()==true
"""
return _Epetra.CrsGraph_MaxColDim(self, *args)
def GlobalMaxColDim(self, *args):
"""
GlobalMaxColDim(self) -> int
int
Epetra_CrsGraph::GlobalMaxColDim() const
Returns the max column dimension of block entries across all
processors.
Filled()==true
"""
return _Epetra.CrsGraph_GlobalMaxColDim(self, *args)
def NumMyNonzeros(self, *args):
"""
NumMyNonzeros(self) -> int
int
Epetra_CrsGraph::NumMyNonzeros() const
Returns the number of indices in the local graph.
Filled()==true
"""
return _Epetra.CrsGraph_NumMyNonzeros(self, *args)
def NumGlobalIndices(self, *args):
"""
NumGlobalIndices(self, int Row) -> int
int
Epetra_CrsGraph::NumGlobalIndices(int Row) const
Returns the current number of nonzero entries in specified global row
on this processor.
"""
return _Epetra.CrsGraph_NumGlobalIndices(self, *args)
def NumAllocatedGlobalIndices(self, *args):
"""
NumAllocatedGlobalIndices(self, int Row) -> int
int Epetra_CrsGraph::NumAllocatedGlobalIndices(int Row) const
Returns the allocated number of nonzero entries in specified global
row on this processor.
"""
return _Epetra.CrsGraph_NumAllocatedGlobalIndices(self, *args)
def MaxNumIndices(self, *args):
"""
MaxNumIndices(self) -> int
int
Epetra_CrsGraph::MaxNumIndices() const
Returns the maximum number of nonzero entries across all rows on this
processor.
Filled()==true
"""
return _Epetra.CrsGraph_MaxNumIndices(self, *args)
def GlobalMaxNumIndices(self, *args):
"""
GlobalMaxNumIndices(self) -> int
int
Epetra_CrsGraph::GlobalMaxNumIndices() const
Returns the maximun number of nonzero entries across all rows across
all processors.
Filled()==true
"""
return _Epetra.CrsGraph_GlobalMaxNumIndices(self, *args)
def MaxNumNonzeros(self, *args):
"""
MaxNumNonzeros(self) -> int
int
Epetra_CrsGraph::MaxNumNonzeros() const
Returns the maximum number of nonzero points across all rows on this
processor.
For each entry in the graph, let i = the GRID of the entry and j = the
CGID of the entry. Then the entry size is the product of the rowmap
elementsize of i and the colmap elementsize of i. Let ki = sum of all
entry sizes for the entries in the ith row. For example, if the ith
block row had 5 block entries and the element size of each entry was
4-by-4, ki would be 80. Then this function returns the max over all ki
for all row on this processor.
Filled()==true
"""
return _Epetra.CrsGraph_MaxNumNonzeros(self, *args)
def GlobalMaxNumNonzeros(self, *args):
"""
GlobalMaxNumNonzeros(self) -> int
int
Epetra_CrsGraph::GlobalMaxNumNonzeros() const
Returns the maximun number of nonzero points across all rows across
all processors.
This function returns the max over all processor of MaxNumNonzeros().
Filled()==true
"""
return _Epetra.CrsGraph_GlobalMaxNumNonzeros(self, *args)
def NumMyIndices(self, *args):
"""
NumMyIndices(self, int Row) -> int
int
Epetra_CrsGraph::NumMyIndices(int Row) const
Returns the current number of nonzero entries in specified local row
on this processor.
"""
return _Epetra.CrsGraph_NumMyIndices(self, *args)
def NumAllocatedMyIndices(self, *args):
"""
NumAllocatedMyIndices(self, int Row) -> int
int
Epetra_CrsGraph::NumAllocatedMyIndices(int Row) const
Returns the allocated number of nonzero entries in specified local row
on this processor.
"""
return _Epetra.CrsGraph_NumAllocatedMyIndices(self, *args)
def IndexBase(self, *args):
"""
IndexBase(self) -> int
int
Epetra_CrsGraph::IndexBase() const
Returns the index base for row and column indices for this graph.
"""
return _Epetra.CrsGraph_IndexBase(self, *args)
def RowMap(self, *args):
"""
RowMap(self) -> BlockMap
const
Epetra_BlockMap& Epetra_CrsGraph::RowMap() const
Returns the RowMap associated with this graph.
"""
return _Epetra.CrsGraph_RowMap(self, *args)
def ReplaceRowMap(self, *args):
"""
ReplaceRowMap(self, BlockMap newmap) -> int
int
Epetra_CrsGraph::ReplaceRowMap(const Epetra_BlockMap &newmap)
Replaces the current RowMap with the user-specified map object, but
only if currentmap->PointSameAs(newmap) is true. This is a collective
function. Returns 0 if map is replaced, -1 if not.
RowMap().PointSameAs(newmap)==true
"""
return _Epetra.CrsGraph_ReplaceRowMap(self, *args)
def ReplaceColMap(self, *args):
"""
ReplaceColMap(self, BlockMap newmap) -> int
int
Epetra_CrsGraph::ReplaceColMap(const Epetra_BlockMap &newmap)
Replaces the current ColMap with the user-specified map object, but
only if currentmap->PointSameAs(newmap) is true. This is a collective
function. Returns 0 if map is replaced, -1 if not.
ColMap().PointSameAs(newmap)==true
"""
return _Epetra.CrsGraph_ReplaceColMap(self, *args)
def ColMap(self, *args):
"""
ColMap(self) -> BlockMap
const
Epetra_BlockMap& Epetra_CrsGraph::ColMap() const
Returns the Column Map associated with this graph.
HaveColMap()==true
"""
return _Epetra.CrsGraph_ColMap(self, *args)
def DomainMap(self, *args):
"""
DomainMap(self) -> BlockMap
const
Epetra_BlockMap& Epetra_CrsGraph::DomainMap() const
Returns the DomainMap associated with this graph.
Filled()==true
"""
return _Epetra.CrsGraph_DomainMap(self, *args)
def RangeMap(self, *args):
"""
RangeMap(self) -> BlockMap
const
Epetra_BlockMap& Epetra_CrsGraph::RangeMap() const
Returns the RangeMap associated with this graph.
Filled()==true
"""
return _Epetra.CrsGraph_RangeMap(self, *args)
def Importer(self, *args):
"""
Importer(self) -> Import
const
Epetra_Import* Epetra_CrsGraph::Importer() const
Returns the Importer associated with this graph.
"""
return _Epetra.CrsGraph_Importer(self, *args)
def Exporter(self, *args):
"""
Exporter(self) -> Export
const
Epetra_Export* Epetra_CrsGraph::Exporter() const
Returns the Exporter associated with this graph.
"""
return _Epetra.CrsGraph_Exporter(self, *args)
def Comm(self, *args):
"""
Comm(self) -> Comm
const Epetra_Comm&
Epetra_CrsGraph::Comm() const
Returns a pointer to the Epetra_Comm communicator associated with this
graph.
"""
return _Epetra.CrsGraph_Comm(self, *args)
def LRID(self, *args):
"""
LRID(self, int GRID_in) -> int
int
Epetra_CrsGraph::LRID(int GRID_in) const
Returns the local row index for given global row index, returns -1 if
no local row for this global row.
"""
return _Epetra.CrsGraph_LRID(self, *args)
def GRID(self, *args):
"""
GRID(self, int LRID_in) -> int
int
Epetra_CrsGraph::GRID(int LRID_in) const
Returns the global row index for give local row index, returns
IndexBase-1 if we don't have this local row.
"""
return _Epetra.CrsGraph_GRID(self, *args)
def LCID(self, *args):
"""
LCID(self, int GCID_in) -> int
int
Epetra_CrsGraph::LCID(int GCID_in) const
Returns the local column index for given global column index, returns
-1 if no local column for this global column.
HaveColMap()==true (If HaveColMap()==false, returns -1)
"""
return _Epetra.CrsGraph_LCID(self, *args)
def GCID(self, *args):
"""
GCID(self, int LCID_in) -> int
int
Epetra_CrsGraph::GCID(int LCID_in) const
Returns the global column index for give local column index, returns
IndexBase-1 if we don't have this local column.
HaveColMap()==true (If HaveColMap()==false, returns -1)
"""
return _Epetra.CrsGraph_GCID(self, *args)
def MyGRID(self, *args):
"""
MyGRID(self, int GRID_in) -> bool
bool
Epetra_CrsGraph::MyGRID(int GRID_in) const
Returns true if the GRID passed in belongs to the calling processor in
this map, otherwise returns false.
"""
return _Epetra.CrsGraph_MyGRID(self, *args)
def MyLRID(self, *args):
"""
MyLRID(self, int LRID_in) -> bool
bool
Epetra_CrsGraph::MyLRID(int LRID_in) const
Returns true if the LRID passed in belongs to the calling processor in
this map, otherwise returns false.
"""
return _Epetra.CrsGraph_MyLRID(self, *args)
def MyGCID(self, *args):
"""
MyGCID(self, int GCID_in) -> bool
bool
Epetra_CrsGraph::MyGCID(int GCID_in) const
Returns true if the GCID passed in belongs to the calling processor in
this map, otherwise returns false.
HaveColMap()==true (If HaveColMap()==false, returns -1)
"""
return _Epetra.CrsGraph_MyGCID(self, *args)
def MyLCID(self, *args):
"""
MyLCID(self, int LCID_in) -> bool
bool
Epetra_CrsGraph::MyLCID(int LCID_in) const
Returns true if the LRID passed in belongs to the calling processor in
this map, otherwise returns false.
HaveColMap()==true (If HaveColMap()==false, returns -1)
"""
return _Epetra.CrsGraph_MyLCID(self, *args)
def PrintGraphData(self, *args):
"""
PrintGraphData(self, os)
PrintGraphData(self, os, int level)
void
Epetra_CrsGraph::PrintGraphData(ostream &os, int level) const
"""
return _Epetra.CrsGraph_PrintGraphData(self, *args)
def ImportMap(self, *args):
"""
ImportMap(self) -> BlockMap
const
Epetra_BlockMap& Epetra_CrsGraph::ImportMap() const
Use ColMap() instead.
"""
return _Epetra.CrsGraph_ImportMap(self, *args)
def TransformToLocal(self, *args):
"""
TransformToLocal(self) -> int
TransformToLocal(self, BlockMap DomainMap, BlockMap RangeMap) -> int
int
Epetra_CrsGraph::TransformToLocal(const Epetra_BlockMap *DomainMap,
const Epetra_BlockMap *RangeMap)
Use FillComplete(const Epetra_BlockMap& DomainMap, const
Epetra_BlockMap& RangeMap) instead.
"""
return _Epetra.CrsGraph_TransformToLocal(self, *args)
def ReferenceCount(self, *args):
"""
ReferenceCount(self) -> int
int
Epetra_CrsGraph::ReferenceCount() const
Returns the reference count of CrsGraphData.
(Intended for testing purposes.)
"""
return _Epetra.CrsGraph_ReferenceCount(self, *args)
def DataPtr(self, *args):
"""
DataPtr(self) -> Epetra_CrsGraphData
const
Epetra_CrsGraphData* Epetra_CrsGraph::DataPtr() const
Returns a pointer to the CrsGraphData instance this CrsGraph uses.
(Intended for developer use only for testing purposes.)
"""
return _Epetra.CrsGraph_DataPtr(self, *args)
def SortGhostsAssociatedWithEachProcessor(self, *args):
"""
SortGhostsAssociatedWithEachProcessor(self, bool Flag)
void
Epetra_CrsGraph::SortGhostsAssociatedWithEachProcessor(bool Flag)
Forces FillComplete() to locally order ghostnodes associated with each
remote processor in ascending order.
To be compliant with AztecOO, FillComplete() already locally orders
ghostnodes such that information received from processor k has a lower
local numbering than information received from processor j if k is
less than j. SortGhostsAssociatedWithEachProcessor(True) further
forces FillComplete() to locally number all ghostnodes received from
processor k in ascending order. That is, the local numbering of b is
less than c if the global numbering of b is less than c and if both b
and c are owned by the same processor. This is done to be compliant
with some limited block features within ML. In particular, some ML
features require that a block structure of the matrix be maintained
even within the ghost variables.
"""
return _Epetra.CrsGraph_SortGhostsAssociatedWithEachProcessor(self, *args)
def __init__(self, *args):
"""
__init__(self, Epetra_DataAccess CV, BlockMap rowMap, int numIndicesPerRow,
bool staticProfile=False) -> CrsGraph
Constructor with implicit column map and constant indices per row.
Arguments:
CV - Epetra.Copy or Epetra.View
rowMap - Map describing distribution of rows across processors
numIndicesPerRow - Integer number of indices per row
staticProfile - Static profile flag
__init__(self, Epetra_DataAccess CV, BlockMap rowMap, BlockMap colMap,
int numIndicesPerRow, bool staticProfile=False) -> CrsGraph
Constructor with specified column map and constant indices per row.
Arguments:
CV - Epetra.Copy or Epetra.View
rowMap - Map describing distribution of rows across processors
colMap - Map describing distribution of columns across processors
numIndicesPerRow - Integer number of indices per row
staticProfile - Static profile flag
__init__(self, CrsGraph graph) -> CrsGraph
Copy constructor. Arguments:
graph - Source graph for copy constructor
__init__(self, Epetra_DataAccess CV, BlockMap rowMap, PySequence
numIndicesPerRow, bool staticProfile=False) -> CrsGraph
Constructor with implicit column map and variable indices per row.
Arguments:
CV - Epetra.Copy or Epetra.View
rowMap - Map describing distribution of rows across processors
numIndicesPerRow - Sequence of integers representing the number of indices
per row
staticProfile - Static profile flag
__init__(self, Epetra_DataAccess CV, BlockMap rowMap, BlockMap colMap,
PySequence numIndicesPerRow, bool staticProfile=False) -> CrsGraph
Constructor with specified column map and variable indices per row.
Arguments:
CV - Epetra.Copy or Epetra.View
rowMap - Map describing distribution of rows across processors
colMap - Map describing distribution of columns across processors
numIndicesPerRow - Sequence of integers representing the number of indices
per row
staticProfile - Static profile flag
Epetra_CrsGraph::Epetra_CrsGraph(const Epetra_CrsGraph &Graph)
Copy constructor.
This will create a Level 1 deep copy. This Graph will share ownership
of the CrsGraphData object with the right hand side Graph.
"""
this = _Epetra.new_CrsGraph(*args)
try: self.this.append(this)
except: self.this = this
def ExtractGlobalRowCopy(self, *args):
"""
ExtractGlobalRowCopy(self, int globalRow) -> PyObject
int
Epetra_CrsGraph::ExtractGlobalRowCopy(int GlobalRow, int LenOfIndices,
int &NumIndices, int *Indices) const
Extract a list of elements in a specified global row of the graph. Put
into storage allocated by calling routine.
Parameters:
-----------
Row: - (In) Global row number to get indices.
LenOfIndices: - (In) Length of Indices array.
NumIndices: - (Out) Number of Indices.
Indices: - (Out) Global column indices corresponding to values.
Integer error code, set to 0 if successful.
"""
return _Epetra.CrsGraph_ExtractGlobalRowCopy(self, *args)
def __getitem__(self, *args):
"""__getitem__(self, int i) -> int"""
return _Epetra.CrsGraph___getitem__(self, *args)
def ExtractMyRowCopy(self, *args):
"""
ExtractMyRowCopy(self, int localRow) -> PyObject
int
Epetra_CrsGraph::ExtractMyRowCopy(int LocalRow, int LenOfIndices, int
&NumIndices, int *Indices) const
Extract a list of elements in a specified local row of the graph. Put
into storage allocated by calling routine.
Parameters:
-----------
Row: - (In) Local row number to get indices.
LenOfIndices: - (In) Length of Indices array.
NumIndices: - (Out) Number of Indices.
Indices: - (Out) Local column indices corresponding to values.
Integer error code, set to 0 if successful.
IndicesAreLocal()==true
"""
return _Epetra.CrsGraph_ExtractMyRowCopy(self, *args)
CrsGraph_swigregister = _Epetra.CrsGraph_swigregister
CrsGraph_swigregister(CrsGraph)
class OffsetIndex(Object):
"""
Epetra_OffsetIndex: This class builds index for efficient mapping of
data from one Epetra_CrsGraph based object to another.
Epetra_OffsetIndex generates and index of offsets allowing direct
access to data for Import/Export operations on Epetra_CrsGraph based
objects such as Epetra_CrsMatrix.
C++ includes: Epetra_OffsetIndex.h
"""
__swig_setmethods__ = {}
for _s in [Object]: __swig_setmethods__.update(getattr(_s,'__swig_setmethods__',{}))
__setattr__ = lambda self, name, value: _swig_setattr(self, OffsetIndex, name, value)
__swig_getmethods__ = {}
for _s in [Object]: __swig_getmethods__.update(getattr(_s,'__swig_getmethods__',{}))
__getattr__ = lambda self, name: _swig_getattr(self, OffsetIndex, name)
__repr__ = _swig_repr
def __init__(self, *args):
"""
__init__(self, CrsGraph SourceGraph, CrsGraph TargetGraph, Import Importer) -> OffsetIndex
__init__(self, CrsGraph SourceGraph, CrsGraph TargetGraph, Export Exporter) -> OffsetIndex
__init__(self, OffsetIndex Indexor) -> OffsetIndex
Epetra_OffsetIndex::Epetra_OffsetIndex(const Epetra_OffsetIndex
&Indexor)
Epetra_OffsetIndex copy constructor.
"""
this = _Epetra.new_OffsetIndex(*args)
try: self.this.append(this)
except: self.this = this
__swig_destroy__ = _Epetra.delete_OffsetIndex
__del__ = lambda self : None;
def SameOffsets(self, *args):
"""
SameOffsets(self) -> int
int**
Epetra_OffsetIndex::SameOffsets() const
Accessor.
"""
return _Epetra.OffsetIndex_SameOffsets(self, *args)
def PermuteOffsets(self, *args):
"""
PermuteOffsets(self) -> int
int**
Epetra_OffsetIndex::PermuteOffsets() const
Accessor.
"""
return _Epetra.OffsetIndex_PermuteOffsets(self, *args)
def RemoteOffsets(self, *args):
"""
RemoteOffsets(self) -> int
int**
Epetra_OffsetIndex::RemoteOffsets() const
Accessor.
"""
return _Epetra.OffsetIndex_RemoteOffsets(self, *args)
__swig_setmethods__["NumSame_"] = _Epetra.OffsetIndex_NumSame__set
__swig_getmethods__["NumSame_"] = _Epetra.OffsetIndex_NumSame__get
if _newclass:NumSame_ = _swig_property(_Epetra.OffsetIndex_NumSame__get, _Epetra.OffsetIndex_NumSame__set)
__swig_setmethods__["SameOffsets_"] = _Epetra.OffsetIndex_SameOffsets__set
__swig_getmethods__["SameOffsets_"] = _Epetra.OffsetIndex_SameOffsets__get
if _newclass:SameOffsets_ = _swig_property(_Epetra.OffsetIndex_SameOffsets__get, _Epetra.OffsetIndex_SameOffsets__set)
__swig_setmethods__["NumPermute_"] = _Epetra.OffsetIndex_NumPermute__set
__swig_getmethods__["NumPermute_"] = _Epetra.OffsetIndex_NumPermute__get
if _newclass:NumPermute_ = _swig_property(_Epetra.OffsetIndex_NumPermute__get, _Epetra.OffsetIndex_NumPermute__set)
__swig_setmethods__["PermuteOffsets_"] = _Epetra.OffsetIndex_PermuteOffsets__set
__swig_getmethods__["PermuteOffsets_"] = _Epetra.OffsetIndex_PermuteOffsets__get
if _newclass:PermuteOffsets_ = _swig_property(_Epetra.OffsetIndex_PermuteOffsets__get, _Epetra.OffsetIndex_PermuteOffsets__set)
__swig_setmethods__["NumExport_"] = _Epetra.OffsetIndex_NumExport__set
__swig_getmethods__["NumExport_"] = _Epetra.OffsetIndex_NumExport__get
if _newclass:NumExport_ = _swig_property(_Epetra.OffsetIndex_NumExport__get, _Epetra.OffsetIndex_NumExport__set)
__swig_setmethods__["NumRemote_"] = _Epetra.OffsetIndex_NumRemote__set
__swig_getmethods__["NumRemote_"] = _Epetra.OffsetIndex_NumRemote__get
if _newclass:NumRemote_ = _swig_property(_Epetra.OffsetIndex_NumRemote__get, _Epetra.OffsetIndex_NumRemote__set)
__swig_setmethods__["RemoteOffsets_"] = _Epetra.OffsetIndex_RemoteOffsets__set
__swig_getmethods__["RemoteOffsets_"] = _Epetra.OffsetIndex_RemoteOffsets__get
if _newclass:RemoteOffsets_ = _swig_property(_Epetra.OffsetIndex_RemoteOffsets__get, _Epetra.OffsetIndex_RemoteOffsets__set)
__swig_setmethods__["DataOwned_"] = _Epetra.OffsetIndex_DataOwned__set
__swig_getmethods__["DataOwned_"] = _Epetra.OffsetIndex_DataOwned__get
if _newclass:DataOwned_ = _swig_property(_Epetra.OffsetIndex_DataOwned__get, _Epetra.OffsetIndex_DataOwned__set)
OffsetIndex_swigregister = _Epetra.OffsetIndex_swigregister
OffsetIndex_swigregister(OffsetIndex)
class Operator(_object):
"""
For cross-language polymorphism to work in python, you must call this
constructor::
from PyTrilinos import Epetra
class MyOperator(Epetra.Operator):
def __init__(self):
Epetra.Operator.__init__(self)
Other than that, the Epetra.Operator class is much more forgiving than
its C++ counterpart. Often, you can override just the Label() and
Apply() methods.
"""
__swig_setmethods__ = {}
__setattr__ = lambda self, name, value: _swig_setattr(self, Operator, name, value)
__swig_getmethods__ = {}
__getattr__ = lambda self, name: _swig_getattr(self, Operator, name)
__repr__ = _swig_repr
__swig_destroy__ = _Epetra.delete_Operator
__del__ = lambda self : None;
def SetUseTranspose(self, *args):
"""
SetUseTranspose(self, bool UseTranspose) -> int
virtual int
Epetra_Operator::SetUseTranspose(bool UseTranspose)=0
If set true, transpose of this operator will be applied.
This flag allows the transpose of the given operator to be used
implicitly. Setting this flag affects only the Apply() and
ApplyInverse() methods. If the implementation of this interface does
not support transpose use, this method should return a value of -1.
Parameters:
-----------
In: UseTranspose -If true, multiply by the transpose of operator,
otherwise just use operator.
Integer error code, set to 0 if successful. Set to -1 if this
implementation does not support transpose.
"""
return _Epetra.Operator_SetUseTranspose(self, *args)
def Apply(self, *args):
"""
Apply(self, MultiVector x, MultiVector y) -> int
In C++, the Apply() method is pure virtual, thus intended to be
overridden by derived classes. In python, cross-language polymorphism
is supported, and you are expected to derive classes from this base
class and redefine the Apply() method. C++ code (e.g., AztecOO
solvers) can call back to your Apply() method as needed. You must
support two arguments, labeled here MultiVector x and MultiVector y.
These will be converted from Epetra_MultiVector C++ objects to
numpy-hybrid Epetra.MultiVector objects before they are passed to you.
Thus, it is legal to use slice indexing and other numpy features to
compute y from x.
If application of your operator is successful, return 0; else return
some non-zero error code.
It is strongly suggested that you prevent Apply() from raising any
exceptions. Accidental errors can be prevented by wrapping your code
in a try block:
try:
# Your code goes here...
except Exception, e:
print 'A python exception was raised by method Apply:'
print e
return -1
By returning a -1, you inform the calling routine that Apply() was
unsuccessful.
virtual int
Epetra_Operator::Apply(const Epetra_MultiVector &X, Epetra_MultiVector
&Y) const =0
Returns the result of a Epetra_Operator applied to a
Epetra_MultiVector X in Y.
Parameters:
-----------
In: X - A Epetra_MultiVector of dimension NumVectors to multiply with
matrix.
Out: Y -A Epetra_MultiVector of dimension NumVectors containing
result.
Integer error code, set to 0 if successful.
"""
return _Epetra.Operator_Apply(self, *args)
def ApplyInverse(self, *args):
"""
ApplyInverse(self, MultiVector x, MultiVector y) -> int
In C++, the ApplyInverse() method is pure virtual, thus intended to be
overridden by derived classes. In python, cross-language polymorphism
is supported, and you are expected to derive classes from this base
class and redefine the ApplyInverse() method. C++ code (e.g., AztecOO
solvers) can call back to your ApplyInverse() method as needed. You
must support two arguments, labeled here MultiVector x and MultiVector
y. These will be converted from Epetra_MultiVector C++ objects to
numpy-hybrid Epetra.MultiVector objects before they are passed to you.
Thus, it is legal to use slice indexing and other numpy features to
compute y from x.
If application of your operator is successful, return 0; else return
some non-zero error code.
It is strongly suggested that you prevent ApplyInverse() from raising
any exceptions. Accidental errors can be prevented by wrapping your
code in a try block:
try:
# Your code goes here...
except Exception, e:
print 'A python exception was raised by method ApplyInverse:'
print e
return -1
By returning a -1, you inform the calling routine that ApplyInverse()
was unsuccessful.
virtual int
Epetra_Operator::ApplyInverse(const Epetra_MultiVector &X,
Epetra_MultiVector &Y) const =0
Returns the result of a Epetra_Operator inverse applied to an
Epetra_MultiVector X in Y.
Parameters:
-----------
In: X - A Epetra_MultiVector of dimension NumVectors to solve for.
Out: Y -A Epetra_MultiVector of dimension NumVectors containing
result.
Integer error code, set to 0 if successful.
WARNING: In order to work with AztecOO, any implementation of this
method must support the case where X and Y are the same object.
"""
return _Epetra.Operator_ApplyInverse(self, *args)
def NormInf(self, *args):
"""
NormInf(self) -> double
virtual double
Epetra_Operator::NormInf() const =0
Returns the infinity norm of the global matrix.
"""
return _Epetra.Operator_NormInf(self, *args)
def Label(self, *args):
"""
Label(self) -> char
virtual const char*
Epetra_Operator::Label() const =0
Returns a character string describing the operator.
"""
return _Epetra.Operator_Label(self, *args)
def UseTranspose(self, *args):
"""
UseTranspose(self) -> bool
virtual bool
Epetra_Operator::UseTranspose() const =0
Returns the current UseTranspose setting.
"""
return _Epetra.Operator_UseTranspose(self, *args)
def HasNormInf(self, *args):
"""
HasNormInf(self) -> bool
virtual bool
Epetra_Operator::HasNormInf() const =0
Returns true if the this object can provide an approximate Inf-norm,
false otherwise.
"""
return _Epetra.Operator_HasNormInf(self, *args)
def Comm(self, *args):
"""
Comm(self) -> Comm
virtual const
Epetra_Comm& Epetra_Operator::Comm() const =0
Returns a pointer to the Epetra_Comm communicator associated with this
operator.
"""
return _Epetra.Operator_Comm(self, *args)
def OperatorDomainMap(self, *args):
"""
OperatorDomainMap(self) -> Map
virtual
const Epetra_Map& Epetra_Operator::OperatorDomainMap() const =0
Returns the Epetra_Map object associated with the domain of this
operator.
"""
return _Epetra.Operator_OperatorDomainMap(self, *args)
def OperatorRangeMap(self, *args):
"""
OperatorRangeMap(self) -> Map
virtual
const Epetra_Map& Epetra_Operator::OperatorRangeMap() const =0
Returns the Epetra_Map object associated with the range of this
operator.
"""
return _Epetra.Operator_OperatorRangeMap(self, *args)
def __init__(self, *args):
"""__init__(self) -> Operator"""
if self.__class__ == Operator:
_self = None
else:
_self = self
this = _Epetra.new_Operator(_self, *args)
try: self.this.append(this)
except: self.this = this
def __disown__(self):
self.this.disown()
_Epetra.disown_Operator(self)
return weakref_proxy(self)
Operator_swigregister = _Epetra.Operator_swigregister
Operator_swigregister(Operator)
class InvOperator(Operator):
"""
Epetra_InvOperator: An implementation of the Epetra_Operator class
that reverses the role of Apply() and ApplyInverse() methods.
The Epetra_InvOperator class implements Epetra_Operator using another
pre-constructed Epetra_Operator object. Once constructed, an
Epetra_InvOperator can be used as the inverse of the input operator
object as long as the appropriate Apply and ApplyInverse methods are
implemented in the original Epetra_Operator object.
C++ includes: Epetra_InvOperator.h
"""
__swig_setmethods__ = {}
for _s in [Operator]: __swig_setmethods__.update(getattr(_s,'__swig_setmethods__',{}))
__setattr__ = lambda self, name, value: _swig_setattr(self, InvOperator, name, value)
__swig_getmethods__ = {}
for _s in [Operator]: __swig_getmethods__.update(getattr(_s,'__swig_getmethods__',{}))
__getattr__ = lambda self, name: _swig_getattr(self, InvOperator, name)
__repr__ = _swig_repr
def __init__(self, *args):
"""
__init__(self, Operator operatorIn) -> InvOperator
Epetra_InvOperator::Epetra_InvOperator(Epetra_Operator *operatorIn)
Uses an Epetra_Operator instance to implement the Epetra_Operator
interface.
Facilitates the use of an Epetra_Operator instance as an inverse
operator.
Parameters:
-----------
In: - A fully-constructed Epetra_Operator object.
"""
if self.__class__ == InvOperator:
_self = None
else:
_self = self
this = _Epetra.new_InvOperator(_self, *args)
try: self.this.append(this)
except: self.this = this
__swig_destroy__ = _Epetra.delete_InvOperator
__del__ = lambda self : None;
def SetUseTranspose(self, *args):
"""
SetUseTranspose(self, bool UseTranspose_in) -> int
int
Epetra_InvOperator::SetUseTranspose(bool UseTranspose_in)
If set true, transpose of this operator will be applied.
This flag allows the transpose of the given operator to be used
implicitly. Setting this flag affects only the Apply() and
ApplyInverse() methods. If the implementation of this interface does
not support transpose use, this method should return a value of -1.
Parameters:
-----------
In: UseTranspose_in - If true, multiply by the transpose of operator,
otherwise just use operator.
WARNING: - This method has no effect and returns -1 as error code.
"""
return _Epetra.InvOperator_SetUseTranspose(self, *args)
def Apply(self, *args):
"""
Apply(self, Epetra_MultiVector X, Epetra_MultiVector Y) -> int
int
Epetra_InvOperator::Apply(const Epetra_MultiVector &X,
Epetra_MultiVector &Y) const
Returns the result of a Epetra_InvOperator applied to a
Epetra_MultiVector X in Y.
Parameters:
-----------
In: X - A Epetra_MultiVector of dimension NumVectors to multiply with
matrix.
Out: Y -A Epetra_MultiVector of dimension NumVectors containing
result.
WARNING: - This method has no effect and returns -1 as error code.
"""
return _Epetra.InvOperator_Apply(self, *args)
def ApplyInverse(self, *args):
"""
ApplyInverse(self, Epetra_MultiVector X, Epetra_MultiVector Y) -> int
int
Epetra_InvOperator::ApplyInverse(const Epetra_MultiVector &X,
Epetra_MultiVector &Y) const
Returns the result of a Epetra_InvOperator inverse applied to an
Epetra_MultiVector X in Y.
Parameters:
-----------
In: X - A Epetra_MultiVector of dimension NumVectors to solve for.
Out: Y -A Epetra_MultiVector of dimension NumVectors containing
result.
Integer error code, set to 0 if successful.
"""
return _Epetra.InvOperator_ApplyInverse(self, *args)
def NormInf(self, *args):
"""
NormInf(self) -> double
double
Epetra_InvOperator::NormInf() const
Returns the infinity norm of the global matrix.
"""
return _Epetra.InvOperator_NormInf(self, *args)
def Label(self, *args):
"""
Label(self) -> char
const char*
Epetra_InvOperator::Label() const
Returns a character string describing the operator.
"""
return _Epetra.InvOperator_Label(self, *args)
def Operator(self, *args):
"""
Operator(self) -> Operator
Epetra_Operator*
Epetra_InvOperator::Operator() const
Returns a pointer to the Epetra_Operator operator object that was used
to create this Epetra_InvOperator object.
"""
return _Epetra.InvOperator_Operator(self, *args)
def UseTranspose(self, *args):
"""
UseTranspose(self) -> bool
bool
Epetra_InvOperator::UseTranspose() const
Returns the current UseTranspose setting.
"""
return _Epetra.InvOperator_UseTranspose(self, *args)
def HasNormInf(self, *args):
"""
HasNormInf(self) -> bool
bool
Epetra_InvOperator::HasNormInf() const
Returns true if the this object can provide an approximate Inf-norm,
false otherwise.
"""
return _Epetra.InvOperator_HasNormInf(self, *args)
def Comm(self, *args):
"""
Comm(self) -> Comm
const Epetra_Comm&
Epetra_InvOperator::Comm() const
Returns a pointer to the Epetra_Comm communicator associated with this
operator.
"""
return _Epetra.InvOperator_Comm(self, *args)
def OperatorDomainMap(self, *args):
"""
OperatorDomainMap(self) -> Map
const
Epetra_Map& Epetra_InvOperator::OperatorDomainMap() const
Returns the Epetra_BlockMap object associated with the domain of this
matrix operator.
"""
return _Epetra.InvOperator_OperatorDomainMap(self, *args)
def OperatorRangeMap(self, *args):
"""
OperatorRangeMap(self) -> Map
const
Epetra_Map& Epetra_InvOperator::OperatorRangeMap() const
Returns the Epetra_BlockMap object associated with the range of this
matrix operator.
"""
return _Epetra.InvOperator_OperatorRangeMap(self, *args)
def __disown__(self):
self.this.disown()
_Epetra.disown_InvOperator(self)
return weakref_proxy(self)
InvOperator_swigregister = _Epetra.InvOperator_swigregister
InvOperator_swigregister(InvOperator)
class RowMatrix(Operator,SrcDistObject):
"""
Epetra_RowMatrix: A pure virtual class for using real-valued double-
precision row matrices.
The Epetra_RowMatrix class is a pure virtual class (specifies
interface only) that enable the use of real-valued double-precision
sparse matrices where matrix entries are intended for row access. It
is currently implemented by both the Epetra_CrsMatrix and
Epetra_VbrMatrix classes.
C++ includes: Epetra_RowMatrix.h
"""
__swig_setmethods__ = {}
for _s in [Operator,SrcDistObject]: __swig_setmethods__.update(getattr(_s,'__swig_setmethods__',{}))
__setattr__ = lambda self, name, value: _swig_setattr(self, RowMatrix, name, value)
__swig_getmethods__ = {}
for _s in [Operator,SrcDistObject]: __swig_getmethods__.update(getattr(_s,'__swig_getmethods__',{}))
__getattr__ = lambda self, name: _swig_getattr(self, RowMatrix, name)
__repr__ = _swig_repr
__swig_destroy__ = _Epetra.delete_RowMatrix
__del__ = lambda self : None;
def NumMyRowEntries(self, *args):
"""
NumMyRowEntries(int myRow, numpy.ndarray numEntries) -> int
In C++, numEntries in an int&. In python, it is provided to you as a
numpy array of length one so that you can set its value in-place using
numEntries[0] = ....
virtual int
Epetra_RowMatrix::NumMyRowEntries(int MyRow, int &NumEntries) const =0
Returns the number of nonzero entries in MyRow.
Parameters:
-----------
In: MyRow - Local row.
Out: NumEntries - Number of nonzero values present.
Integer error code, set to 0 if successful.
"""
return _Epetra.RowMatrix_NumMyRowEntries(self, *args)
def MaxNumEntries(self, *args):
"""
MaxNumEntries(self) -> int
virtual int
Epetra_RowMatrix::MaxNumEntries() const =0
Returns the maximum of NumMyRowEntries() over all rows.
"""
return _Epetra.RowMatrix_MaxNumEntries(self, *args)
def ExtractMyRowCopy(self, *args):
"""
ExtractMyRowCopy(int myRow, int length, numpy.ndarray numEntries,
numpy.ndarray values, numpy.ndarray indices) -> int
In C++, numEntries in an int&. In python, it is provided to you as a
numpy array of length one so that you can set its value in-place using
numEntries[0] = ....
Arguments values and indices are double* and int*, respectively, in
C++. In python, these are provided to you as numpy arrays of the
given length, so that you may alter their entries in-place.
virtual
int Epetra_RowMatrix::ExtractMyRowCopy(int MyRow, int Length, int
&NumEntries, double *Values, int *Indices) const =0
Returns a copy of the specified local row in user-provided arrays.
Parameters:
-----------
In: MyRow - Local row to extract.
In: Length - Length of Values and Indices.
Out: NumEntries - Number of nonzero entries extracted.
Out: Values - Extracted values for this row.
Out: Indices - Extracted local column indices for the corresponding
values.
Integer error code, set to 0 if successful.
"""
return _Epetra.RowMatrix_ExtractMyRowCopy(self, *args)
def ExtractDiagonalCopy(self, *args):
"""
ExtractDiagonalCopy(Vector diagonal) -> int
Argument diagonal is provided to you as a numpy-hybrid Epetra.Vector,
giving you access to the numpy interface in addition to the
Epetra_Vector C++ interface.
virtual
int Epetra_RowMatrix::ExtractDiagonalCopy(Epetra_Vector &Diagonal)
const =0
Returns a copy of the main diagonal in a user-provided vector.
Parameters:
-----------
Out: Diagonal - Extracted main diagonal.
Integer error code, set to 0 if successful.
"""
return _Epetra.RowMatrix_ExtractDiagonalCopy(self, *args)
def Multiply(self, *args):
"""
Multiply(bool useTranspose, MultiVector x, MultiVector y) -> int
In C++, arguments x and y are Epetra_MultiVectors. In python, they
are provided to you as numpy-hybrid Epetra.MultiVectors, giving you
access to the numpy interface in addition to the Epetra_MultiVector
C++ interface.
virtual int
Epetra_RowMatrix::Multiply(bool TransA, const Epetra_MultiVector &X,
Epetra_MultiVector &Y) const =0
Returns the result of a Epetra_RowMatrix multiplied by a
Epetra_MultiVector X in Y.
Parameters:
-----------
In: TransA -If true, multiply by the transpose of matrix, otherwise
just use matrix.
In: X - A Epetra_MultiVector of dimension NumVectors to multiply with
matrix.
Out: Y -A Epetra_MultiVector of dimension NumVectorscontaining
result.
Integer error code, set to 0 if successful.
"""
return _Epetra.RowMatrix_Multiply(self, *args)
def Solve(self, *args):
"""
Solve((bool upper, bool trans, bool unitDiagonal, MultiVector x,
MultiVector y) -> int
In C++, arguments x and y are Epetra_MultiVectors. In python, they
are provided to you as numpy-hybrid Epetra.MultiVectors, giving you
access to the numpy interface in addition to the Epetra_MultiVector
C++ interface.
virtual int
Epetra_RowMatrix::Solve(bool Upper, bool Trans, bool UnitDiagonal,
const Epetra_MultiVector &X, Epetra_MultiVector &Y) const =0
Returns result of a local-only solve using a triangular
Epetra_RowMatrix with Epetra_MultiVectors X and Y.
This method will perform a triangular solve independently on each
processor of the parallel machine. No communication is performed.
Parameters:
-----------
In: Upper -If true, solve Ux = y, otherwise solve Lx = y.
In: Trans -If true, solve transpose problem.
In: UnitDiagonal -If true, assume diagonal is unit (whether it's
stored or not).
In: X - A Epetra_MultiVector of dimension NumVectors to solve for.
Out: Y -A Epetra_MultiVector of dimension NumVectors containing
result.
Integer error code, set to 0 if successful.
"""
return _Epetra.RowMatrix_Solve(self, *args)
def InvRowSums(self, *args):
"""
InvRowSums(Vector x) -> int
Argument x is provided to you as a numpy-hybrid Epetra.Vector, giving
you access to the numpy interface in addition to the Epetra_Vector C++
interface.
virtual int
Epetra_RowMatrix::InvRowSums(Epetra_Vector &x) const =0
Computes the sum of absolute values of the rows of the
Epetra_RowMatrix, results returned in x.
The vector x will return such that x[i] will contain the inverse of
sum of the absolute values of the this matrix will be scaled such that
A(i,j) = x(i)*A(i,j) where i denotes the global row number of A and j
denotes the global column number of A. Using the resulting vector from
this function as input to LeftScale() will make the infinity norm of
the resulting matrix exactly 1.
Parameters:
-----------
Out: x -A Epetra_Vector containing the row sums of the this matrix.
WARNING: It is assumed that the distribution of x is the same as the
rows of this.
Integer error code, set to 0 if successful.
"""
return _Epetra.RowMatrix_InvRowSums(self, *args)
def LeftScale(self, *args):
"""
LeftScale(Vector x) -> int
Argument x is provided to you as a numpy-hybrid Epetra.Vector, giving
you access to the numpy interface in addition to the Epetra_Vector C++
interface.
virtual int
Epetra_RowMatrix::LeftScale(const Epetra_Vector &x)=0
Scales the Epetra_RowMatrix on the left with a Epetra_Vector x.
The this matrix will be scaled such that A(i,j) = x(i)*A(i,j) where i
denotes the row number of A and j denotes the column number of A.
Parameters:
-----------
In: x -A Epetra_Vector to solve for.
Integer error code, set to 0 if successful.
"""
return _Epetra.RowMatrix_LeftScale(self, *args)
def InvColSums(self, *args):
"""
InvColSums(Vector x) -> int
Argument x is provided to you as a numpy-hybrid Epetra.Vector, giving
you access to the numpy interface in addition to the Epetra_Vector C++
interface.
virtual int
Epetra_RowMatrix::InvColSums(Epetra_Vector &x) const =0
Computes the sum of absolute values of the columns of the
Epetra_RowMatrix, results returned in x.
The vector x will return such that x[j] will contain the inverse of
sum of the absolute values of the this matrix will be sca such that
A(i,j) = x(j)*A(i,j) where i denotes the global row number of A and j
denotes the global column number of A. Using the resulting vector from
this function as input to RighttScale() will make the one norm of the
resulting matrix exactly 1.
Parameters:
-----------
Out: x -A Epetra_Vector containing the column sums of the this
matrix.
WARNING: It is assumed that the distribution of x is the same as the
rows of this.
Integer error code, set to 0 if successful.
"""
return _Epetra.RowMatrix_InvColSums(self, *args)
def RightScale(self, *args):
"""
RightScale(Vector x) -> int
Argument x is provided to you as a numpy-hybrid Epetra.Vector, giving
you access to the numpy interface in addition to the Epetra_Vector C++
interface.
virtual int
Epetra_RowMatrix::RightScale(const Epetra_Vector &x)=0
Scales the Epetra_RowMatrix on the right with a Epetra_Vector x.
The this matrix will be scaled such that A(i,j) = x(j)*A(i,j) where i
denotes the global row number of A and j denotes the global column
number of A.
Parameters:
-----------
In: x -The Epetra_Vector used for scaling this.
Integer error code, set to 0 if successful.
"""
return _Epetra.RowMatrix_RightScale(self, *args)
def Filled(self, *args):
"""
Filled(self) -> bool
virtual bool
Epetra_RowMatrix::Filled() const =0
If FillComplete() has been called, this query returns true, otherwise
it returns false.
"""
return _Epetra.RowMatrix_Filled(self, *args)
def NormInf(self, *args):
"""
NormInf(self) -> double
virtual double
Epetra_RowMatrix::NormInf() const =0
Returns the infinity norm of the global matrix.
"""
return _Epetra.RowMatrix_NormInf(self, *args)
def NormOne(self, *args):
"""
NormOne(self) -> double
virtual double
Epetra_RowMatrix::NormOne() const =0
Returns the one norm of the global matrix.
"""
return _Epetra.RowMatrix_NormOne(self, *args)
def NumGlobalNonzeros(self, *args):
"""
NumGlobalNonzeros(self) -> int
virtual
int Epetra_RowMatrix::NumGlobalNonzeros() const =0
Returns the number of nonzero entries in the global matrix.
"""
return _Epetra.RowMatrix_NumGlobalNonzeros(self, *args)
def NumGlobalRows(self, *args):
"""
NumGlobalRows(self) -> int
virtual int
Epetra_RowMatrix::NumGlobalRows() const =0
Returns the number of global matrix rows.
"""
return _Epetra.RowMatrix_NumGlobalRows(self, *args)
def NumGlobalCols(self, *args):
"""
NumGlobalCols(self) -> int
virtual int
Epetra_RowMatrix::NumGlobalCols() const =0
Returns the number of global matrix columns.
"""
return _Epetra.RowMatrix_NumGlobalCols(self, *args)
def NumGlobalDiagonals(self, *args):
"""
NumGlobalDiagonals(self) -> int
virtual
int Epetra_RowMatrix::NumGlobalDiagonals() const =0
Returns the number of global nonzero diagonal entries, based on global
row/column index comparisons.
"""
return _Epetra.RowMatrix_NumGlobalDiagonals(self, *args)
def NumMyNonzeros(self, *args):
"""
NumMyNonzeros(self) -> int
virtual int
Epetra_RowMatrix::NumMyNonzeros() const =0
Returns the number of nonzero entries in the calling processor's
portion of the matrix.
"""
return _Epetra.RowMatrix_NumMyNonzeros(self, *args)
def NumMyRows(self, *args):
"""
NumMyRows(self) -> int
virtual int
Epetra_RowMatrix::NumMyRows() const =0
Returns the number of matrix rows owned by the calling processor.
"""
return _Epetra.RowMatrix_NumMyRows(self, *args)
def NumMyCols(self, *args):
"""
NumMyCols(self) -> int
virtual int
Epetra_RowMatrix::NumMyCols() const =0
Returns the number of matrix columns owned by the calling processor.
"""
return _Epetra.RowMatrix_NumMyCols(self, *args)
def NumMyDiagonals(self, *args):
"""
NumMyDiagonals(self) -> int
virtual int
Epetra_RowMatrix::NumMyDiagonals() const =0
Returns the number of local nonzero diagonal entries, based on global
row/column index comparisons.
"""
return _Epetra.RowMatrix_NumMyDiagonals(self, *args)
def LowerTriangular(self, *args):
"""
LowerTriangular(self) -> bool
virtual
bool Epetra_RowMatrix::LowerTriangular() const =0
If matrix is lower triangular in local index space, this query returns
true, otherwise it returns false.
"""
return _Epetra.RowMatrix_LowerTriangular(self, *args)
def UpperTriangular(self, *args):
"""
UpperTriangular(self) -> bool
virtual
bool Epetra_RowMatrix::UpperTriangular() const =0
If matrix is upper triangular in local index space, this query returns
true, otherwise it returns false.
"""
return _Epetra.RowMatrix_UpperTriangular(self, *args)
def RowMatrixRowMap(self, *args):
"""
RowMatrixRowMap(self) -> Map
virtual
const Epetra_Map& Epetra_RowMatrix::RowMatrixRowMap() const =0
Returns the Epetra_Map object associated with the rows of this matrix.
"""
return _Epetra.RowMatrix_RowMatrixRowMap(self, *args)
def RowMatrixColMap(self, *args):
"""
RowMatrixColMap(self) -> Map
virtual
const Epetra_Map& Epetra_RowMatrix::RowMatrixColMap() const =0
Returns the Epetra_Map object associated with the columns of this
matrix.
"""
return _Epetra.RowMatrix_RowMatrixColMap(self, *args)
def RowMatrixImporter(self, *args):
"""
RowMatrixImporter(self) -> Import
virtual
const Epetra_Import* Epetra_RowMatrix::RowMatrixImporter() const =0
Returns the Epetra_Import object that contains the import operations
for distributed operations.
"""
return _Epetra.RowMatrix_RowMatrixImporter(self, *args)
def __init__(self, *args):
"""__init__(self) -> RowMatrix"""
if self.__class__ == RowMatrix:
_self = None
else:
_self = self
this = _Epetra.new_RowMatrix(_self, *args)
try: self.this.append(this)
except: self.this = this
def __disown__(self):
self.this.disown()
_Epetra.disown_RowMatrix(self)
return weakref_proxy(self)
RowMatrix_swigregister = _Epetra.RowMatrix_swigregister
RowMatrix_swigregister(RowMatrix)
class BasicRowMatrix(CompObject,Object,RowMatrix):
"""
Epetra_BasicRowMatrix: A class for simplifying the development of
Epetra_RowMatrix adapters.
The Epetra_BasicRowMatrix is an adapter class for Epetra_RowMatrix
that implements most of the Epetra_RowMatrix methods using reasonable
default implementations. The Epetra_RowMatrix class has 39 pure
virtual methods, requiring the adapter class to implement all of them.
Epetra_BasicRowMatrix has only 4 pure virtual methods that must be
implemented (See Epetra_JadMatrix for an example): ExtractMyRowCopy:
Provide a row of values and indices for a specified local row.
ExtractMyEntryView (const and non-const versions): Provide the memory
address of the ith nonzero term stored on the calling processor, along
with its corresponding local row and column index, where i goes from 0
to the NumMyNonzeros()-1. The order in which the nonzeros are
traversed is not specified and is up to the adapter implementation.
NumMyRowEntries: Provide the number of entries for a specified local
row.
An alternative is possible if you do not want to provide a non-trivial
implementation of the ExtraMyEntryView methods (See
Epetra_VbrRowMatrix for an example): Implement ExtractMyRowCopy and
NumMyRowEntries as above.
Implement ExtractMyEntryView (both versions) returning a -1 integer
code with no other executable code.
Implement the RightScale and LeftScale methods non-trivially.
In addition, most adapters will probably re-implement the Multiply()
method and perhaps the Solve() method, although one or the other may
be implemented to return -1, signaling that there is no valid
implementation. By default, the Multiply() method is implemented using
ExtractMyRowCopy, which can usual be improved upon. By default Solve()
and ApplyInverse() are implemented to return -1 (not implemented).
All other implemented methods in Epetra_BasicRowMatrix should not
exhibit a signficant performance degradation, either because they are
relatively small and fast, or because they are not a significant
portion of the runtime for most codes. All methods are virtual, so
they can be re-implemented by the adapter.
In addition to implementing the above methods, an adapter must inherit
the Epetra_BasicRowMatrix interface and call the Epetra_BasicRowMatrix
constructor as part of the adapter constructor. There are two
constructors. The first requires the user to pass in the RowMap and
ColMap, both of which are Epetra_Map objects. On each processor the
RowMap (ColMap) must contain the global IDs (GIDs) of the rows
(columns) that the processor cares about. The first constructor
requires only these two maps, assuming that the RowMap will also serve
as the DomainMap and RangeMap. In this case, the RowMap must be
1-to-1, meaning that if a global ID appears on one processor, it
appears only once on that processor and does not appear on any other
processor. For many sparse matrix data structures, it is the case that
a given row is completely owned by one processor and that the global
matrix is square. The first constructor is for this situation.
The second constructor allows the caller to specify all four maps. In
this case the DomainMap, the layout of multivectors/vectors that are
in the domain of the matrix (the x vector if computing y = A*x), must
be 1-to-1. Also, the RangeMap, the layout of y must be 1-to-1. The
RowMap and ColMap do not need to be 1-to-1, but the GIDs must be found
in the RangeMap and DomainMap, respectively.
Note that Epetra_Operator is a base class for Epetra_RowMatrix, so any
adapter for Epetra_BasicRowMatrix (or Epetra_RowMatrix) is also an
adapter for Epetra_Operator.
An example of how to provide an adapter for Epetra_BasicRowMatrix can
be found by looking at Epetra_JadMatrix.
C++ includes: Epetra_BasicRowMatrix.h
"""
__swig_setmethods__ = {}
for _s in [CompObject,Object,RowMatrix]: __swig_setmethods__.update(getattr(_s,'__swig_setmethods__',{}))
__setattr__ = lambda self, name, value: _swig_setattr(self, BasicRowMatrix, name, value)
__swig_getmethods__ = {}
for _s in [CompObject,Object,RowMatrix]: __swig_getmethods__.update(getattr(_s,'__swig_getmethods__',{}))
__getattr__ = lambda self, name: _swig_getattr(self, BasicRowMatrix, name)
__repr__ = _swig_repr
def __init__(self, *args):
"""
__init__(self, Comm Comm) -> BasicRowMatrix
Epetra_BasicRowMatrix::Epetra_BasicRowMatrix(const Epetra_Comm &Comm)
Epetra_BasicRowMatrix constuctor.
"""
if self.__class__ == BasicRowMatrix:
_self = None
else:
_self = self
this = _Epetra.new_BasicRowMatrix(_self, *args)
try: self.this.append(this)
except: self.this = this
__swig_destroy__ = _Epetra.delete_BasicRowMatrix
__del__ = lambda self : None;
def SetMaps(self, *args):
"""
SetMaps(self, Map RowMap, Map ColMap)
SetMaps(self, Map RowMap, Map ColMap, Map DomainMap, Map RangeMap)
void
Epetra_BasicRowMatrix::SetMaps(const Epetra_Map &RowMap, const
Epetra_Map &ColMap, const Epetra_Map &DomainMap, const Epetra_Map
&RangeMap)
Set maps (Version 2); call this function or the previous, but not
both.
"""
return _Epetra.BasicRowMatrix_SetMaps(self, *args)
def ExtractMyRowCopy(self, *args):
"""
ExtractMyRowCopy(self, int MyRow, int Length, int NumEntries, double Values,
int Indices) -> int
virtual int Epetra_BasicRowMatrix::ExtractMyRowCopy(int MyRow, int
Length, int &NumEntries, double *Values, int *Indices) const =0
Returns a copy of the specified local row in user-provided arrays.
Parameters:
-----------
MyRow: (In) - Local row to extract.
Length: (In) - Length of Values and Indices.
NumEntries: (Out) - Number of nonzero entries extracted.
Values: (Out) - Extracted values for this row.
Indices: (Out) - Extracted global column indices for the
corresponding values.
Integer error code, set to 0 if successful, set to -1 if MyRow not
valid, -2 if Length is too short (NumEntries will have required
length).
"""
return _Epetra.BasicRowMatrix_ExtractMyRowCopy(self, *args)
def ExtractMyEntryView(self, *args):
"""
ExtractMyEntryView(self, int CurEntry, double Value, int RowIndex, int ColIndex) -> int
virtual int Epetra_BasicRowMatrix::ExtractMyEntryView(int CurEntry,
double const *&Value, int &RowIndex, int &ColIndex) const =0
Returns a const reference to the ith entry in the matrix, along with
its row and column index.
Parameters:
-----------
CurEntry: (In) - Index of local entry (from 0 to NumMyNonzeros()-1)
to extract.
Value: (Out) - Extracted reference to current values.
RowIndex: (Out) - Row index for current entry.
ColIndex: (Out) - Column index for current entry.
Integer error code, set to 0 if successful, set to -1 if CurEntry not
valid.
"""
return _Epetra.BasicRowMatrix_ExtractMyEntryView(self, *args)
def NumMyRowEntries(self, *args):
"""
NumMyRowEntries(self, int MyRow, int NumEntries) -> int
virtual int Epetra_BasicRowMatrix::NumMyRowEntries(int MyRow, int
&NumEntries) const =0
Return the current number of values stored for the specified local
row.
Similar to NumMyEntries() except NumEntries is returned as an argument
and error checking is done on the input value MyRow.
Parameters:
-----------
MyRow: (In) - Local row.
NumEntries: (Out) - Number of nonzero values.
Integer error code, set to 0 if successful, set to -1 if MyRow not
valid.
"""
return _Epetra.BasicRowMatrix_NumMyRowEntries(self, *args)
def Multiply(self, *args):
"""
Multiply(self, bool TransA, Epetra_MultiVector X, Epetra_MultiVector Y) -> int
int
Epetra_BasicRowMatrix::Multiply(bool TransA, const Epetra_MultiVector
&X, Epetra_MultiVector &Y) const
Returns the result of a Epetra_BasicRowMatrix multiplied by a
Epetra_MultiVector X in Y.
Parameters:
-----------
TransA: (In) - If true, multiply by the transpose of matrix,
otherwise just use matrix.
X: (Out) - An Epetra_MultiVector of dimension NumVectors to multiply
with matrix.
Y: (Out) - An Epetra_MultiVector of dimension NumVectorscontaining
result.
Integer error code, set to 0 if successful.
"""
return _Epetra.BasicRowMatrix_Multiply(self, *args)
def Solve(self, *args):
"""
Solve(self, bool Upper, bool Trans, bool UnitDiagonal, Epetra_MultiVector X,
Epetra_MultiVector Y) -> int
virtual int
Epetra_BasicRowMatrix::Solve(bool Upper, bool Trans, bool
UnitDiagonal, const Epetra_MultiVector &X, Epetra_MultiVector &Y)
const
Returns the result of a Epetra_BasicRowMatrix solve with a
Epetra_MultiVector X in Y (not implemented).
Parameters:
-----------
Upper: (In) - If true, solve Ux = y, otherwise solve Lx = y.
Trans: (In) - If true, solve transpose problem.
UnitDiagonal: (In) - If true, assume diagonal is unit (whether it's
stored or not).
X: (In) - An Epetra_MultiVector of dimension NumVectors to solve for.
Y: (Out) - An Epetra_MultiVector of dimension NumVectors containing
result.
Integer error code, set to 0 if successful.
"""
return _Epetra.BasicRowMatrix_Solve(self, *args)
def ExtractDiagonalCopy(self, *args):
"""
ExtractDiagonalCopy(self, Epetra_Vector Diagonal) -> int
int Epetra_BasicRowMatrix::ExtractDiagonalCopy(Epetra_Vector
&Diagonal) const
Returns a copy of the main diagonal in a user-provided vector.
Parameters:
-----------
Diagonal: (Out) - Extracted main diagonal.
Integer error code, set to 0 if successful.
"""
return _Epetra.BasicRowMatrix_ExtractDiagonalCopy(self, *args)
def InvRowSums(self, *args):
"""
InvRowSums(self, Epetra_Vector x) -> int
int
Epetra_BasicRowMatrix::InvRowSums(Epetra_Vector &x) const
Computes the sum of absolute values of the rows of the
Epetra_BasicRowMatrix, results returned in x.
The vector x will return such that x[i] will contain the inverse of
sum of the absolute values of the this matrix will be scaled such that
A(i,j) = x(i)*A(i,j) where i denotes the global row number of A and j
denotes the global column number of A. Using the resulting vector from
this function as input to LeftScale() will make the infinity norm of
the resulting matrix exactly 1.
Parameters:
-----------
x: (Out) - An Epetra_Vector containing the row sums of the this
matrix.
WARNING: It is assumed that the distribution of x is the same as the
rows of this.
Integer error code, set to 0 if successful.
"""
return _Epetra.BasicRowMatrix_InvRowSums(self, *args)
def LeftScale(self, *args):
"""
LeftScale(self, Epetra_Vector x) -> int
int
Epetra_BasicRowMatrix::LeftScale(const Epetra_Vector &x)
Scales the Epetra_BasicRowMatrix on the left with a Epetra_Vector x.
The this matrix will be scaled such that A(i,j) = x(i)*A(i,j) where i
denotes the row number of A and j denotes the column number of A.
Parameters:
-----------
x: (In) - An Epetra_Vector to solve for.
Integer error code, set to 0 if successful.
"""
return _Epetra.BasicRowMatrix_LeftScale(self, *args)
def InvColSums(self, *args):
"""
InvColSums(self, Epetra_Vector x) -> int
int
Epetra_BasicRowMatrix::InvColSums(Epetra_Vector &x) const
Computes the sum of absolute values of the columns of the
Epetra_BasicRowMatrix, results returned in x.
The vector x will return such that x[j] will contain the inverse of
sum of the absolute values of the this matrix will be sca such that
A(i,j) = x(j)*A(i,j) where i denotes the global row number of A and j
denotes the global column number of A. Using the resulting vector from
this function as input to RighttScale() will make the one norm of the
resulting matrix exactly 1.
Parameters:
-----------
x: (Out) - An Epetra_Vector containing the column sums of the this
matrix.
WARNING: It is assumed that the distribution of x is the same as the
rows of this.
Integer error code, set to 0 if successful.
"""
return _Epetra.BasicRowMatrix_InvColSums(self, *args)
def RightScale(self, *args):
"""
RightScale(self, Epetra_Vector x) -> int
int
Epetra_BasicRowMatrix::RightScale(const Epetra_Vector &x)
Scales the Epetra_BasicRowMatrix on the right with a Epetra_Vector x.
The this matrix will be scaled such that A(i,j) = x(j)*A(i,j) where i
denotes the global row number of A and j denotes the global column
number of A.
Parameters:
-----------
x: (In) - The Epetra_Vector used for scaling this.
Integer error code, set to 0 if successful.
"""
return _Epetra.BasicRowMatrix_RightScale(self, *args)
def Filled(self, *args):
"""
Filled(self) -> bool
virtual bool
Epetra_BasicRowMatrix::Filled() const
If FillComplete() has been called, this query returns true, otherwise
it returns false, presently always returns true.
"""
return _Epetra.BasicRowMatrix_Filled(self, *args)
def LowerTriangular(self, *args):
"""
LowerTriangular(self) -> bool
bool
Epetra_BasicRowMatrix::LowerTriangular() const
If matrix is lower triangular, this query returns true, otherwise it
returns false.
"""
return _Epetra.BasicRowMatrix_LowerTriangular(self, *args)
def UpperTriangular(self, *args):
"""
UpperTriangular(self) -> bool
virtual bool Epetra_BasicRowMatrix::UpperTriangular() const
If matrix is upper triangular, this query returns true, otherwise it
returns false.
"""
return _Epetra.BasicRowMatrix_UpperTriangular(self, *args)
def NormInf(self, *args):
"""
NormInf(self) -> double
virtual double
Epetra_BasicRowMatrix::NormInf() const
Returns the infinity norm of the global matrix.
"""
return _Epetra.BasicRowMatrix_NormInf(self, *args)
def NormOne(self, *args):
"""
NormOne(self) -> double
virtual double
Epetra_BasicRowMatrix::NormOne() const
Returns the one norm of the global matrix.
"""
return _Epetra.BasicRowMatrix_NormOne(self, *args)
def NumGlobalNonzeros(self, *args):
"""
NumGlobalNonzeros(self) -> int
virtual int Epetra_BasicRowMatrix::NumGlobalNonzeros() const
Returns the number of nonzero entries in the global matrix.
"""
return _Epetra.BasicRowMatrix_NumGlobalNonzeros(self, *args)
def NumGlobalRows(self, *args):
"""
NumGlobalRows(self) -> int
virtual
int Epetra_BasicRowMatrix::NumGlobalRows() const
Returns the number of global matrix rows.
"""
return _Epetra.BasicRowMatrix_NumGlobalRows(self, *args)
def NumGlobalCols(self, *args):
"""
NumGlobalCols(self) -> int
virtual
int Epetra_BasicRowMatrix::NumGlobalCols() const
Returns the number of global matrix columns.
"""
return _Epetra.BasicRowMatrix_NumGlobalCols(self, *args)
def NumGlobalDiagonals(self, *args):
"""
NumGlobalDiagonals(self) -> int
virtual int Epetra_BasicRowMatrix::NumGlobalDiagonals() const
Returns the number of global nonzero diagonal entries.
"""
return _Epetra.BasicRowMatrix_NumGlobalDiagonals(self, *args)
def NumMyNonzeros(self, *args):
"""
NumMyNonzeros(self) -> int
virtual
int Epetra_BasicRowMatrix::NumMyNonzeros() const
Returns the number of nonzero entries in the calling processor's
portion of the matrix.
"""
return _Epetra.BasicRowMatrix_NumMyNonzeros(self, *args)
def NumMyRows(self, *args):
"""
NumMyRows(self) -> int
virtual int
Epetra_BasicRowMatrix::NumMyRows() const
Returns the number of matrix rows owned by the calling processor.
"""
return _Epetra.BasicRowMatrix_NumMyRows(self, *args)
def NumMyCols(self, *args):
"""
NumMyCols(self) -> int
virtual int
Epetra_BasicRowMatrix::NumMyCols() const
Returns the number of matrix columns owned by the calling processor.
"""
return _Epetra.BasicRowMatrix_NumMyCols(self, *args)
def NumMyDiagonals(self, *args):
"""
NumMyDiagonals(self) -> int
virtual
int Epetra_BasicRowMatrix::NumMyDiagonals() const
Returns the number of local nonzero diagonal entries.
"""
return _Epetra.BasicRowMatrix_NumMyDiagonals(self, *args)
def MaxNumEntries(self, *args):
"""
MaxNumEntries(self) -> int
virtual
int Epetra_BasicRowMatrix::MaxNumEntries() const
Returns the maximum number of nonzero entries across all rows on this
processor.
"""
return _Epetra.BasicRowMatrix_MaxNumEntries(self, *args)
def OperatorDomainMap(self, *args):
"""
OperatorDomainMap(self) -> Map
virtual const Epetra_Map& Epetra_BasicRowMatrix::OperatorDomainMap()
const
Returns the Epetra_Map object associated with the domain of this
operator.
"""
return _Epetra.BasicRowMatrix_OperatorDomainMap(self, *args)
def OperatorRangeMap(self, *args):
"""
OperatorRangeMap(self) -> Map
virtual const Epetra_Map& Epetra_BasicRowMatrix::OperatorRangeMap()
const
Returns the Epetra_Map object associated with the range of this
operator (same as domain).
"""
return _Epetra.BasicRowMatrix_OperatorRangeMap(self, *args)
def Map(self, *args):
"""
Map(self) -> BlockMap
virtual const
Epetra_BlockMap& Epetra_BasicRowMatrix::Map() const
Implement the Epetra_SrcDistObjec::Map() function.
"""
return _Epetra.BasicRowMatrix_Map(self, *args)
def RowMatrixRowMap(self, *args):
"""
RowMatrixRowMap(self) -> Map
virtual const Epetra_Map& Epetra_BasicRowMatrix::RowMatrixRowMap()
const
Returns the Row Map object needed for implementing Epetra_RowMatrix.
"""
return _Epetra.BasicRowMatrix_RowMatrixRowMap(self, *args)
def RowMatrixColMap(self, *args):
"""
RowMatrixColMap(self) -> Map
virtual const Epetra_Map& Epetra_BasicRowMatrix::RowMatrixColMap()
const
Returns the Column Map object needed for implementing
Epetra_RowMatrix.
"""
return _Epetra.BasicRowMatrix_RowMatrixColMap(self, *args)
def RowMatrixImporter(self, *args):
"""
RowMatrixImporter(self) -> Import
virtual const Epetra_Import*
Epetra_BasicRowMatrix::RowMatrixImporter() const
Returns the Epetra_Import object that contains the import operations
for distributed operations.
"""
return _Epetra.BasicRowMatrix_RowMatrixImporter(self, *args)
def Comm(self, *args):
"""
Comm(self) -> Comm
virtual const
Epetra_Comm& Epetra_BasicRowMatrix::Comm() const
Returns a pointer to the Epetra_Comm communicator associated with this
matrix.
"""
return _Epetra.BasicRowMatrix_Comm(self, *args)
def SetUseTranspose(self, *args):
"""
SetUseTranspose(self, bool use_transpose) -> int
virtual int Epetra_BasicRowMatrix::SetUseTranspose(bool use_transpose)
If set true, transpose of this operator will be applied.
This flag allows the transpose of the given operator to be used
implicitly. Setting this flag affects only the Apply() and
ApplyInverse() methods. If the implementation of this interface does
not support transpose use, this method should return a value of -1.
Parameters:
-----------
use_transpose: (In) - If true, multiply by the transpose of operator,
otherwise just use operator.
Always returns 0.
"""
return _Epetra.BasicRowMatrix_SetUseTranspose(self, *args)
def Label(self, *args):
"""
Label(self) -> char
virtual const
char* Epetra_BasicRowMatrix::Label() const
Returns a character string describing the operator.
"""
return _Epetra.BasicRowMatrix_Label(self, *args)
def Apply(self, *args):
"""
Apply(self, Epetra_MultiVector X, Epetra_MultiVector Y) -> int
virtual int
Epetra_BasicRowMatrix::Apply(const Epetra_MultiVector &X,
Epetra_MultiVector &Y) const
Returns the result of a Epetra_RowMatrix applied to a
Epetra_MultiVector X in Y.
Parameters:
-----------
X: (In) - A Epetra_MultiVector of dimension NumVectors to multiply
with matrix.
Y: (Out) - A Epetra_MultiVector of dimension NumVectors containing
result.
Integer error code, set to 0 if successful.
"""
return _Epetra.BasicRowMatrix_Apply(self, *args)
def ApplyInverse(self, *args):
"""
ApplyInverse(self, Epetra_MultiVector X, Epetra_MultiVector Y) -> int
virtual
int Epetra_BasicRowMatrix::ApplyInverse(const Epetra_MultiVector &X,
Epetra_MultiVector &Y) const
Returns the result of a Epetra_RowMatrix inverse applied to an
Epetra_MultiVector X in Y.
Parameters:
-----------
X: (In) - A Epetra_MultiVector of dimension NumVectors to solve for.
Y: (Out) - A Epetra_MultiVector of dimension NumVectors containing
result.
Integer error code = -1.
WARNING: This method is NOT supported.
"""
return _Epetra.BasicRowMatrix_ApplyInverse(self, *args)
def HasNormInf(self, *args):
"""
HasNormInf(self) -> bool
bool
Epetra_BasicRowMatrix::HasNormInf() const
Returns true because this class can compute an Inf-norm.
"""
return _Epetra.BasicRowMatrix_HasNormInf(self, *args)
def UseTranspose(self, *args):
"""
UseTranspose(self) -> bool
virtual
bool Epetra_BasicRowMatrix::UseTranspose() const
Returns the current UseTranspose setting.
"""
return _Epetra.BasicRowMatrix_UseTranspose(self, *args)
def Importer(self, *args):
"""
Importer(self) -> Import
virtual const
Epetra_Import* Epetra_BasicRowMatrix::Importer() const
Returns the Epetra_Import object that contains the import operations
for distributed operations, returns zero if none.
If RowMatrixColMap!=OperatorDomainMap, then this method returns a
pointer to an Epetra_Import object that imports objects from an
OperatorDomainMap layout to a RowMatrixColMap layout. This operation
is needed for sparse matrix- vector multiplication, y = Ax, to gather
x elements for local multiplication operations.
If RowMatrixColMap==OperatorDomainMap, then the pointer will be
returned as 0.
Raw pointer to importer. This importer will be valid as long as the
Epetra_RowMatrix object is valid.
"""
return _Epetra.BasicRowMatrix_Importer(self, *args)
def Exporter(self, *args):
"""
Exporter(self) -> Export
virtual const
Epetra_Export* Epetra_BasicRowMatrix::Exporter() const
Returns the Epetra_Export object that contains the export operations
for distributed operations, returns zero if none.
If RowMatrixRowMap!=OperatorRangeMap, then this method returns a
pointer to an Epetra_Export object that exports objects from an
RowMatrixRowMap layout to a OperatorRangeMap layout. This operation is
needed for sparse matrix- vector multiplication, y = Ax, to scatter-
add y elements generated during local multiplication operations.
If RowMatrixRowMap==OperatorRangeMap, then the pointer will be
returned as 0. For a typical Epetra_RowMatrix object, this pointer
will be zero since it is often the case that
RowMatrixRowMap==OperatorRangeMap.
Raw pointer to exporter. This exporter will be valid as long as the
Epetra_RowMatrix object is valid.
"""
return _Epetra.BasicRowMatrix_Exporter(self, *args)
def ComputeStructureConstants(self, *args):
"""ComputeStructureConstants(self)"""
return _Epetra.BasicRowMatrix_ComputeStructureConstants(self, *args)
def ComputeNumericConstants(self, *args):
"""ComputeNumericConstants(self)"""
return _Epetra.BasicRowMatrix_ComputeNumericConstants(self, *args)
def __disown__(self):
self.this.disown()
_Epetra.disown_BasicRowMatrix(self)
return weakref_proxy(self)
BasicRowMatrix_swigregister = _Epetra.BasicRowMatrix_swigregister
BasicRowMatrix_swigregister(BasicRowMatrix)
class CrsMatrix(DistObject,CompObject,BLAS,RowMatrix):
"""
Epetra_CrsMatrix: A class for constructing and using real-valued
double-precision sparse compressed row matrices.
The Epetra_CrsMatrix class is a sparse compressed row matrix object.
This matrix can be used in a parallel setting, with data distribution
described by Epetra_Map attributes. The structure or graph of the
matrix is defined by an Epetra_CrsGraph attribute.
In addition to coefficient access, the primary operations provided by
Epetra_CrsMatrix are matrix times vector and matrix times multi-vector
multiplication.
Epetra_CrsMatrix matrices can be square or rectangular.
Creating and filling Epetra_CrsMatrix objects
Constructing Epetra_CrsMatrix objects is a multi-step process. The
basic steps are as follows: Create Epetra_CrsMatrix instance,
including storage, via one of the constructors: Constructor that
accepts one Epetra_Map object, a row-map defining the distribution of
matrix rows.
Constructor that accepts two Epetra_Map objects. (The second map is a
column-map, and describes the set of column-indices that appear in
each processor's portion of the matrix. Generally these are
overlapping sets -- column-indices may appear on more than one
processor.)
Constructor that accepts an Epetra_CrsGraph object, defining the non-
zero structure of the matrix. Note that the constructors which accept
Epetra_Map arguments also accept an argument that gives an estimate of
the number of nonzeros per row. This allows storage to be pre-
allocated and can improve the performance of the data input methods.
The estimate need not be accurate, as additional storage is allocated
automatically when needed. However, a more accurate estimate helps
performance by reducing the amount of extra memory allocation.
Enter values via one or more Insert/Replace/SumInto functions.
Complete construction by calling FillComplete.
Note that, even after a matrix is constructed (FillComplete has been
called), it is possible to update existing matrix entries. It is not
possible to create new entries.
Epetra_Map attributes
Epetra_CrsMatrix objects have four Epetra_Map attributes, which are
held by the Epetra_CrsGraph attribute.
The Epetra_Map attributes can be obtained via these accessor methods:
RowMap() Describes the numbering and distribution of the rows of the
matrix. The row-map exists and is valid for the entire life of the
matrix. The set of matrix rows is defined by the row-map and may not
be changed. Rows may not be inserted or deleted by the user. The only
change that may be made is that the user can replace the row-map with
a compatible row-map (which is the same except for re-numbering) by
calling the ReplaceRowMap() method.
ColMap() Describes the set of column-indices that appear in the rows
in each processor's portion of the matrix. Unless provided by the user
at construction time, a valid column-map doesn't exist until
FillComplete() is called.
RangeMap() Describes the range of the matrix operator. e.g., for a
matrix-vector product operation, the result vector's map must be
compatible with the range-map of this matrix. The range-map is usually
the same as the row-map. The range-map is set equal to the row-map at
matrix creation time, but may be specified by the user when
FillComplete() is called.
DomainMap() Describes the domain of the matrix operator. The domain-
map can be specified by the user when FillComplete() is called. Until
then, it is set equal to the row-map.
It is important to note that while the row-map and the range-map are
often the same, the column-map and the domain-map are almost never the
same. The set of entries in a distributed column-map almost always
form overlapping sets, with entries being associated with more than
one processor. A domain-map, on the other hand, must be a 1-to-1 map,
with entries being associated with only a single processor.
Local versus Global Indices
Epetra_CrsMatrix has query functions IndicesAreLocal() and
IndicesAreGlobal(), which are used to determine whether the underlying
Epetra_CrsGraph attribute's column-indices have been transformed into
a local index space or not. (This transformation occurs when the
method Epetra_CrsGraph::FillComplete() is called, which happens when
the method Epetra_CrsMatrix::FillComplete() is called.) The state of
the indices in the graph determines the behavior of many
Epetra_CrsMatrix methods. If an Epetra_CrsMatrix instance is
constructed using one of the constructors that does not accept a pre-
existing Epetra_CrsGraph object, then an Epetra_CrsGraph attribute is
created internally and its indices remain untransformed (
IndicesAreGlobal()==true) until Epetra_CrsMatrix::FillComplete() is
called. The query function Epetra_CrsMatrix::Filled() returns true if
Epetra_CrsMatrix::FillComplete() has been called.
Note the following method characteristics:
InsertGlobalValues() may only be used to insert new nonzeros in the
matrix if indices are global.
SumIntoGlobalValues() may be used regardless of whether indices are
global or local, but can only be used to update matrix locations that
already exist; it can never be used to establish new nonzero
locations.
ReplaceGlobalValues() may also be used only to update matrix locations
that already exist, and works regardless of whether indices are local
or global.
SumIntoMyValues() and ReplaceMyValues() may only be used if indices
are local.
Multiply() may only be used after FillComplete() has been called.
Most methods have preconditions documented, check documentation for
specific methods not mentioned here.
Counting Floating Point Operations
Each Epetra_CrsMatrix object keeps track of the number of serial
floating point operations performed using the specified object as the
this argument to the function. The Flops() function returns this
number as a double precision number. Using this information, in
conjunction with the Epetra_Time class, one can get accurate parallel
performance numbers. The ResetFlops() function resets the floating
point counter.
WARNING: A Epetra_Map is required for the Epetra_CrsMatrix
constructor.
C++ includes: Epetra_CrsMatrix.h
"""
__swig_setmethods__ = {}
for _s in [DistObject,CompObject,BLAS,RowMatrix]: __swig_setmethods__.update(getattr(_s,'__swig_setmethods__',{}))
__setattr__ = lambda self, name, value: _swig_setattr(self, CrsMatrix, name, value)
__swig_getmethods__ = {}
for _s in [DistObject,CompObject,BLAS,RowMatrix]: __swig_getmethods__.update(getattr(_s,'__swig_getmethods__',{}))
__getattr__ = lambda self, name: _swig_getattr(self, CrsMatrix, name)
__repr__ = _swig_repr
__swig_destroy__ = _Epetra.delete_CrsMatrix
__del__ = lambda self : None;
def PutScalar(self, *args):
"""
PutScalar(self, double ScalarConstant) -> int
int
Epetra_CrsMatrix::PutScalar(double ScalarConstant)
Initialize all values in the matrix with constant value.
Parameters:
-----------
ScalarConstant: - (In) Value to use.
Integer error code, set to 0 if successful.
None.
All values in this set to ScalarConstant.
"""
return _Epetra.CrsMatrix_PutScalar(self, *args)
def Scale(self, *args):
"""
Scale(self, double ScalarConstant) -> int
int
Epetra_CrsMatrix::Scale(double ScalarConstant)
Multiply all values in the matrix by a constant value (in place: A <-
ScalarConstant * A).
Parameters:
-----------
ScalarConstant: - (In) Value to use.
Integer error code, set to 0 if successful.
None.
All values of this have been multiplied by ScalarConstant.
"""
return _Epetra.CrsMatrix_Scale(self, *args)
def ReplaceDiagonalValues(self, *args):
"""
ReplaceDiagonalValues(self, Epetra_Vector Diagonal) -> int
int
Epetra_CrsMatrix::ReplaceDiagonalValues(const Epetra_Vector &Diagonal)
Replaces diagonal values of the matrix with those in the user-provided
vector.
This routine is meant to allow replacement of { existing} diagonal
values. If a diagonal value does not exist for a given row, the
corresponding value in the input Epetra_Vector will be ignored and the
return code will be set to 1.
The Epetra_Map associated with the input Epetra_Vector must be
compatible with the RowMap of the matrix.
Parameters:
-----------
Diagonal: - (In) New values to be placed in the main diagonal.
Integer error code, set to 0 if successful, set to 1 on the calling
processor if one or more diagonal entries not present in matrix.
Filled()==true
Diagonal values have been replaced with the values of Diagonal.
"""
return _Epetra.CrsMatrix_ReplaceDiagonalValues(self, *args)
def FillComplete(self, *args):
"""
FillComplete(self, bool OptimizeDataStorage = True) -> int
FillComplete(self, Map DomainMap, Map RangeMap, bool OptimizeDataStorage = True) -> int
int
Epetra_CrsMatrix::FillComplete(const Epetra_Map &DomainMap, const
Epetra_Map &RangeMap, bool OptimizeDataStorage=true)
Signal that data entry is complete. Perform transformations to local
index space.
"""
return _Epetra.CrsMatrix_FillComplete(self, *args)
def OptimizeStorage(self, *args):
"""
OptimizeStorage(self) -> int
int
Epetra_CrsMatrix::OptimizeStorage()
Make consecutive row index sections contiguous, minimize internal
storage used for constructing graph.
After construction and during initialization (when values are being
added), the matrix coefficients for each row are managed as separate
segments of memory. This method moves the values for all rows into one
large contiguous array and eliminates internal storage that is not
needed after matrix construction. Calling this method can have a
significant impact on memory costs and machine performance.
If this object was constructed in View mode then this method can't
make non-contiguous values contiguous and will return a warning code
of 1 if the viewed data isn't already contiguous.
A call to this method will also call the OptimizeStorage method for
the associated Epetra_CrsGraph object. If the storage for this graph
has already been optimized this additional call will have no effect.
Integer error code, set to 0 if successful.
Filled()==true.
If CV=View when the graph was constructed, then this method will be
effective if the indices of the graph were already contiguous. In
this case, the indices are left untouched and internal storage for the
graph is minimized.
StorageOptimized()==true, if successful.
Graph(). StorageOptimized()==true, if successful.
"""
return _Epetra.CrsMatrix_OptimizeStorage(self, *args)
def MakeDataContiguous(self, *args):
"""
MakeDataContiguous(self) -> int
int
Epetra_CrsMatrix::MakeDataContiguous()
Eliminates memory that is used for construction. Make consecutive row
index sections contiguous.
"""
return _Epetra.CrsMatrix_MakeDataContiguous(self, *args)
def ExtractDiagonalCopy(self, *args):
"""
ExtractDiagonalCopy(self, Epetra_Vector Diagonal) -> int
int
Epetra_CrsMatrix::ExtractDiagonalCopy(Epetra_Vector &Diagonal) const
Returns a copy of the main diagonal in a user-provided vector.
Parameters:
-----------
Diagonal: - (Out) Extracted main diagonal.
Integer error code, set to 0 if successful.
Filled()==true
Unchanged.
"""
return _Epetra.CrsMatrix_ExtractDiagonalCopy(self, *args)
def Multiply(self, *args):
"""
Multiply(self, bool TransA, Epetra_Vector x, Epetra_Vector y) -> int
Multiply(self, bool TransA, Epetra_MultiVector X, Epetra_MultiVector Y) -> int
int
Epetra_CrsMatrix::Multiply(bool TransA, const Epetra_MultiVector &X,
Epetra_MultiVector &Y) const
Returns the result of a Epetra_CrsMatrix multiplied by a
Epetra_MultiVector X in Y.
Parameters:
-----------
TransA: - (In) If true, multiply by the transpose of matrix,
otherwise just use matrix.
X: - (In) An Epetra_MultiVector of dimension NumVectors to multiply
with matrix.
Y: - (Out) An Epetra_MultiVector of dimension NumVectorscontaining
result.
Integer error code, set to 0 if successful.
Filled()==true
Unchanged.
"""
return _Epetra.CrsMatrix_Multiply(self, *args)
def Multiply1(self, *args):
"""
Multiply1(self, bool TransA, Epetra_Vector x, Epetra_Vector y) -> int
Multiply1(self, bool TransA, Epetra_MultiVector X, Epetra_MultiVector Y) -> int
int
Epetra_CrsMatrix::Multiply1(bool TransA, const Epetra_MultiVector &X,
Epetra_MultiVector &Y) const
"""
return _Epetra.CrsMatrix_Multiply1(self, *args)
def Solve(self, *args):
"""
Solve(self, bool Upper, bool Trans, bool UnitDiagonal, Epetra_Vector x,
Epetra_Vector y) -> int
Solve(self, bool Upper, bool Trans, bool UnitDiagonal, Epetra_MultiVector X,
Epetra_MultiVector Y) -> int
int
Epetra_CrsMatrix::Solve(bool Upper, bool Trans, bool UnitDiagonal,
const Epetra_MultiVector &X, Epetra_MultiVector &Y) const
Returns the result of a local solve using the Epetra_CrsMatrix a
Epetra_MultiVector X in Y.
This method solves a triangular system of equations asynchronously on
each processor.
Parameters:
-----------
Upper: - (In) If true, solve Uy = x, otherwise solve Ly = x.
Trans: - (In) If true, solve transpose problem.
UnitDiagonal: - (In) If true, assume diagonal is unit (whether it's
stored or not).
X: - (In) An Epetra_MultiVector of dimension NumVectors to solve for.
Y: - (Out) An Epetra_MultiVector of dimension NumVectors containing
result.
Integer error code, set to 0 if successful.
Filled()==true
Unchanged.
"""
return _Epetra.CrsMatrix_Solve(self, *args)
def InvRowSums(self, *args):
"""
InvRowSums(self, Epetra_Vector x) -> int
int
Epetra_CrsMatrix::InvRowSums(Epetra_Vector &x) const
Computes the inverse of the sum of absolute values of the rows of the
Epetra_CrsMatrix, results returned in x.
The vector x will return such that x[i] will contain the inverse of
the sum of the absolute values of the entries in the ith row of the
this matrix. Using the resulting vector from this function as input to
LeftScale() will make the infinity norm of the resulting matrix
exactly 1. WARNING: The NormInf() method will not properly calculate
the infinity norm for a matrix that has entries that are replicated on
multiple processors. In this case, if the rows are fully replicated,
NormInf() will return a value equal to the maximum number of
processors that any individual row of the matrix is replicated on.
Parameters:
-----------
x: - (Out) An Epetra_Vector containing the inverse of the row sums of
the this matrix.
WARNING: When rows are fully replicated on multiple processors, it is
assumed that the distribution of x is the same as the rows (
RowMap())of this. When multiple processors contain partial sums for
individual entries, the distribution of x is assumed to be the same as
the RangeMap() of this. When each row of this is uniquely owned, the
distribution of x can be that of the RowMap() or the RangeMap().
Integer error code, set to 0 if successful.
Filled()==true
Unchanged.
"""
return _Epetra.CrsMatrix_InvRowSums(self, *args)
def InvRowMaxs(self, *args):
"""
InvRowMaxs(self, Epetra_Vector x) -> int
int
Epetra_CrsMatrix::InvRowMaxs(Epetra_Vector &x) const
Computes the inverse of the max of absolute values of the rows of the
Epetra_CrsMatrix, results returned in x.
The vector x will return such that x[i] will contain the inverse of
max of the absolute values of the entries in the ith row of the this
matrix. WARNING: This method will not work when multiple processors
contain partial sums for individual entries.
Parameters:
-----------
x: - (Out) An Epetra_Vector containing the inverse of the row maxs of
the this matrix.
WARNING: When rows are fully replicated on multiple processors, it is
assumed that the distribution of x is the same as the rows (
RowMap())of this. When each row of this is uniquely owned, the
distribution of x can be that of the RowMap() or the RangeMap().
Integer error code, set to 0 if successful.
Filled()==true
Unchanged.
"""
return _Epetra.CrsMatrix_InvRowMaxs(self, *args)
def LeftScale(self, *args):
"""
LeftScale(self, Epetra_Vector x) -> int
int
Epetra_CrsMatrix::LeftScale(const Epetra_Vector &x)
Scales the Epetra_CrsMatrix on the left with a Epetra_Vector x.
The this matrix will be scaled such that A(i,j) = x(i)*A(i,j) where i
denotes the row number of A and j denotes the column number of A.
Parameters:
-----------
x: - (In) An Epetra_Vector to scale with.
Integer error code, set to 0 if successful.
Filled()==true
The matrix will be scaled as described above.
"""
return _Epetra.CrsMatrix_LeftScale(self, *args)
def InvColSums(self, *args):
"""
InvColSums(self, Epetra_Vector x) -> int
int
Epetra_CrsMatrix::InvColSums(Epetra_Vector &x) const
Computes the inverse of the sum of absolute values of the columns of
the Epetra_CrsMatrix, results returned in x.
The vector x will return such that x[j] will contain the inverse of
the sum of the absolute values of the entries in the jth column of the
this matrix. Using the resulting vector from this function as input to
RightScale() will make the one norm of the resulting matrix exactly 1.
WARNING: The NormOne() method will not properly calculate the one
norm for a matrix that has entries that are replicated on multiple
processors. In this case, if the columns are fully replicated,
NormOne() will return a value equal to the maximum number of
processors that any individual column of the matrix is repliated on.
Parameters:
-----------
x: - (Out) An Epetra_Vector containing the column sums of the this
matrix.
WARNING: When columns are fully replicated on multiple processors, it
is assumed that the distribution of x is the same as the columns (
ColMap()) of this. When multiple processors contain partial sums for
entries, the distribution of x is assumed to be the same as the
DomainMap() of this. When each column of this is uniquely owned, the
distribution of x can be that of the ColMap() or the DomainMap().
Integer error code, set to 0 if successful.
Filled()==true
Unchanged.
"""
return _Epetra.CrsMatrix_InvColSums(self, *args)
def InvColMaxs(self, *args):
"""
InvColMaxs(self, Epetra_Vector x) -> int
int
Epetra_CrsMatrix::InvColMaxs(Epetra_Vector &x) const
Computes the max of absolute values of the columns of the
Epetra_CrsMatrix, results returned in x.
The vector x will return such that x[j] will contain the inverse of
max of the absolute values of the entries in the jth row of the this
matrix. WARNING: This method will not work when multiple processors
contain partial sums for individual entries.
Parameters:
-----------
x: - (Out) An Epetra_Vector containing the column maxs of the this
matrix.
WARNING: When columns are fully replicated on multiple processors, it
is assumed that the distribution of x is the same as the columns (
ColMap()) of this. When each column of this is uniquely owned, the
distribution of x can be that of the ColMap() or the DomainMap().
Integer error code, set to 0 if successful.
Filled()==true
Unchanged.
"""
return _Epetra.CrsMatrix_InvColMaxs(self, *args)
def RightScale(self, *args):
"""
RightScale(self, Epetra_Vector x) -> int
int
Epetra_CrsMatrix::RightScale(const Epetra_Vector &x)
Scales the Epetra_CrsMatrix on the right with a Epetra_Vector x.
The this matrix will be scaled such that A(i,j) = x(j)*A(i,j) where i
denotes the global row number of A and j denotes the global column
number of A.
Parameters:
-----------
x: - (In) The Epetra_Vector used for scaling this.
Integer error code, set to 0 if successful.
Filled()==true
The matrix will be scaled as described above.
"""
return _Epetra.CrsMatrix_RightScale(self, *args)
def Filled(self, *args):
"""
Filled(self) -> bool
bool
Epetra_CrsMatrix::Filled() const
If FillComplete() has been called, this query returns true, otherwise
it returns false.
"""
return _Epetra.CrsMatrix_Filled(self, *args)
def StorageOptimized(self, *args):
"""
StorageOptimized(self) -> bool
bool
Epetra_CrsMatrix::StorageOptimized() const
If OptimizeStorage() has been called, this query returns true,
otherwise it returns false.
"""
return _Epetra.CrsMatrix_StorageOptimized(self, *args)
def IndicesAreGlobal(self, *args):
"""
IndicesAreGlobal(self) -> bool
bool
Epetra_CrsMatrix::IndicesAreGlobal() const
If matrix indices has not been transformed to local, this query
returns true, otherwise it returns false.
"""
return _Epetra.CrsMatrix_IndicesAreGlobal(self, *args)
def IndicesAreLocal(self, *args):
"""
IndicesAreLocal(self) -> bool
bool
Epetra_CrsMatrix::IndicesAreLocal() const
If matrix indices has been transformed to local, this query returns
true, otherwise it returns false.
"""
return _Epetra.CrsMatrix_IndicesAreLocal(self, *args)
def IndicesAreContiguous(self, *args):
"""
IndicesAreContiguous(self) -> bool
bool
Epetra_CrsMatrix::IndicesAreContiguous() const
If matrix indices are packed into single array (done in
OptimizeStorage()) return true, otherwise false.
"""
return _Epetra.CrsMatrix_IndicesAreContiguous(self, *args)
def LowerTriangular(self, *args):
"""
LowerTriangular(self) -> bool
bool
Epetra_CrsMatrix::LowerTriangular() const
If matrix is lower triangular in local index space, this query returns
true, otherwise it returns false.
"""
return _Epetra.CrsMatrix_LowerTriangular(self, *args)
def UpperTriangular(self, *args):
"""
UpperTriangular(self) -> bool
bool
Epetra_CrsMatrix::UpperTriangular() const
If matrix is upper triangular in local index space, this query returns
true, otherwise it returns false.
"""
return _Epetra.CrsMatrix_UpperTriangular(self, *args)
def NoDiagonal(self, *args):
"""
NoDiagonal(self) -> bool
bool
Epetra_CrsMatrix::NoDiagonal() const
If matrix has no diagonal entries in global index space, this query
returns true, otherwise it returns false.
"""
return _Epetra.CrsMatrix_NoDiagonal(self, *args)
def NormInf(self, *args):
"""
NormInf(self) -> double
double
Epetra_CrsMatrix::NormInf() const
Returns the infinity norm of the global matrix.
"""
return _Epetra.CrsMatrix_NormInf(self, *args)
def NormOne(self, *args):
"""
NormOne(self) -> double
double
Epetra_CrsMatrix::NormOne() const
Returns the one norm of the global matrix.
"""
return _Epetra.CrsMatrix_NormOne(self, *args)
def NormFrobenius(self, *args):
"""
NormFrobenius(self) -> double
double
Epetra_CrsMatrix::NormFrobenius() const
Returns the frobenius norm of the global matrix.
"""
return _Epetra.CrsMatrix_NormFrobenius(self, *args)
def NumGlobalNonzeros(self, *args):
"""
NumGlobalNonzeros(self) -> int
int
Epetra_CrsMatrix::NumGlobalNonzeros() const
Returns the number of nonzero entries in the global matrix.
"""
return _Epetra.CrsMatrix_NumGlobalNonzeros(self, *args)
def NumGlobalRows(self, *args):
"""
NumGlobalRows(self) -> int
int
Epetra_CrsMatrix::NumGlobalRows() const
Returns the number of global matrix rows.
"""
return _Epetra.CrsMatrix_NumGlobalRows(self, *args)
def NumGlobalCols(self, *args):
"""
NumGlobalCols(self) -> int
int
Epetra_CrsMatrix::NumGlobalCols() const
Returns the number of global matrix columns.
"""
return _Epetra.CrsMatrix_NumGlobalCols(self, *args)
def NumGlobalDiagonals(self, *args):
"""
NumGlobalDiagonals(self) -> int
int
Epetra_CrsMatrix::NumGlobalDiagonals() const
Returns the number of global nonzero diagonal entries, based on global
row/column index comparisons.
"""
return _Epetra.CrsMatrix_NumGlobalDiagonals(self, *args)
def NumMyNonzeros(self, *args):
"""
NumMyNonzeros(self) -> int
int
Epetra_CrsMatrix::NumMyNonzeros() const
Returns the number of nonzero entries in the calling processor's
portion of the matrix.
"""
return _Epetra.CrsMatrix_NumMyNonzeros(self, *args)
def NumMyRows(self, *args):
"""
NumMyRows(self) -> int
int
Epetra_CrsMatrix::NumMyRows() const
Returns the number of matrix rows owned by the calling processor.
"""
return _Epetra.CrsMatrix_NumMyRows(self, *args)
def NumMyCols(self, *args):
"""
NumMyCols(self) -> int
int
Epetra_CrsMatrix::NumMyCols() const
Returns the number of entries in the set of column-indices that appear
on this processor.
The set of column-indices that appear on this processor is the union
of column-indices that appear in all local rows. The size of this set
isn't available until FillComplete() has been called. Filled()==true
"""
return _Epetra.CrsMatrix_NumMyCols(self, *args)
def NumMyDiagonals(self, *args):
"""
NumMyDiagonals(self) -> int
int
Epetra_CrsMatrix::NumMyDiagonals() const
Returns the number of local nonzero diagonal entries, based on global
row/column index comparisons.
Filled()==true
"""
return _Epetra.CrsMatrix_NumMyDiagonals(self, *args)
def NumGlobalEntries(self, *args):
"""
NumGlobalEntries(self, int Row) -> int
int
Epetra_CrsMatrix::NumGlobalEntries(int Row) const
Returns the current number of nonzero entries in specified global row
on this processor.
"""
return _Epetra.CrsMatrix_NumGlobalEntries(self, *args)
def NumAllocatedGlobalEntries(self, *args):
"""
NumAllocatedGlobalEntries(self, int Row) -> int
int Epetra_CrsMatrix::NumAllocatedGlobalEntries(int Row) const
Returns the allocated number of nonzero entries in specified global
row on this processor.
"""
return _Epetra.CrsMatrix_NumAllocatedGlobalEntries(self, *args)
def MaxNumEntries(self, *args):
"""
MaxNumEntries(self) -> int
int
Epetra_CrsMatrix::MaxNumEntries() const
Returns the maximum number of nonzero entries across all rows on this
processor.
Filled()==true
"""
return _Epetra.CrsMatrix_MaxNumEntries(self, *args)
def GlobalMaxNumEntries(self, *args):
"""
GlobalMaxNumEntries(self) -> int
int
Epetra_CrsMatrix::GlobalMaxNumEntries() const
Returns the maximum number of nonzero entries across all rows on all
processors.
Filled()==true
"""
return _Epetra.CrsMatrix_GlobalMaxNumEntries(self, *args)
def NumMyEntries(self, *args):
"""
NumMyEntries(self, int Row) -> int
int
Epetra_CrsMatrix::NumMyEntries(int Row) const
Returns the current number of nonzero entries in specified local row
on this processor.
"""
return _Epetra.CrsMatrix_NumMyEntries(self, *args)
def NumAllocatedMyEntries(self, *args):
"""
NumAllocatedMyEntries(self, int Row) -> int
int
Epetra_CrsMatrix::NumAllocatedMyEntries(int Row) const
Returns the allocated number of nonzero entries in specified local row
on this processor.
"""
return _Epetra.CrsMatrix_NumAllocatedMyEntries(self, *args)
def IndexBase(self, *args):
"""
IndexBase(self) -> int
int
Epetra_CrsMatrix::IndexBase() const
Returns the index base for row and column indices for this graph.
"""
return _Epetra.CrsMatrix_IndexBase(self, *args)
def StaticGraph(self, *args):
"""
StaticGraph(self) -> bool
bool
Epetra_CrsMatrix::StaticGraph()
Returns true if the graph associated with this matrix was pre-
constructed and therefore not changeable.
"""
return _Epetra.CrsMatrix_StaticGraph(self, *args)
def Graph(self, *args):
"""
Graph(self) -> CrsGraph
const
Epetra_CrsGraph& Epetra_CrsMatrix::Graph() const
Returns a reference to the Epetra_CrsGraph object associated with this
matrix.
"""
return _Epetra.CrsMatrix_Graph(self, *args)
def RowMap(self, *args):
"""
RowMap(self) -> Map
const Epetra_Map&
Epetra_CrsMatrix::RowMap() const
Returns the Epetra_Map object associated with the rows of this matrix.
"""
return _Epetra.CrsMatrix_RowMap(self, *args)
def ReplaceRowMap(self, *args):
"""
ReplaceRowMap(self, BlockMap newmap) -> int
int
Epetra_CrsMatrix::ReplaceRowMap(const Epetra_BlockMap &newmap)
Replaces the current RowMap with the user-specified map object.
Replaces the current RowMap with the user-specified map object, but
only if currentmap->PointSameAs(newmap) is true. This is a collective
function. Returns 0 if map is replaced, -1 if not.
RowMap().PointSameAs(newmap)==true
"""
return _Epetra.CrsMatrix_ReplaceRowMap(self, *args)
def HaveColMap(self, *args):
"""
HaveColMap(self) -> bool
bool
Epetra_CrsMatrix::HaveColMap() const
Returns true if we have a well-defined ColMap, and returns false
otherwise.
We have a well-defined ColMap if a) a ColMap was passed in at
construction, or b) the MakeColMap function has been called. (Calling
either of the FillComplete functions will result in MakeColMap being
called.)
"""
return _Epetra.CrsMatrix_HaveColMap(self, *args)
def ReplaceColMap(self, *args):
"""
ReplaceColMap(self, BlockMap newmap) -> int
int
Epetra_CrsMatrix::ReplaceColMap(const Epetra_BlockMap &newmap)
Replaces the current ColMap with the user-specified map object.
Replaces the current ColMap with the user-specified map object, but
only if currentmap->PointSameAs(newmap) is true. This is a collective
function. Returns 0 if map is replaced, -1 if not.
ColMap().PointSameAs(newmap)==true
"""
return _Epetra.CrsMatrix_ReplaceColMap(self, *args)
def ColMap(self, *args):
"""
ColMap(self) -> Map
const Epetra_Map&
Epetra_CrsMatrix::ColMap() const
Returns the Epetra_Map object that describes the set of column-indices
that appear in each processor's locally owned matrix rows.
Note that if the matrix was constructed with only a row-map, then
until FillComplete() is called, this method returns a column-map that
is a copy of the row-map. That 'initial' column-map is replaced with a
computed column- map (that contains the set of column-indices
appearing in each processor's local portion of the matrix) when
FillComplete() is called.
HaveColMap()==true
"""
return _Epetra.CrsMatrix_ColMap(self, *args)
def DomainMap(self, *args):
"""
DomainMap(self) -> Map
const Epetra_Map&
Epetra_CrsMatrix::DomainMap() const
Returns the Epetra_Map object associated with the domain of this
matrix operator.
Filled()==true
"""
return _Epetra.CrsMatrix_DomainMap(self, *args)
def RangeMap(self, *args):
"""
RangeMap(self) -> Map
const Epetra_Map&
Epetra_CrsMatrix::RangeMap() const
Returns the Epetra_Map object associated with the range of this matrix
operator.
Filled()==true
"""
return _Epetra.CrsMatrix_RangeMap(self, *args)
def Importer(self, *args):
"""
Importer(self) -> Import
const
Epetra_Import* Epetra_CrsMatrix::Importer() const
Returns the Epetra_Import object that contains the import operations
for distributed operations.
"""
return _Epetra.CrsMatrix_Importer(self, *args)
def Exporter(self, *args):
"""
Exporter(self) -> Export
const
Epetra_Export* Epetra_CrsMatrix::Exporter() const
Returns the Epetra_Export object that contains the export operations
for distributed operations.
"""
return _Epetra.CrsMatrix_Exporter(self, *args)
def Comm(self, *args):
"""
Comm(self) -> Comm
const Epetra_Comm&
Epetra_CrsMatrix::Comm() const
Returns a pointer to the Epetra_Comm communicator associated with this
matrix.
"""
return _Epetra.CrsMatrix_Comm(self, *args)
def LRID(self, *args):
"""
LRID(self, int GRID_in) -> int
int
Epetra_CrsMatrix::LRID(int GRID_in) const
Returns the local row index for given global row index, returns -1 if
no local row for this global row.
"""
return _Epetra.CrsMatrix_LRID(self, *args)
def GRID(self, *args):
"""
GRID(self, int LRID_in) -> int
int
Epetra_CrsMatrix::GRID(int LRID_in) const
Returns the global row index for give local row index, returns
IndexBase-1 if we don't have this local row.
"""
return _Epetra.CrsMatrix_GRID(self, *args)
def LCID(self, *args):
"""
LCID(self, int GCID_in) -> int
int
Epetra_CrsMatrix::LCID(int GCID_in) const
Returns the local column index for given global column index, returns
-1 if no local column for this global column.
HaveColMap()==true (If HaveColMap()==false, returns -1)
"""
return _Epetra.CrsMatrix_LCID(self, *args)
def GCID(self, *args):
"""
GCID(self, int LCID_in) -> int
int
Epetra_CrsMatrix::GCID(int LCID_in) const
Returns the global column index for give local column index, returns
IndexBase-1 if we don't have this local column.
HaveColMap()==true (If HaveColMap()==false, returns -1)
"""
return _Epetra.CrsMatrix_GCID(self, *args)
def MyGRID(self, *args):
"""
MyGRID(self, int GRID_in) -> bool
bool
Epetra_CrsMatrix::MyGRID(int GRID_in) const
Returns true if the GRID passed in belongs to the calling processor in
this map, otherwise returns false.
"""
return _Epetra.CrsMatrix_MyGRID(self, *args)
def MyLRID(self, *args):
"""
MyLRID(self, int LRID_in) -> bool
bool
Epetra_CrsMatrix::MyLRID(int LRID_in) const
Returns true if the LRID passed in belongs to the calling processor in
this map, otherwise returns false.
"""
return _Epetra.CrsMatrix_MyLRID(self, *args)
def MyGCID(self, *args):
"""
MyGCID(self, int GCID_in) -> bool
bool
Epetra_CrsMatrix::MyGCID(int GCID_in) const
Returns true if the GCID passed in belongs to the calling processor in
this map, otherwise returns false.
HaveColMap()==true (If HaveColMap()==false, returns -1)
"""
return _Epetra.CrsMatrix_MyGCID(self, *args)
def MyLCID(self, *args):
"""
MyLCID(self, int LCID_in) -> bool
bool
Epetra_CrsMatrix::MyLCID(int LCID_in) const
Returns true if the LRID passed in belongs to the calling processor in
this map, otherwise returns false.
HaveColMap()==true (If HaveColMap()==false, returns -1)
"""
return _Epetra.CrsMatrix_MyLCID(self, *args)
def MyGlobalRow(self, *args):
"""
MyGlobalRow(self, int GID) -> bool
bool
Epetra_CrsMatrix::MyGlobalRow(int GID) const
Returns true of GID is owned by the calling processor, otherwise it
returns false.
"""
return _Epetra.CrsMatrix_MyGlobalRow(self, *args)
def Label(self, *args):
"""
Label(self) -> char
const char*
Epetra_CrsMatrix::Label() const
Returns a character string describing the operator.
"""
return _Epetra.CrsMatrix_Label(self, *args)
def SetUseTranspose(self, *args):
"""
SetUseTranspose(self, bool UseTranspose_in) -> int
int
Epetra_CrsMatrix::SetUseTranspose(bool UseTranspose_in)
If set true, transpose of this operator will be applied.
This flag allows the transpose of the given operator to be used
implicitly. Setting this flag affects only the Apply() and
ApplyInverse() methods. If the implementation of this interface does
not support transpose use, this method should return a value of -1.
Parameters:
-----------
UseTranspose: - (In) If true, multiply by the transpose of operator,
otherwise just use operator.
Always returns 0.
"""
return _Epetra.CrsMatrix_SetUseTranspose(self, *args)
def Apply(self, *args):
"""
Apply(self, Epetra_MultiVector X, Epetra_MultiVector Y) -> int
int
Epetra_CrsMatrix::Apply(const Epetra_MultiVector &X,
Epetra_MultiVector &Y) const
Returns the result of a Epetra_Operator applied to a
Epetra_MultiVector X in Y.
Parameters:
-----------
X: - (In) An Epetra_MultiVector of dimension NumVectors to multiply
with matrix.
Y: -(Out) An Epetra_MultiVector of dimension NumVectors containing
result.
Integer error code, set to 0 if successful.
Filled()==true
Unchanged.
"""
return _Epetra.CrsMatrix_Apply(self, *args)
def ApplyInverse(self, *args):
"""
ApplyInverse(self, Epetra_MultiVector X, Epetra_MultiVector Y) -> int
int
Epetra_CrsMatrix::ApplyInverse(const Epetra_MultiVector &X,
Epetra_MultiVector &Y) const
Returns the result of a Epetra_Operator inverse applied to an
Epetra_MultiVector X in Y.
In this implementation, we use several existing attributes to
determine how virtual method ApplyInverse() should call the concrete
method Solve(). We pass in the UpperTriangular(), the
Epetra_CrsMatrix::UseTranspose(), and NoDiagonal() methods. The most
notable warning is that if a matrix has no diagonal values we assume
that there is an implicit unit diagonal that should be accounted for
when doing a triangular solve.
Parameters:
-----------
X: - (In) An Epetra_MultiVector of dimension NumVectors to solve for.
Y: - (Out) An Epetra_MultiVector of dimension NumVectors containing
result.
Integer error code, set to 0 if successful.
Filled()==true
Unchanged.
"""
return _Epetra.CrsMatrix_ApplyInverse(self, *args)
def HasNormInf(self, *args):
"""
HasNormInf(self) -> bool
bool
Epetra_CrsMatrix::HasNormInf() const
Returns true because this class can compute an Inf-norm.
"""
return _Epetra.CrsMatrix_HasNormInf(self, *args)
def UseTranspose(self, *args):
"""
UseTranspose(self) -> bool
bool
Epetra_CrsMatrix::UseTranspose() const
Returns the current UseTranspose setting.
"""
return _Epetra.CrsMatrix_UseTranspose(self, *args)
def OperatorDomainMap(self, *args):
"""
OperatorDomainMap(self) -> Map
const
Epetra_Map& Epetra_CrsMatrix::OperatorDomainMap() const
Returns the Epetra_Map object associated with the domain of this
matrix operator.
"""
return _Epetra.CrsMatrix_OperatorDomainMap(self, *args)
def OperatorRangeMap(self, *args):
"""
OperatorRangeMap(self) -> Map
const
Epetra_Map& Epetra_CrsMatrix::OperatorRangeMap() const
Returns the Epetra_Map object associated with the range of this matrix
operator.
"""
return _Epetra.CrsMatrix_OperatorRangeMap(self, *args)
def NumMyRowEntries(self, *args):
"""
NumMyRowEntries(self, int MyRow, int NumEntries) -> int
int
Epetra_CrsMatrix::NumMyRowEntries(int MyRow, int &NumEntries) const
Return the current number of values stored for the specified local
row.
Similar to NumMyEntries() except NumEntries is returned as an argument
and error checking is done on the input value MyRow.
Parameters:
-----------
MyRow: - (In) Local row.
NumEntries: - (Out) Number of nonzero values.
Integer error code, set to 0 if successful.
None.
Unchanged.
"""
return _Epetra.CrsMatrix_NumMyRowEntries(self, *args)
def Map(self, *args):
"""
Map(self) -> BlockMap
const Epetra_BlockMap&
Epetra_CrsMatrix::Map() const
Map() method inherited from Epetra_DistObject.
"""
return _Epetra.CrsMatrix_Map(self, *args)
def RowMatrixRowMap(self, *args):
"""
RowMatrixRowMap(self) -> Map
const
Epetra_Map& Epetra_CrsMatrix::RowMatrixRowMap() const
Returns the Epetra_Map object associated with the rows of this matrix.
"""
return _Epetra.CrsMatrix_RowMatrixRowMap(self, *args)
def RowMatrixColMap(self, *args):
"""
RowMatrixColMap(self) -> Map
const
Epetra_Map& Epetra_CrsMatrix::RowMatrixColMap() const
Returns the Epetra_Map object associated with columns of this matrix.
"""
return _Epetra.CrsMatrix_RowMatrixColMap(self, *args)
def RowMatrixImporter(self, *args):
"""
RowMatrixImporter(self) -> Import
const
Epetra_Import* Epetra_CrsMatrix::RowMatrixImporter() const
Returns the Epetra_Import object that contains the import operations
for distributed operations.
"""
return _Epetra.CrsMatrix_RowMatrixImporter(self, *args)
def SortGhostsAssociatedWithEachProcessor(self, *args):
"""
SortGhostsAssociatedWithEachProcessor(self, bool Flag) -> int
int
Epetra_CrsMatrix::SortGhostsAssociatedWithEachProcessor(bool Flag)
Forces FillComplete() to locally order ghostnodes associated with each
remote processor in ascending order.
To be compliant with AztecOO, FillComplete() already locally orders
ghostnodes such that information received from processor k has a lower
local numbering than information received from processor j if k is
less than j. SortGhostsAssociatedWithEachProcessor(True) further
forces FillComplete() to locally number all ghostnodes received from
processor k in ascending order. That is, the local numbering of b is
less than c if the global numbering of b is less than c and if both b
and c are owned by the same processor. This is done to be compliant
with some limited block features within ML. In particular, some ML
features require that a block structure of the matrix be maintained
even within the ghost variables. Always returns 0.
"""
return _Epetra.CrsMatrix_SortGhostsAssociatedWithEachProcessor(self, *args)
def ImportMap(self, *args):
"""
ImportMap(self) -> Map
const Epetra_Map&
Epetra_CrsMatrix::ImportMap() const
Use ColMap() instead.
"""
return _Epetra.CrsMatrix_ImportMap(self, *args)
def TransformToLocal(self, *args):
"""
TransformToLocal(self) -> int
TransformToLocal(self, Map DomainMap, Map RangeMap) -> int
int
Epetra_CrsMatrix::TransformToLocal(const Epetra_Map *DomainMap, const
Epetra_Map *RangeMap)
Use FillComplete(const Epetra_Map& DomainMap, const Epetra_Map&
RangeMap) instead.
"""
return _Epetra.CrsMatrix_TransformToLocal(self, *args)
def InsertGlobalValues(self, *args):
"""
InsertGlobalValues(self, int globalRow, PySequence values, PySequence
indices) -> int
Arguments:
globalRow - global row index
values - a sequence of doubles that represent the values to insert
indices - a sequence of integers that represent the indices to insert
InsertGlobalValues(self, PySequence rows, PySequence cols, PySequence
values) -> int
Arguments:
rows - a sequence of integers that represent the row indices to insert
cols - a sequence of integers that represent the column indices to
insert
values - a sequence of doubles that represent the values to insert
int
Epetra_CrsMatrix::InsertGlobalValues(int GlobalRow, int NumEntries,
double *Values, int *Indices)
Insert a list of elements in a given global row of the matrix.
This method is used to construct a matrix for the first time. It
cannot be used if the matrix structure has already been fixed (via a
call to FillComplete()). If multiple values are inserted for the same
matrix entry, the values are initially stored separately, so memory
use will grow as a result. However, when FillComplete is called the
values will be summed together and the additional memory will be
released.
For example, if the values 2.0, 3.0 and 4.0 are all inserted in Row 1,
Column 2, extra storage is used to store each of the three values
separately. In this way, the insert process does not require any
searching and can be faster. However, when FillComplete() is called,
the values will be summed together to equal 9.0 and only a single
entry will remain in the matrix for Row 1, Column 2.
Parameters:
-----------
GlobalRow: - (In) Row number (in global coordinates) to put elements.
NumEntries: - (In) Number of entries.
Values: - (In) Values to enter.
Indices: - (In) Global column indices corresponding to values.
Integer error code, set to 0 if successful. Note that if the allocated
length of the row has to be expanded, a positive warning code will be
returned.
WARNING: This method may not be called once FillComplete() has been
called.
IndicesAreLocal()==false && IndicesAreContiguous()==false
"""
return _Epetra.CrsMatrix_InsertGlobalValues(self, *args)
def ReplaceGlobalValues(self, *args):
"""
ReplaceGlobalValues(self, int globalRow, PySequence values, PySequence
indices) -> int
Arguments:
globalRow - global row index
values - a sequence of doubles that represent the values to replace
indices - a sequence of integers that represent the indices to replace
ReplaceGlobalValues(self, PySequence rows, PySequence cols, PySequence
values) -> int
Arguments:
rows - a sequence of integers that represent the row indices to replace
cols - a sequence of integers that represent the column indices to
replace
values - a sequence of doubles that represent the values to replace
int
Epetra_CrsMatrix::ReplaceGlobalValues(int GlobalRow, int NumEntries,
double *Values, int *Indices)
Replace specified existing values with this list of entries for a
given global row of the matrix.
Parameters:
-----------
GlobalRow: - (In) Row number (in global coordinates) to put elements.
NumEntries: - (In) Number of entries.
Values: - (In) Values to enter.
Indices: - (In) Global column indices corresponding to values.
Integer error code, set to 0 if successful. Note that if a value is
not already present for the specified location in the matrix, the
input value will be ignored and a positive warning code will be
returned.
IndicesAreLocal()==false && IndicesAreContiguous()==false
"""
return _Epetra.CrsMatrix_ReplaceGlobalValues(self, *args)
def SumIntoGlobalValues(self, *args):
"""
SumIntoGlobalValues(self, int globalRow, PySequence values, PySequence
indices) -> int
Arguments:
globalRow - global row index
values - a sequence of doubles that represent the values to sum into
indices - a sequence of integers that represent the indices to sum into
SumIntoGlobalValues(self, PySequence rows, PySequence cols, PySequence
values) -> int
Arguments:
rows - a sequence of integers that represent the row indices to sum into
cols - a sequence of integers that represent the column indices to
sum into
values - a sequence of doubles that represent the values to sum into
int
Epetra_CrsMatrix::SumIntoGlobalValues(int GlobalRow, int NumEntries,
double *Values, int *Indices)
Add this list of entries to existing values for a given global row of
the matrix.
Parameters:
-----------
GlobalRow: - (In) Row number (in global coordinates) to put elements.
NumEntries: - (In) Number of entries.
Values: - (In) Values to enter.
Indices: - (In) Global column indices corresponding to values.
Integer error code, set to 0 if successful. Note that if a value is
not already present for the specified location in the matrix, the
input value will be ignored and a positive warning code will be
returned.
IndicesAreLocal()==false && IndicesAreContiguous()==false
"""
return _Epetra.CrsMatrix_SumIntoGlobalValues(self, *args)
def InsertMyValues(self, *args):
"""
InsertMyValues(self, int MyRow, int NumEntries, double Values, int Indices) -> int
InsertMyValues(self, int myRow, PySequence values, PySequence indices) -> int
Arguments:
myRow - local row index
values - a sequence of doubles that represent the values to insert
indices - a sequence of integers that represent the indices to insert
InsertMyValues(self, PySequence rows, PySequence cols, PySequence
values) -> int
Arguments:
rows - a sequence of integers that represent the row indices to insert
cols - a sequence of integers that represent the column indices to
insert
values - a sequence of doubles that represent the values to insert
int
Epetra_CrsMatrix::InsertMyValues(int MyRow, int NumEntries, double
*Values, int *Indices)
Insert a list of elements in a given local row of the matrix.
Parameters:
-----------
MyRow: - (In) Row number (in local coordinates) to put elements.
NumEntries: - (In) Number of entries.
Values: - (In) Values to enter.
Indices: - (In) Local column indices corresponding to values.
Integer error code, set to 0 if successful. Note that if the allocated
length of the row has to be expanded, a positive warning code will be
returned.
IndicesAreGlobal()==false && ( IndicesAreContiguous()==false ||
CV_==View)
The given local row of the matrix has been updated as described above.
"""
return _Epetra.CrsMatrix_InsertMyValues(self, *args)
def ReplaceMyValues(self, *args):
"""
ReplaceMyValues(self, int MyRow, int NumEntries, double Values, int Indices) -> int
ReplaceMyValues(self, int myRow, PySequence values, PySequence indices) -> int
Arguments:
myRow - local row index
values - a sequence of doubles that represent the values to replace
indices - a sequence of integers that represent the indices to replace
ReplaceMyValues(self, PySequence rows, PySequence cols, PySequence
values) -> int
Arguments:
rows - a sequence of integers that represent the row indices to replace
cols - a sequence of integers that represent the column indices to
replace
values - a sequence of doubles that represent the values to replace
int
Epetra_CrsMatrix::ReplaceMyValues(int MyRow, int NumEntries, double
*Values, int *Indices)
Replace current values with this list of entries for a given local row
of the matrix.
Parameters:
-----------
MyRow: - (In) Row number (in local coordinates) to put elements.
NumEntries: - (In) Number of entries.
Values: - (In) Values to enter.
Indices: - (In) Local column indices corresponding to values.
Integer error code, set to 0 if successful. Note that if a value is
not already present for the specified location in the matrix, the
input value will be ignored and a positive warning code will be
returned.
IndicesAreLocal()==true
MyRow contains the given list of Values at the given Indices.
"""
return _Epetra.CrsMatrix_ReplaceMyValues(self, *args)
def SumIntoMyValues(self, *args):
"""
SumIntoMyValues(self, int MyRow, int NumEntries, double Values, int Indices) -> int
SumIntoMyValues(self, int myRow, PySequence values, PySequence indices) -> int
Arguments:
myRow - local row index
values - a sequence of doubles that represent the values to sum into
indices - a sequence of integers that represent the indices to sum into
SumIntoMyValues(self, PyObject Rows, PyObject Cols, PyObject Values) -> int
int
Epetra_CrsMatrix::SumIntoMyValues(int MyRow, int NumEntries, double
*Values, int *Indices)
Add this list of entries to existing values for a given local row of
the matrix.
Parameters:
-----------
MyRow: - (In) Row number (in local coordinates) to put elements.
NumEntries: - (In) Number of entries.
Values: - (In) Values to enter.
Indices: - (In) Local column indices corresponding to values.
Integer error code, set to 0 if successful. Note that if the allocated
length of the row has to be expanded, a positive warning code will be
returned.
IndicesAreLocal()==true
The given Values at the given Indices have been summed into the
entries of MyRow.
"""
return _Epetra.CrsMatrix_SumIntoMyValues(self, *args)
def __init__(self, *args):
"""
__init__(self, Epetra_DataAccess CV, Map rowMap, int numEntriesPerRow,
bool staticProfile=False) -> CrsMatrix
CrsMatrix constructor with implicit column map and constant number
of entries per row. Arguments:
CV - Epetra.Copy or Epetra.View
rowMap - describes distribution of rows across processors
numEntriesPerRow - constant number of entries per row
staticProfile - static profile flag
__init__(self, Epetra_DataAccess CV, Map rowMap, Map colMap, int numEntriesPerRow,
bool staticProfile=False) -> CrsMatrix
CrsMatrix constructor with specified column map and constant number
of entries per row. Arguments:
CV - Epetra.Copy or Epetra.View
rowMap - describes distribution of rows across processors
colMap - describes distribution of columns across processors
numEntriesPerRow - constant number of entries per row
staticProfile - static profile flag
__init__(self, Epetra_DataAccess CV, CrsGraph graph) -> CrsMatrix
CrsMatrix constructor with CrsGraph. Arguments:
CV - Epetra.Copy or Epetra.View
graph - CrsGraph describing structure of matrix
__init__(self, CrsMatrix matrix) -> CrsMatrix
CrsMatrix copy constructor. Argument:
matrix - source CrsMatrix
__init__(self, Epetra_DataAccess CV, Map rowMap, PySequence numEntriesPerRow,
bool staticProfile=False) -> CrsMatrix
CrsMatrix constructor with implicit column map and variable number
of entries per row. Arguments:
CV - Epetra.Copy or Epetra.View
rowMap - describes distribution of rows across processors
numEntriesPerRow - variable number of entries per row
staticProfile - static profile flag
__init__(self, Epetra_DataAccess CV, Map rowMap, Map colMap, PySequence
numEntriesPerRow, bool staticProfile=False) -> CrsMatrix
CrsMatrix constructor with specified column map and variable number
of entries per row. Arguments:
CV - Epetra.Copy or Epetra.View
rowMap - describes distribution of rows across processors
colMap - describes distribution of columns across processors
numEntriesPerRow - variable number of entries per row
staticProfile - static profile flag
Epetra_CrsMatrix::Epetra_CrsMatrix(const Epetra_CrsMatrix &Matrix)
Copy constructor.
"""
this = _Epetra.new_CrsMatrix(*args)
try: self.this.append(this)
except: self.this = this
def ExtractGlobalRowCopy(self, *args):
"""
ExtractGlobalRowCopy(self, int globalRow) -> (numpy.ndarray,numpy.ndarray)
Returns a two-tuple of numpy arrays of the same size; the first is
an array of integers that represent the nonzero columns on the
matrix; the second is an array of doubles that represent the values
of the matrix entries. The input argument is a global row index.
int
Epetra_CrsMatrix::ExtractGlobalRowCopy(int GlobalRow, int Length, int
&NumEntries, double *Values) const
Returns a copy of the specified global row values in user-provided
array.
Parameters:
-----------
GlobalRow: - (In) Global row to extract.
Length: - (In) Length of Values.
NumEntries: - (Out) Number of nonzero entries extracted.
Values: - (Out) Extracted values for this row.
Integer error code, set to 0 if successful.
"""
return _Epetra.CrsMatrix_ExtractGlobalRowCopy(self, *args)
def ExtractMyRowCopy(self, *args):
"""
ExtractMyRowCopy(self, int myRow) -> (numpy.ndarray,numpy.ndarray)
Returns a two-tuple of numpy arrays of the same size; the first is
an array of integers that represent the nonzero columns on the
matrix; the second is an array of doubles that represent the values
of the matrix entries. The input argument is a local row index.
int
Epetra_CrsMatrix::ExtractMyRowCopy(int MyRow, int Length, int
&NumEntries, double *Values) const
Returns a copy of the specified local row values in user-provided
array.
Parameters:
-----------
MyRow: - (In) Local row to extract.
Length: - (In) Length of Values.
NumEntries: - (Out) Number of nonzero entries extracted.
Values: - (Out) Extracted values for this row.
Integer error code, set to 0 if successful.
"""
return _Epetra.CrsMatrix_ExtractMyRowCopy(self, *args)
def __setitem__(self, *args):
"""
__setitem__(self, PyTuple index, double val)
The __setitem__() method is called when square-bracket indexing is
used to set a value of the matrix. For example, the last line of::
comm = Epetra.SerialComm()
m = Epetra.CrsMatrix(9,0,comm)
m[0,0] = 3.14
calls::
m.__setitem__((0,0), 3.14)
Thus, argument 'index' is a tuple filled with whatever indices you
give the square-bracket operator when setting. For __setitem__(),
this raises an IndexError unless 'index' is a two-tuple of integers.
Argument 'val' must be convertible to a double. Under the covers,
__setitem__() calls ReplaceGlobalValues() or InsertGlobalValues() as
necessary, so the indices are expected to be global IDs. Note that if
you use __setitem__() to insert a new matrix element, you will need to
call FillComplete() again, whether or not you have called it before.
"""
return _Epetra.CrsMatrix___setitem__(self, *args)
def __getitem__(self, *args):
"""
__getitem__(self, PyTuple index) -> double
__getitem__(self, int row) -> numpy.ndarray
The __getitem__() method is called when square-bracket indexing is
used to get a value from the matrix. For example, the last two lines
of::
comm = Epetra.SerialComm()
m = Epetra.CrsMatrix(9,0,comm)
m.InsertGlobalValues(0, [0.0, 1.0, 2.0], [0,1,2])
diag = m[0,0]
row = m[0]
call::
m.__getitem__((0,0))
m.__getitem__(0)
The __getitem__() method behaves according to the following table:
FillComplete() #
Index called procs Return value
-------------- -------------- ----- ---------------------------
single integer true any numpy array of doubles
single integer false 1 numpy array of doubles
single integer false >1 raise IndexError
two integers either any double
You should provide global IDs as the integer indices if FillComplete()
has been called. If not, you should provide local IDs. If you
reference a matrix element that is off-processor, __getitem__() will
raise an IndexError.
Under the covers, __getitem__() will call ExtractGlobalRowView() if
FillComplete() has been called, or ExtractMyRowView() if it has not.
If either of these return a non-zero return code, this is converted to
a python RuntimeError. The resulting data is copied to the output
array.
"""
return _Epetra.CrsMatrix___getitem__(self, *args)
CrsMatrix_swigregister = _Epetra.CrsMatrix_swigregister
CrsMatrix_swigregister(CrsMatrix)
class FECrsMatrix(CrsMatrix):
"""
Epetra Finite-Element CrsMatrix. This class provides the ability to
input finite-element style sub-matrix data, including sub-matrices
with non-local rows (which could correspond to shared finite-element
nodes for example). This class inherits Epetra_CrsMatrix, and so all
Epetra_CrsMatrix functionality is also available.
It is intended that this class will be used as follows: Construct with
either a map or graph that describes a (non- overlapping) data
distribution.
Input data, including non-local data, using the methods
InsertGlobalValues(), SumIntoGlobalValues() and/or
ReplaceGlobalValues().
Call the method GlobalAssemble(), which gathers all non-local data
onto the owning processors as determined by the map provided at
construction. Users should note that the GlobalAssemble() method has
an optional argument which determines whether GlobalAssemble() in turn
calls FillComplete() after the data-exchange has occurred. If not
explicitly supplied, this argument defaults to true. NOTE***: When
GlobalAssemble() calls FillComplete(), it passes the arguments
'DomainMap()' and 'RangeMap()', which are the map attributes held by
the base-class CrsMatrix and its graph. If a rectangular matrix is
being assembled, the correct domain-map and range-map must be passed
to GlobalAssemble (there are two overloadings of this method) --
otherwise, it has no way of knowing what these maps should really be.
Sub-matrix data, which is assumed to be a rectangular 'table' of
coefficients accompanied by 'scatter-indices', can be provided in
three forms: Fortran-style packed 1-D array.
C-style double-pointer, or list-of-rows.
Epetra_SerialDenseMatrix object. In all cases, a "format" parameter
specifies whether the data is laid out in row-major or column-major
order (i.e., whether coefficients for a row lie contiguously or
whether coefficients for a column lie contiguously). See the
documentation for the methods SumIntoGlobalValues() and
ReplaceGlobalValues().
Important notes: Since Epetra_FECrsMatrix inherits Epetra_CrsMatrix,
the semantics of the Insert/SumInto/Replace methods are the same as
they are on Epetra_CrsMatrix, which is: InsertGlobalValues() inserts
values into the matrix only if the graph has not yet been finalized (
FillComplete() has not yet been called). For non-local values, the
call to InsertGlobalValues() may succeed but the GlobalAssemble()
method may then fail because the non-local data is not actually
inserted in the underlying matrix until GlobalAssemble() is called.
SumIntoGlobalValues() and ReplaceGlobalValues() only work for values
that already exist in the matrix. In other words, these methods can
not be used to put new values into the matrix.
C++ includes: Epetra_FECrsMatrix.h
"""
__swig_setmethods__ = {}
for _s in [CrsMatrix]: __swig_setmethods__.update(getattr(_s,'__swig_setmethods__',{}))
__setattr__ = lambda self, name, value: _swig_setattr(self, FECrsMatrix, name, value)
__swig_getmethods__ = {}
for _s in [CrsMatrix]: __swig_getmethods__.update(getattr(_s,'__swig_getmethods__',{}))
__getattr__ = lambda self, name: _swig_getattr(self, FECrsMatrix, name)
__repr__ = _swig_repr
def __init__(self, *args):
"""
__init__(self, Epetra_DataAccess CV, Map RowMap, int NumEntriesPerRow,
bool ignoreNonLocalEntries = False) -> FECrsMatrix
__init__(self, Epetra_DataAccess CV, Map RowMap, int NumEntriesPerRow,
bool ignoreNonLocalEntries = False) -> FECrsMatrix
__init__(self, Epetra_DataAccess CV, Map RowMap, Map ColMap, int NumEntriesPerRow,
bool ignoreNonLocalEntries = False) -> FECrsMatrix
__init__(self, Epetra_DataAccess CV, Map RowMap, Map ColMap, int NumEntriesPerRow,
bool ignoreNonLocalEntries = False) -> FECrsMatrix
__init__(self, Epetra_DataAccess CV, CrsGraph Graph, bool ignoreNonLocalEntries = False) -> FECrsMatrix
__init__(self, FECrsMatrix src) -> FECrsMatrix
Epetra_FECrsMatrix::Epetra_FECrsMatrix(const Epetra_FECrsMatrix &src)
Copy Constructor.
"""
this = _Epetra.new_FECrsMatrix(*args)
try: self.this.append(this)
except: self.this = this
__swig_destroy__ = _Epetra.delete_FECrsMatrix
__del__ = lambda self : None;
ROW_MAJOR = _Epetra.FECrsMatrix_ROW_MAJOR
COLUMN_MAJOR = _Epetra.FECrsMatrix_COLUMN_MAJOR
def GlobalAssemble(self, *args):
"""
GlobalAssemble(self, bool callFillComplete = True) -> int
GlobalAssemble(self, Map domain_map, Map range_map, bool callFillComplete = True) -> int
int
Epetra_FECrsMatrix::GlobalAssemble(const Epetra_Map &domain_map, const
Epetra_Map &range_map, bool callFillComplete=true)
Gather any overlapping/shared data into the non-overlapping
partitioning defined by the Map that was passed to this matrix at
construction time. Data imported from other processors is stored on
the owning processor with a "sumInto" or accumulate operation. This
is a collective method -- every processor must enter it before any
will complete it.
NOTE***: When GlobalAssemble() (the other overloading of this method)
calls FillComplete(), it passes the arguments 'DomainMap()' and
'RangeMap()', which are the map attributes already held by the base-
class CrsMatrix and its graph. If a rectangular matrix is being
assembled, the domain-map and range-map must be specified. Otherwise,
GlobalAssemble() has no way of knowing what these maps should really
be.
Parameters:
-----------
domain_map: user-supplied domain map for this matrix
range_map: user-supplied range map for this matrix
callFillComplete: option argument, defaults to true. Determines
whether GlobalAssemble() internally calls the FillComplete() method on
this matrix.
error-code 0 if successful, non-zero if some error occurs
"""
return _Epetra.FECrsMatrix_GlobalAssemble(self, *args)
def setIgnoreNonLocalEntries(self, *args):
"""
setIgnoreNonLocalEntries(self, bool flag)
void Epetra_FECrsMatrix::setIgnoreNonLocalEntries(bool flag)
Set whether or not non-local data values should be ignored. By
default, non-local data values are NOT ignored.
"""
return _Epetra.FECrsMatrix_setIgnoreNonLocalEntries(self, *args)
def __setitem__(self, *args):
"""__setitem__(self, PyObject args, double val)"""
return _Epetra.FECrsMatrix___setitem__(self, *args)
def __getitem__(self, *args):
"""__getitem__(self, PyObject args) -> PyObject"""
return _Epetra.FECrsMatrix___getitem__(self, *args)
def InsertGlobalValues(self, *args):
"""
InsertGlobalValues(self, int Row, int Size, Epetra_SerialDenseVector Values,
Epetra_IntSerialDenseVector Entries) -> int
int
Epetra_FECrsMatrix::InsertGlobalValues(const
Epetra_IntSerialDenseVector &rows, const Epetra_IntSerialDenseVector
&cols, const Epetra_SerialDenseMatrix &values, int
format=Epetra_FECrsMatrix::COLUMN_MAJOR)
Insert a general sub-matrix into the global matrix. For square
structurally-symmetric sub-matrices, see the other overloading of this
method.
Parameters:
-----------
rows: List of row-indices. rows.Length() must be the same as
values.M().
cols: List of column-indices. cols.Length() must be the same as
values.N().
values: Sub-matrix of coefficients.
format: Optional format specifier, defaults to COLUMN_MAJOR.
"""
return _Epetra.FECrsMatrix_InsertGlobalValues(self, *args)
def InsertGlobalValue(self, *args):
"""InsertGlobalValue(self, int i, int j, double val) -> int"""
return _Epetra.FECrsMatrix_InsertGlobalValue(self, *args)
FECrsMatrix_swigregister = _Epetra.FECrsMatrix_swigregister
FECrsMatrix_swigregister(FECrsMatrix)
class CrsSingletonFilter(_object):
"""
Epetra_CrsSingletonFilter: A class for explicitly eliminating matrix
rows and columns.
The Epetra_CrsSingletonFilter class takes an existing
Epetra_LinearProblem object, analyzes it structure and explicitly
eliminates singleton rows and columns from the matrix and
appropriately modifies the RHS and LHS of the linear problem. The
result of this process is a reduced system of equations that is itself
an Epetra_LinearProblem object. The reduced system can then be solved
using any solver that is understands an Epetra_LinearProblem. The
solution for the full system is obtained by calling
ComputeFullSolution().
Singleton rows are defined to be rows that have a single nonzero entry
in the matrix. The equation associated with this row can be explicitly
eliminated because it involved only one variable. For example if row i
has a single nonzero value in column j, call it A(i,j), we can
explicitly solve for x(j) = b(i)/A(i,j), where b(i) is the ith entry
of the RHS and x(j) is the jth entry of the LHS.
Singleton columns are defined to be columns that have a single nonzero
entry in the matrix. The variable associated with this column is fully
dependent, meaning that the solution for all other variables does not
depend on it. If this entry is A(i,j) then the ith row and jth column
can be removed from the system and x(j) can be solved after the
solution for all other variables is determined.
By removing singleton rows and columns, we can often produce a reduced
system that is smaller and far less dense, and in general having
better numerical properties.
The basic procedure for using this class is as follows: Construct full
problem: Construct and Epetra_LinearProblem containing the "full"
matrix, RHS and LHS. This is done outside of Epetra_CrsSingletonFilter
class. Presumably, you have some reason to believe that this system
may contain singletons.
Construct an Epetra_CrsSingletonFilter instance: Constructor needs no
arguments.
Analyze matrix: Invoke the Analyze() method, passing in the
Epetra_RowMatrix object from your full linear problem mentioned in the
first step above.
Go/No Go decision to construct reduced problem: Query the results of
the Analyze method using the SingletonsDetected() method. This method
returns "true" if there were singletons found in the matrix. You can
also query any of the other methods in the Filter Statistics section
to determine if you want to proceed with the construction of the
reduced system.
Construct reduced problem: If, in the previous step, you determine
that you want to proceed with the construction of the reduced problem,
you should next call the ConstructReducedProblem() method, passing in
the full linear problem object from the first step. This method will
use the information from the Analyze() method to construct a reduce
problem that has explicitly eliminated the singleton rows, solved for
the corresponding LHS values and updated the RHS. This step will also
remove singleton columns from the reduced system. Once the solution of
the reduced problem is is computed (via any solver that understands an
Epetra_LinearProblem), you should call the ComputeFullSolution()
method to compute the LHS values assocaited with the singleton
columns.
Solve reduced problem: Obtain a pointer to the reduced problem using
the ReducedProblem() method. Using the solver of your choice, solve
the reduced system.
Compute solution to full problem: Once the solution the reduced
problem is determined, the ComputeFullSolution() method will place the
reduced solution values into the appropriate locations of the full
solution LHS and then compute the values associated with column
singletons. At this point, you have a complete solution to the
original full problem.
Solve a subsequent full problem that differs from the original problem
only in values: It is often the case that the structure of a problem
will be the same for a sequence of linear problems. In this case, the
UpdateReducedProblem() method can be useful. After going through the
above process one time, if you have a linear problem that is
structural identical to the previous problem, you can minimize memory
and time costs by using the UpdateReducedProblem() method, passing in
the subsequent problem. Once you have called the
UpdateReducedProblem() method, you can then solve the reduce problem
problem as you wish, and then compute the full solution as before. The
pointer generated by ReducedProblem() will not change when
UpdateReducedProblem() is called.
C++ includes: Epetra_CrsSingletonFilter.h
"""
__swig_setmethods__ = {}
__setattr__ = lambda self, name, value: _swig_setattr(self, CrsSingletonFilter, name, value)
__swig_getmethods__ = {}
__getattr__ = lambda self, name: _swig_getattr(self, CrsSingletonFilter, name)
__repr__ = _swig_repr
def __init__(self, *args):
"""
__init__(self) -> CrsSingletonFilter
Epetra_CrsSingletonFilter::Epetra_CrsSingletonFilter()
Epetra_CrsSingletonFilter default constructor.
"""
this = _Epetra.new_CrsSingletonFilter(*args)
try: self.this.append(this)
except: self.this = this
__swig_destroy__ = _Epetra.delete_CrsSingletonFilter
__del__ = lambda self : None;
def Analyze(self, *args):
"""
Analyze(self, RowMatrix FullMatrix) -> int
int
Epetra_CrsSingletonFilter::Analyze(Epetra_RowMatrix *FullMatrix)
Analyze the input matrix, removing row/column pairs that have
singletons.
Analyzes the user's input matrix to determine rows and columns that
should be explicitly eliminated to create the reduced system. Look for
rows and columns that have single entries. These rows/columns can
easily be removed from the problem. The results of calling this method
are two MapColoring objects accessible via RowMapColors() and
ColMapColors() accessor methods. All rows/columns that would be
eliminated in the reduced system have a color of 1 in the
corresponding RowMapColors/ColMapColors object. All kept rows/cols
have a color of 0.
"""
return _Epetra.CrsSingletonFilter_Analyze(self, *args)
def SingletonsDetected(self, *args):
"""
SingletonsDetected(self) -> bool
bool Epetra_CrsSingletonFilter::SingletonsDetected() const
Returns true if singletons were detected in this matrix (must be
called after Analyze() to be effective).
"""
return _Epetra.CrsSingletonFilter_SingletonsDetected(self, *args)
def ConstructReducedProblem(self, *args):
"""
ConstructReducedProblem(self, LinearProblem Problem) -> int
int
Epetra_CrsSingletonFilter::ConstructReducedProblem(Epetra_LinearProblem
*Problem)
Return a reduced linear problem based on results of Analyze().
Creates a new Epetra_LinearProblem object based on the results of the
Analyze phase. A pointer to the reduced problem is obtained via a call
to ReducedProblem().
Error code, set to 0 if no error.
"""
return _Epetra.CrsSingletonFilter_ConstructReducedProblem(self, *args)
def UpdateReducedProblem(self, *args):
"""
UpdateReducedProblem(self, LinearProblem Problem) -> int
int
Epetra_CrsSingletonFilter::UpdateReducedProblem(Epetra_LinearProblem
*Problem)
Update a reduced linear problem using new values.
Updates an existing Epetra_LinearProblem object using new matrix, LHS
and RHS values. The matrix structure must be identical to the matrix
that was used to construct the original reduced problem.
Error code, set to 0 if no error.
"""
return _Epetra.CrsSingletonFilter_UpdateReducedProblem(self, *args)
def ComputeFullSolution(self, *args):
"""
ComputeFullSolution(self) -> int
int Epetra_CrsSingletonFilter::ComputeFullSolution()
Compute a solution for the full problem using the solution of the
reduced problem, put in LHS of FullProblem().
After solving the reduced linear system, this method can be called to
compute the solution to the original problem, assuming the solution
for the reduced system is valid. The solution of the unreduced,
original problem will be in the LHS of the original
Epetra_LinearProblem.
"""
return _Epetra.CrsSingletonFilter_ComputeFullSolution(self, *args)
def NumRowSingletons(self, *args):
"""
NumRowSingletons(self) -> int
int Epetra_CrsSingletonFilter::NumRowSingletons() const
Return number of rows that contain a single entry, returns -1 if
Analysis not performed yet.
"""
return _Epetra.CrsSingletonFilter_NumRowSingletons(self, *args)
def NumColSingletons(self, *args):
"""
NumColSingletons(self) -> int
int Epetra_CrsSingletonFilter::NumColSingletons() const
Return number of columns that contain a single entry that are not
associated with singleton row, returns -1 if Analysis not performed
yet.
"""
return _Epetra.CrsSingletonFilter_NumColSingletons(self, *args)
def NumSingletons(self, *args):
"""
NumSingletons(self) -> int
int
Epetra_CrsSingletonFilter::NumSingletons() const
Return total number of singletons detected, returns -1 if Analysis not
performed yet.
Return total number of singletons detected across all processors. This
method will not return a valid result until after the Analyze() method
is called. The dimension of the reduced system can be computed by
subtracting this number from dimension of full system. WARNING: This
method returns -1 if Analyze() method has not been called.
"""
return _Epetra.CrsSingletonFilter_NumSingletons(self, *args)
def RatioOfDimensions(self, *args):
"""
RatioOfDimensions(self) -> double
double Epetra_CrsSingletonFilter::RatioOfDimensions() const
Returns ratio of reduced system to full system dimensions, returns
-1.0 if reduced problem not constructed.
"""
return _Epetra.CrsSingletonFilter_RatioOfDimensions(self, *args)
def RatioOfNonzeros(self, *args):
"""
RatioOfNonzeros(self) -> double
double Epetra_CrsSingletonFilter::RatioOfNonzeros() const
Returns ratio of reduced system to full system nonzero count, returns
-1.0 if reduced problem not constructed.
"""
return _Epetra.CrsSingletonFilter_RatioOfNonzeros(self, *args)
def FullProblem(self, *args):
"""
FullProblem(self) -> LinearProblem
Epetra_LinearProblem* Epetra_CrsSingletonFilter::FullProblem() const
Returns pointer to the original unreduced Epetra_LinearProblem.
"""
return _Epetra.CrsSingletonFilter_FullProblem(self, *args)
def ReducedProblem(self, *args):
"""
ReducedProblem(self) -> LinearProblem
Epetra_LinearProblem* Epetra_CrsSingletonFilter::ReducedProblem()
const
Returns pointer to the derived reduced Epetra_LinearProblem.
"""
return _Epetra.CrsSingletonFilter_ReducedProblem(self, *args)
def FullMatrix(self, *args):
"""
FullMatrix(self) -> RowMatrix
Epetra_RowMatrix* Epetra_CrsSingletonFilter::FullMatrix() const
Returns pointer to Epetra_CrsMatrix from full problem.
"""
return _Epetra.CrsSingletonFilter_FullMatrix(self, *args)
def ReducedMatrix(self, *args):
"""
ReducedMatrix(self) -> CrsMatrix
Epetra_CrsMatrix* Epetra_CrsSingletonFilter::ReducedMatrix() const
Returns pointer to Epetra_CrsMatrix from full problem.
"""
return _Epetra.CrsSingletonFilter_ReducedMatrix(self, *args)
def RowMapColors(self, *args):
"""
RowMapColors(self) -> MapColoring
Epetra_MapColoring* Epetra_CrsSingletonFilter::RowMapColors() const
Returns pointer to Epetra_MapColoring object: color 0 rows are part of
reduced system.
"""
return _Epetra.CrsSingletonFilter_RowMapColors(self, *args)
def ColMapColors(self, *args):
"""
ColMapColors(self) -> MapColoring
Epetra_MapColoring* Epetra_CrsSingletonFilter::ColMapColors() const
Returns pointer to Epetra_MapColoring object: color 0 columns are part
of reduced system.
"""
return _Epetra.CrsSingletonFilter_ColMapColors(self, *args)
def ReducedMatrixRowMap(self, *args):
"""
ReducedMatrixRowMap(self) -> Map
Epetra_Map* Epetra_CrsSingletonFilter::ReducedMatrixRowMap() const
Returns pointer to Epetra_Map describing the reduced system row
distribution.
"""
return _Epetra.CrsSingletonFilter_ReducedMatrixRowMap(self, *args)
def ReducedMatrixColMap(self, *args):
"""
ReducedMatrixColMap(self) -> Map
Epetra_Map* Epetra_CrsSingletonFilter::ReducedMatrixColMap() const
Returns pointer to Epetra_Map describing the reduced system column
distribution.
"""
return _Epetra.CrsSingletonFilter_ReducedMatrixColMap(self, *args)
def ReducedMatrixDomainMap(self, *args):
"""
ReducedMatrixDomainMap(self) -> Map
Epetra_Map*
Epetra_CrsSingletonFilter::ReducedMatrixDomainMap() const
Returns pointer to Epetra_Map describing the domain map for the
reduced system.
"""
return _Epetra.CrsSingletonFilter_ReducedMatrixDomainMap(self, *args)
def ReducedMatrixRangeMap(self, *args):
"""
ReducedMatrixRangeMap(self) -> Map
Epetra_Map*
Epetra_CrsSingletonFilter::ReducedMatrixRangeMap() const
Returns pointer to Epetra_Map describing the range map for the reduced
system.
"""
return _Epetra.CrsSingletonFilter_ReducedMatrixRangeMap(self, *args)
CrsSingletonFilter_swigregister = _Epetra.CrsSingletonFilter_swigregister
CrsSingletonFilter_swigregister(CrsSingletonFilter)
class VbrMatrix(DistObject,CompObject,BLAS,RowMatrix):
"""
Epetra_VbrMatrix: A class for the construction and use of real-valued
double-precision variable block-row sparse matrices.
The Epetra_VbrMatrix class is a sparse variable block row matrix
object. This matrix can be used in a parallel setting, with data
distribution described by Epetra_Map attributes. The structure or
graph of the matrix is defined by an Epetra_CrsGraph attribute.
In addition to coefficient access, the primary operations provided by
Epetra_VbrMatrix are matrix times vector and matrix times multi-vector
multiplication.
Creating and filling Epetra_VbrMatrix objects
Constructing Epetra_VbrMatrix objects is a multi-step process. The
basic steps are as follows: Create Epetra_VbrMatrix instance via one
of the constructors: Constructor that accepts one Epetra_Map object, a
row-map defining the distribution of matrix rows.
Constructor that accepts two Epetra_Map objects. (The second map is a
column-map, and describes the set of column-indices that appear in
each processor's portion of the matrix. Generally these are
overlapping sets -- column-indices may appear on more than one
processor.)
Constructor that accepts an Epetra_CrsGraph object, defining the non-
zero structure of the matrix.
Input coefficient values (more detail on this below).
Complete construction by calling FillComplete.
Note that even after FillComplete() has been called, it is possible to
update existing matrix entries but it is not possible to create new
entries.
Epetra_Map attributes
Epetra_VbrMatrix objects have four Epetra_Map attributes, which are
held by the Epetra_CrsGraph attribute.
The Epetra_Map attributes can be obtained via these accessor methods:
RowMap() Describes the numbering and distribution of the rows of the
matrix. The row-map exists and is valid for the entire life of the
matrix. The set of matrix rows is defined by the row-map and may not
be changed. Rows may not be inserted or deleted by the user. The only
change that may be made is that the user can replace the row-map with
a compatible row-map (which is the same except for re-numbering) by
calling the ReplaceRowMap() method.
ColMap() Describes the set of column-indices that appear in the rows
in each processor's portion of the matrix. Unless provided by the user
at construction time, a valid column-map doesn't exist until
FillComplete() is called.
RangeMap() Describes the range of the matrix operator. e.g., for a
matrix-vector product operation, the result vector's map must be
compatible with the range-map of this matrix. The range-map is usually
the same as the row-map. The range-map is set equal to the row-map at
matrix creation time, but may be specified by the user when
FillComplete() is called.
DomainMap() Describes the domain of the matrix operator. The domain-
map can be specified by the user when FillComplete() is called. Until
then, it is set equal to the row-map.
It is important to note that while the row-map and the range-map are
often the same, the column-map and the domain-map are almost never the
same. The set of entries in a distributed column-map almost always
form overlapping sets, with entries being associated with more than
one processor. A domain-map, on the other hand, must be a 1-to-1 map,
with entries being associated with only a single processor.
Local versus Global Indices
Epetra_VbrMatrix has query functions IndicesAreLocal() and
IndicesAreGlobal(), which are used to determine whether the underlying
Epetra_CrsGraph attribute's column-indices have been transformed into
a local index space or not. (This transformation occurs when the
method Epetra_CrsGraph::FillComplete() is called, which happens when
the method Epetra_VbrMatrix::FillComplete() is called.) The state of
the indices in the graph determines the behavior of many
Epetra_VbrMatrix methods. If an Epetra_VbrMatrix instance is
constructed using one of the constructors that does not accept a pre-
existing Epetra_CrsGraph object, then an Epetra_CrsGraph attribute is
created internally and its indices remain untransformed (
IndicesAreGlobal()==true) until Epetra_VbrMatrix::FillComplete() is
called. The query function Epetra_VbrMatrix::Filled() returns true if
Epetra_VbrMatrix::FillComplete() has been called.
Inputting coefficient values
The process for inputting block-entry coefficients is as follows:
Indicate that values for a specified row are about to be provided by
calling one of these methods which specify a block-row and a list of
block-column-indices: BeginInsertGlobalValues()
BeginInsertMyValues()
BeginReplaceGlobalValues()
BeginReplaceMyValues()
BeginSumIntoGlobalValues()
BeginSumIntoMyValues()
Loop over the list of block-column-indices and pass each block-entry
to the matrix using the method SubmitBlockEntry().
Complete the process for the specified block-row by calling the method
EndSubmitEntries().
Note that the 'GlobalValues' methods have the precondition that
IndicesAreGlobal() must be true, and the 'MyValues' methods have the
precondition that IndicesAreLocal() must be true. Furthermore, the
'SumInto' and 'Replace' methods may only be used to update matrix
entries which already exist, and the 'Insert' methods may only be used
if IndicesAreContiguous() is false.
Counting Floating Point Operations
Each Epetra_VbrMatrix object keeps track of the number of serial
floating point operations performed using the specified object as the
this argument to the function. The Flops() function returns this
number as a double precision number. Using this information, in
conjunction with the Epetra_Time class, one can get accurate parallel
performance numbers. The ResetFlops() function resets the floating
point counter.
C++ includes: Epetra_VbrMatrix.h
"""
__swig_setmethods__ = {}
for _s in [DistObject,CompObject,BLAS,RowMatrix]: __swig_setmethods__.update(getattr(_s,'__swig_setmethods__',{}))
__setattr__ = lambda self, name, value: _swig_setattr(self, VbrMatrix, name, value)
__swig_getmethods__ = {}
for _s in [DistObject,CompObject,BLAS,RowMatrix]: __swig_getmethods__.update(getattr(_s,'__swig_getmethods__',{}))
__getattr__ = lambda self, name: _swig_getattr(self, VbrMatrix, name)
__repr__ = _swig_repr
__swig_destroy__ = _Epetra.delete_VbrMatrix
__del__ = lambda self : None;
def PutScalar(self, *args):
"""
PutScalar(self, double ScalarConstant) -> int
int
Epetra_VbrMatrix::PutScalar(double ScalarConstant)
Initialize all values in graph of the matrix with constant value.
Parameters:
-----------
In: ScalarConstant - Value to use.
Integer error code, set to 0 if successful.
"""
return _Epetra.VbrMatrix_PutScalar(self, *args)
def Scale(self, *args):
"""
Scale(self, double ScalarConstant) -> int
int
Epetra_VbrMatrix::Scale(double ScalarConstant)
Multiply all values in the matrix by a constant value (in place: A <-
ScalarConstant * A).
Parameters:
-----------
In: ScalarConstant - Value to use.
Integer error code, set to 0 if successful.
"""
return _Epetra.VbrMatrix_Scale(self, *args)
def BeginInsertGlobalValues(self, *args):
"""
BeginInsertGlobalValues(self, int BlockRow, int NumBlockEntries) -> int
int
Epetra_VbrMatrix::BeginInsertGlobalValues(int BlockRow, int
NumBlockEntries, int *BlockIndices)
Initiate insertion of a list of elements in a given global row of the
matrix, values are inserted via SubmitEntry().
Parameters:
-----------
In: BlockRow - Block Row number (in global coordinates) to put
elements.
In: NumBlockEntries - Number of entries.
In: Indices - Global column indices corresponding to values.
Integer error code, set to 0 if successful.
"""
return _Epetra.VbrMatrix_BeginInsertGlobalValues(self, *args)
def BeginInsertMyValues(self, *args):
"""
BeginInsertMyValues(self, int BlockRow, int NumBlockEntries) -> int
int
Epetra_VbrMatrix::BeginInsertMyValues(int BlockRow, int
NumBlockEntries, int *BlockIndices)
Initiate insertion of a list of elements in a given local row of the
matrix, values are inserted via SubmitEntry().
Parameters:
-----------
In: BlockRow - Block Row number (in local coordinates) to put
elements.
In: NumBlockEntries - Number of entries.
In: Indices - Local column indices corresponding to values.
Integer error code, set to 0 if successful.
"""
return _Epetra.VbrMatrix_BeginInsertMyValues(self, *args)
def BeginReplaceGlobalValues(self, *args):
"""
BeginReplaceGlobalValues(self, int BlockRow, int NumBlockEntries) -> int
int Epetra_VbrMatrix::BeginReplaceGlobalValues(int BlockRow, int
NumBlockEntries, int *BlockIndices)
Initiate replacement of current values with this list of entries for a
given global row of the matrix, values are replaced via SubmitEntry().
Parameters:
-----------
In: Row - Block Row number (in global coordinates) to put elements.
In: NumBlockEntries - Number of entries.
In: Indices - Global column indices corresponding to values.
Integer error code, set to 0 if successful.
"""
return _Epetra.VbrMatrix_BeginReplaceGlobalValues(self, *args)
def BeginReplaceMyValues(self, *args):
"""
BeginReplaceMyValues(self, int BlockRow, int NumBlockEntries) -> int
int
Epetra_VbrMatrix::BeginReplaceMyValues(int BlockRow, int
NumBlockEntries, int *BlockIndices)
Initiate replacement of current values with this list of entries for a
given local row of the matrix, values are replaced via SubmitEntry().
Parameters:
-----------
In: Row - Block Row number (in local coordinates) to put elements.
In: NumBlockEntries - Number of entries.
In: Indices - Local column indices corresponding to values.
Integer error code, set to 0 if successful.
"""
return _Epetra.VbrMatrix_BeginReplaceMyValues(self, *args)
def BeginSumIntoGlobalValues(self, *args):
"""
BeginSumIntoGlobalValues(self, int BlockRow, int NumBlockEntries) -> int
int Epetra_VbrMatrix::BeginSumIntoGlobalValues(int BlockRow, int
NumBlockEntries, int *BlockIndices)
Initiate summing into current values with this list of entries for a
given global row of the matrix, values are replaced via SubmitEntry().
Parameters:
-----------
In: Row - Block Row number (in global coordinates) to put elements.
In: NumBlockEntries - Number of entries.
In: Indices - Global column indices corresponding to values.
Integer error code, set to 0 if successful.
"""
return _Epetra.VbrMatrix_BeginSumIntoGlobalValues(self, *args)
def BeginSumIntoMyValues(self, *args):
"""
BeginSumIntoMyValues(self, int BlockRow, int NumBlockEntries) -> int
int
Epetra_VbrMatrix::BeginSumIntoMyValues(int BlockRow, int
NumBlockEntries, int *BlockIndices)
Initiate summing into current values with this list of entries for a
given local row of the matrix, values are replaced via SubmitEntry().
Parameters:
-----------
In: Row - Block Row number (in local coordinates) to put elements.
In: NumBlockEntries - Number of entries.
In: Indices - Local column indices corresponding to values.
Integer error code, set to 0 if successful.
"""
return _Epetra.VbrMatrix_BeginSumIntoMyValues(self, *args)
def SubmitBlockEntry(self, *args):
"""
SubmitBlockEntry(self, double Values, int LDA, int NumRows, int NumCols) -> int
SubmitBlockEntry(self, Epetra_SerialDenseMatrix Mat) -> int
int
Epetra_VbrMatrix::SubmitBlockEntry(Epetra_SerialDenseMatrix &Mat)
Submit a block entry to the indicated block row and column specified
in the Begin routine.
"""
return _Epetra.VbrMatrix_SubmitBlockEntry(self, *args)
def EndSubmitEntries(self, *args):
"""
EndSubmitEntries(self) -> int
int
Epetra_VbrMatrix::EndSubmitEntries()
Completes processing of all data passed in for the current block row.
This function completes the processing of all block entries submitted
via SubmitBlockEntry(). It also checks to make sure that
SubmitBlockEntry was called the correct number of times as specified
by the Begin routine that initiated the entry process.
"""
return _Epetra.VbrMatrix_EndSubmitEntries(self, *args)
def ReplaceDiagonalValues(self, *args):
"""
ReplaceDiagonalValues(self, Epetra_Vector Diagonal) -> int
int
Epetra_VbrMatrix::ReplaceDiagonalValues(const Epetra_Vector &Diagonal)
Replaces diagonal values of the with those in the user-provided
vector.
This routine is meant to allow replacement of { existing} diagonal
values. If a diagonal value does not exist for a given row, the
corresponding value in the input Epetra_Vector will be ignored and the
return code will be set to 1.
The Epetra_Map associated with the input Epetra_Vector must be
compatible with the RowMap of the matrix.
Parameters:
-----------
Diagonal: (In) - New values to be placed in the main diagonal.
Integer error code, set to 0 if successful, 1 of one or more diagonal
entries not present in matrix.
"""
return _Epetra.VbrMatrix_ReplaceDiagonalValues(self, *args)
def FillComplete(self, *args):
"""
FillComplete(self) -> int
FillComplete(self, BlockMap DomainMap, BlockMap RangeMap) -> int
int
Epetra_VbrMatrix::FillComplete(const Epetra_BlockMap &DomainMap, const
Epetra_BlockMap &RangeMap)
Signal that data entry is complete, perform transformations to local
index space.
"""
return _Epetra.VbrMatrix_FillComplete(self, *args)
def Filled(self, *args):
"""
Filled(self) -> bool
bool
Epetra_VbrMatrix::Filled() const
If FillComplete() has been called, this query returns true, otherwise
it returns false.
"""
return _Epetra.VbrMatrix_Filled(self, *args)
def ExtractGlobalBlockRowPointers(self, *args):
"""
ExtractGlobalBlockRowPointers(self, int BlockRow, int MaxNumBlockEntries, int RowDim, int NumBlockEntries,
int BlockIndices, Epetra_SerialDenseMatrix Values) -> int
int Epetra_VbrMatrix::ExtractGlobalBlockRowPointers(int BlockRow,
int MaxNumBlockEntries, int &RowDim, int &NumBlockEntries, int
*BlockIndices, Epetra_SerialDenseMatrix **&Values) const
Copy the block indices into user-provided array, set pointers for rest
of data for specified global block row.
This function provides the lightest weight approach to accessing a
global block row when the matrix may be be stored in local or global
index space. In other words, this function will always work because
the block indices are returned in user-provided space. All other array
arguments are independent of whether or not indices are local or
global. Other than the BlockIndices array, all other array argument
are returned as pointers to internal data.
Parameters:
-----------
In: BlockRow - Global block row to extract.
In: MaxNumBlockEntries - Length of user-provided BlockIndices array.
Out: RowDim - Number of equations in the requested block row.
Out: NumBlockEntries - Number of nonzero entries actually extracted.
Out: BlockIndices - Extracted global column indices for the
corresponding block entries.
Out: Values - Pointer to list of pointers to block entries. Note that
the actual values are not copied.
Integer error code, set to 0 if successful.
"""
return _Epetra.VbrMatrix_ExtractGlobalBlockRowPointers(self, *args)
def ExtractMyBlockRowPointers(self, *args):
"""
ExtractMyBlockRowPointers(self, int BlockRow, int MaxNumBlockEntries, int RowDim, int NumBlockEntries,
int BlockIndices, Epetra_SerialDenseMatrix Values) -> int
int Epetra_VbrMatrix::ExtractMyBlockRowPointers(int BlockRow, int
MaxNumBlockEntries, int &RowDim, int &NumBlockEntries, int
*BlockIndices, Epetra_SerialDenseMatrix **&Values) const
Copy the block indices into user-provided array, set pointers for rest
of data for specified local block row.
This function provides the lightest weight approach to accessing a
local block row when the matrix may be be stored in local or global
index space. In other words, this function will always work because
the block indices are returned in user-provided space. All other array
arguments are independent of whether or not indices are local or
global. Other than the BlockIndices array, all other array argument
are returned as pointers to internal data.
Parameters:
-----------
In: BlockRow - Local block row to extract.
In: MaxNumBlockEntries - Length of user-provided BlockIndices array.
Out: RowDim - Number of equations in the requested block row.
Out: NumBlockEntries - Number of nonzero entries actually extracted.
Out: BlockIndices - Extracted local column indices for the
corresponding block entries.
Out: Values - Pointer to list of pointers to block entries. Note that
the actual values are not copied.
Integer error code, set to 0 if successful.
"""
return _Epetra.VbrMatrix_ExtractMyBlockRowPointers(self, *args)
def BeginExtractGlobalBlockRowCopy(self, *args):
"""
BeginExtractGlobalBlockRowCopy(self, int BlockRow, int MaxNumBlockEntries, int RowDim, int NumBlockEntries,
int BlockIndices, int ColDims) -> int
int
Epetra_VbrMatrix::BeginExtractGlobalBlockRowCopy(int BlockRow, int
MaxNumBlockEntries, int &RowDim, int &NumBlockEntries, int
*BlockIndices, int *ColDims) const
Initiates a copy of the specified global row in user-provided arrays.
Parameters:
-----------
In: BlockRow - Global block row to extract.
In: MaxNumBlockEntries - Length of user-provided BlockIndices,
ColDims, and LDAs arrays.
Out: RowDim - Number of equations in the requested block row.
Out: NumBlockEntries - Number of nonzero entries actually extracted.
Out: BlockIndices - Extracted global column indices for the
corresponding block entries.
Out: ColDim - List of column dimensions for each corresponding block
entry that will be extracted.
Integer error code, set to 0 if successful.
"""
return _Epetra.VbrMatrix_BeginExtractGlobalBlockRowCopy(self, *args)
def BeginExtractMyBlockRowCopy(self, *args):
"""
BeginExtractMyBlockRowCopy(self, int BlockRow, int MaxNumBlockEntries, int RowDim, int NumBlockEntries,
int BlockIndices, int ColDims) -> int
int Epetra_VbrMatrix::BeginExtractMyBlockRowCopy(int BlockRow, int
MaxNumBlockEntries, int &RowDim, int &NumBlockEntries, int
*BlockIndices, int *ColDims) const
Initiates a copy of the specified local row in user-provided arrays.
Parameters:
-----------
In: BlockRow - Local block row to extract.
In: MaxNumBlockEntries - Length of user-provided BlockIndices,
ColDims, and LDAs arrays.
Out: RowDim - Number of equations in the requested block row.
Out: NumBlockEntries - Number of nonzero entries actually extracted.
Out: BlockIndices - Extracted local column indices for the
corresponding block entries.
Out: ColDim - List of column dimensions for each corresponding block
entry that will be extracted.
Integer error code, set to 0 if successful.
"""
return _Epetra.VbrMatrix_BeginExtractMyBlockRowCopy(self, *args)
def ExtractEntryCopy(self, *args):
"""
ExtractEntryCopy(self, int SizeOfValues, double Values, int LDA, bool SumInto) -> int
int
Epetra_VbrMatrix::ExtractEntryCopy(int SizeOfValues, double *Values,
int LDA, bool SumInto) const
Extract a copy of an entry from the block row specified by one of the
BeginExtract routines.
Once BeginExtractGlobalBlockRowCopy() or BeginExtractMyBlockRowCopy()
is called, you can extract the block entries of specified block row
one-entry-at-a-time. The entries will be extracted in an order
corresponding to the BlockIndices list that was returned by the
BeginExtract routine.
Parameters:
-----------
In: SizeOfValues - Amount of memory associated with Values. This must
be at least as big as LDA*NumCol, where NumCol is the column dimension
of the block entry being copied
InOut: Values - Starting location where the block entry will be
copied.
In: LDA - Specifies the stride that will be used when copying columns
into Values.
In: SumInto - If set to true, the block entry values will be summed
into existing values.
"""
return _Epetra.VbrMatrix_ExtractEntryCopy(self, *args)
def BeginExtractGlobalBlockRowView(self, *args):
"""
BeginExtractGlobalBlockRowView(self, int BlockRow, int RowDim, int NumBlockEntries, int BlockIndices) -> int
int
Epetra_VbrMatrix::BeginExtractGlobalBlockRowView(int BlockRow, int
&RowDim, int &NumBlockEntries, int *&BlockIndices) const
Initiates a view of the specified global row, only works if matrix
indices are in global mode.
Parameters:
-----------
In: BlockRow - Global block row to view.
Out: RowDim - Number of equations in the requested block row.
Out: NumBlockEntries - Number of nonzero entries to be viewed.
Out: BlockIndices - Pointer to global column indices for the
corresponding block entries.
Integer error code, set to 0 if successful.
"""
return _Epetra.VbrMatrix_BeginExtractGlobalBlockRowView(self, *args)
def BeginExtractMyBlockRowView(self, *args):
"""
BeginExtractMyBlockRowView(self, int BlockRow, int RowDim, int NumBlockEntries, int BlockIndices) -> int
int Epetra_VbrMatrix::BeginExtractMyBlockRowView(int BlockRow, int
&RowDim, int &NumBlockEntries, int *&BlockIndices) const
Initiates a view of the specified local row, only works if matrix
indices are in local mode.
Parameters:
-----------
In: BlockRow - Local block row to view.
Out: RowDim - Number of equations in the requested block row.
Out: NumBlockEntries - Number of nonzero entries to be viewed.
Out: BlockIndices - Pointer to local column indices for the
corresponding block entries.
Integer error code, set to 0 if successful.
"""
return _Epetra.VbrMatrix_BeginExtractMyBlockRowView(self, *args)
def ExtractEntryView(self, *args):
"""
ExtractEntryView(self) -> int
int
Epetra_VbrMatrix::ExtractEntryView(Epetra_SerialDenseMatrix *&entry)
const
Returns a pointer to the current block entry.
After a call to BeginExtractGlobal() or
BlockRowViewBeginExtractMyBlockRowView(), ExtractEntryView() can be
called up to NumBlockEntries times to get each block entry in the
specified block row.
Parameters:
-----------
InOut: entry - A pointer that will be set to the current block entry.
"""
return _Epetra.VbrMatrix_ExtractEntryView(self, *args)
def ExtractGlobalBlockRowView(self, *args):
"""
ExtractGlobalBlockRowView(self, int BlockRow, int RowDim, int NumBlockEntries, int BlockIndices,
Epetra_SerialDenseMatrix Values) -> int
int Epetra_VbrMatrix::ExtractGlobalBlockRowView(int BlockRow, int
&RowDim, int &NumBlockEntries, int *&BlockIndices,
Epetra_SerialDenseMatrix **&Values) const
Initiates a view of the specified global row, only works if matrix
indices are in global mode.
Parameters:
-----------
In: BlockRow - Global block row to view.
Out: RowDim - Number of equations in the requested block row.
Out: NumBlockEntries - Number of nonzero entries to be viewed.
Out: BlockIndices - Pointer to global column indices for the
corresponding block entries.
Out: Values - Pointer to an array of pointers to the block entries in
the specified block row.
Integer error code, set to 0 if successful.
"""
return _Epetra.VbrMatrix_ExtractGlobalBlockRowView(self, *args)
def ExtractMyBlockRowView(self, *args):
"""
ExtractMyBlockRowView(self, int BlockRow, int RowDim, int NumBlockEntries, int BlockIndices,
Epetra_SerialDenseMatrix Values) -> int
int
Epetra_VbrMatrix::ExtractMyBlockRowView(int BlockRow, int &RowDim, int
&NumBlockEntries, int *&BlockIndices, Epetra_SerialDenseMatrix
**&Values) const
Initiates a view of the specified local row, only works if matrix
indices are in local mode.
Parameters:
-----------
In: BlockRow - Local block row to view.
Out: RowDim - Number of equations in the requested block row.
Out: NumBlockEntries - Number of nonzero entries to be viewed.
Out: BlockIndices - Pointer to local column indices for the
corresponding block entries.
Out: Values - Pointer to an array of pointers to the block entries in
the specified block row.
Integer error code, set to 0 if successful.
"""
return _Epetra.VbrMatrix_ExtractMyBlockRowView(self, *args)
def ExtractDiagonalCopy(self, *args):
"""
ExtractDiagonalCopy(self, Epetra_Vector Diagonal) -> int
int
Epetra_VbrMatrix::ExtractDiagonalCopy(Epetra_Vector &Diagonal) const
Returns a copy of the main diagonal in a user-provided vector.
Parameters:
-----------
Out: Diagonal - Extracted main diagonal.
Integer error code, set to 0 if successful.
"""
return _Epetra.VbrMatrix_ExtractDiagonalCopy(self, *args)
def BeginExtractBlockDiagonalCopy(self, *args):
"""
BeginExtractBlockDiagonalCopy(self, int MaxNumBlockDiagonalEntries, int NumBlockDiagonalEntries,
int RowColDims) -> int
int Epetra_VbrMatrix::BeginExtractBlockDiagonalCopy(int
MaxNumBlockDiagonalEntries, int &NumBlockDiagonalEntries, int
*RowColDims) const
Initiates a copy of the block diagonal entries to user-provided
arrays.
Parameters:
-----------
In: MaxNumBlockDiagonalEntries - Length of user-provided RowColDims
array.
Out: NumBlockDiagonalEntries - Number of block diagonal entries that
can actually be extracted.
Out: RowColDim - List of row and column dimension for corresponding
block diagonal entries.
Integer error code, set to 0 if successful.
"""
return _Epetra.VbrMatrix_BeginExtractBlockDiagonalCopy(self, *args)
def ExtractBlockDiagonalEntryCopy(self, *args):
"""
ExtractBlockDiagonalEntryCopy(self, int SizeOfValues, double Values, int LDA, bool SumInto) -> int
int Epetra_VbrMatrix::ExtractBlockDiagonalEntryCopy(int
SizeOfValues, double *Values, int LDA, bool SumInto) const
Extract a copy of a block diagonal entry from the matrix.
Once BeginExtractBlockDiagonalCopy() is called, you can extract the
block diagonal entries one-entry- at-a-time. The entries will be
extracted in ascending order.
Parameters:
-----------
In: SizeOfValues - Amount of memory associated with Values. This must
be at least as big as LDA*NumCol, where NumCol is the column dimension
of the block entry being copied
InOut: Values - Starting location where the block entry will be
copied.
In: LDA - Specifies the stride that will be used when copying columns
into Values.
In: SumInto - If set to true, the block entry values will be summed
into existing values.
"""
return _Epetra.VbrMatrix_ExtractBlockDiagonalEntryCopy(self, *args)
def BeginExtractBlockDiagonalView(self, *args):
"""
BeginExtractBlockDiagonalView(self, int NumBlockDiagonalEntries, int RowColDims) -> int
int Epetra_VbrMatrix::BeginExtractBlockDiagonalView(int
&NumBlockDiagonalEntries, int *&RowColDims) const
Initiates a view of the block diagonal entries.
Parameters:
-----------
Out: NumBlockDiagonalEntries - Number of block diagonal entries that
can be viewed.
Out: RowColDim - Pointer to list of row and column dimension for
corresponding block diagonal entries.
Integer error code, set to 0 if successful.
"""
return _Epetra.VbrMatrix_BeginExtractBlockDiagonalView(self, *args)
def ExtractBlockDiagonalEntryView(self, *args):
"""
ExtractBlockDiagonalEntryView(self, double Values, int LDA) -> int
int Epetra_VbrMatrix::ExtractBlockDiagonalEntryView(double *&Values,
int &LDA) const
Extract a view of a block diagonal entry from the matrix.
Once BeginExtractBlockDiagonalView() is called, you can extract a view
of the block diagonal entries one- entry-at-a-time. The views will be
extracted in ascending order.
Parameters:
-----------
Out: Values - Pointer to internal copy of block entry.
Out: LDA - Column stride of Values.
"""
return _Epetra.VbrMatrix_ExtractBlockDiagonalEntryView(self, *args)
def Multiply1(self, *args):
"""
Multiply1(self, bool TransA, Epetra_Vector x, Epetra_Vector y) -> int
int
Epetra_VbrMatrix::Multiply1(bool TransA, const Epetra_Vector &x,
Epetra_Vector &y) const
Returns the result of a Epetra_VbrMatrix multiplied by a Epetra_Vector
x in y.
Parameters:
-----------
In: TransA - If true, multiply by the transpose of matrix, otherwise
just use matrix.
In: x - A Epetra_Vector to multiply by.
Out: y - A Epetra_Vector containing result.
Integer error code, set to 0 if successful.
"""
return _Epetra.VbrMatrix_Multiply1(self, *args)
def Multiply(self, *args):
"""
Multiply(self, bool TransA, Epetra_MultiVector X, Epetra_MultiVector Y) -> int
int
Epetra_VbrMatrix::Multiply(bool TransA, const Epetra_MultiVector &X,
Epetra_MultiVector &Y) const
Returns the result of a Epetra_VbrMatrix multiplied by a
Epetra_MultiVector X in Y.
Parameters:
-----------
In: TransA -If true, multiply by the transpose of matrix, otherwise
just use matrix.
In: X - A Epetra_MultiVector of dimension NumVectors to multiply with
matrix.
Out: Y -A Epetra_MultiVector of dimension NumVectorscontaining
result.
Integer error code, set to 0 if successful.
"""
return _Epetra.VbrMatrix_Multiply(self, *args)
def Solve(self, *args):
"""
Solve(self, bool Upper, bool Trans, bool UnitDiagonal, Epetra_MultiVector X,
Epetra_MultiVector Y) -> int
int
Epetra_VbrMatrix::Solve(bool Upper, bool Trans, bool UnitDiagonal,
const Epetra_MultiVector &X, Epetra_MultiVector &Y) const
Returns the result of a Epetra_VbrMatrix multiplied by a
Epetra_MultiVector X in Y.
Parameters:
-----------
In: Upper -If true, solve Ux = y, otherwise solve Lx = y.
In: Trans -If true, solve transpose problem.
In: UnitDiagonal -If true, assume diagonal is unit (whether it's
stored or not).
In: X - A Epetra_MultiVector of dimension NumVectors to solve for.
Out: Y -A Epetra_MultiVector of dimension NumVectors containing
result.
Integer error code, set to 0 if successful.
"""
return _Epetra.VbrMatrix_Solve(self, *args)
def InvRowSums(self, *args):
"""
InvRowSums(self, Epetra_Vector x) -> int
int
Epetra_VbrMatrix::InvRowSums(Epetra_Vector &x) const
Computes the sum of absolute values of the rows of the
Epetra_VbrMatrix, results returned in x.
The vector x will return such that x[i] will contain the inverse of
sum of the absolute values of the this matrix will be scaled such that
A(i,j) = x(i)*A(i,j) where i denotes the global row number of A and j
denotes the global column number of A. Using the resulting vector from
this function as input to LeftScale() will make the infinity norm of
the resulting matrix exactly 1.
Parameters:
-----------
Out: x -A Epetra_Vector containing the row sums of the this matrix.
WARNING: It is assumed that the distribution of x is the same as the
rows of this.
Integer error code, set to 0 if successful.
"""
return _Epetra.VbrMatrix_InvRowSums(self, *args)
def LeftScale(self, *args):
"""
LeftScale(self, Epetra_Vector x) -> int
int
Epetra_VbrMatrix::LeftScale(const Epetra_Vector &x)
Scales the Epetra_VbrMatrix on the left with a Epetra_Vector x.
The this matrix will be scaled such that A(i,j) = x(i)*A(i,j) where i
denotes the row number of A and j denotes the column number of A.
Parameters:
-----------
In: x -A Epetra_Vector to solve for.
Integer error code, set to 0 if successful.
"""
return _Epetra.VbrMatrix_LeftScale(self, *args)
def InvColSums(self, *args):
"""
InvColSums(self, Epetra_Vector x) -> int
int
Epetra_VbrMatrix::InvColSums(Epetra_Vector &x) const
Computes the sum of absolute values of the columns of the
Epetra_VbrMatrix, results returned in x.
The vector x will return such that x[j] will contain the inverse of
sum of the absolute values of the this matrix will be sca such that
A(i,j) = x(j)*A(i,j) where i denotes the global row number of A and j
denotes the global column number of A. Using the resulting vector from
this function as input to RighttScale() will make the one norm of the
resulting matrix exactly 1.
Parameters:
-----------
Out: x -A Epetra_Vector containing the column sums of the this
matrix.
WARNING: It is assumed that the distribution of x is the same as the
rows of this.
Integer error code, set to 0 if successful.
"""
return _Epetra.VbrMatrix_InvColSums(self, *args)
def RightScale(self, *args):
"""
RightScale(self, Epetra_Vector x) -> int
int
Epetra_VbrMatrix::RightScale(const Epetra_Vector &x)
Scales the Epetra_VbrMatrix on the right with a Epetra_Vector x.
The this matrix will be scaled such that A(i,j) = x(j)*A(i,j) where i
denotes the global row number of A and j denotes the global column
number of A.
Parameters:
-----------
In: x -The Epetra_Vector used for scaling this.
Integer error code, set to 0 if successful.
"""
return _Epetra.VbrMatrix_RightScale(self, *args)
def OptimizeStorage(self, *args):
"""
OptimizeStorage(self) -> int
int
Epetra_VbrMatrix::OptimizeStorage()
Eliminates memory that is used for construction. Make consecutive row
index sections contiguous.
"""
return _Epetra.VbrMatrix_OptimizeStorage(self, *args)
def StorageOptimized(self, *args):
"""
StorageOptimized(self) -> bool
bool
Epetra_VbrMatrix::StorageOptimized() const
If OptimizeStorage() has been called, this query returns true,
otherwise it returns false.
"""
return _Epetra.VbrMatrix_StorageOptimized(self, *args)
def IndicesAreGlobal(self, *args):
"""
IndicesAreGlobal(self) -> bool
bool
Epetra_VbrMatrix::IndicesAreGlobal() const
If matrix indices has not been transformed to local, this query
returns true, otherwise it returns false.
"""
return _Epetra.VbrMatrix_IndicesAreGlobal(self, *args)
def IndicesAreLocal(self, *args):
"""
IndicesAreLocal(self) -> bool
bool
Epetra_VbrMatrix::IndicesAreLocal() const
If matrix indices has been transformed to local, this query returns
true, otherwise it returns false.
"""
return _Epetra.VbrMatrix_IndicesAreLocal(self, *args)
def IndicesAreContiguous(self, *args):
"""
IndicesAreContiguous(self) -> bool
bool
Epetra_VbrMatrix::IndicesAreContiguous() const
If matrix indices are packed into single array (done in
OptimizeStorage()) return true, otherwise false.
"""
return _Epetra.VbrMatrix_IndicesAreContiguous(self, *args)
def LowerTriangular(self, *args):
"""
LowerTriangular(self) -> bool
bool
Epetra_VbrMatrix::LowerTriangular() const
If matrix is lower triangular in local index space, this query returns
true, otherwise it returns false.
"""
return _Epetra.VbrMatrix_LowerTriangular(self, *args)
def UpperTriangular(self, *args):
"""
UpperTriangular(self) -> bool
bool
Epetra_VbrMatrix::UpperTriangular() const
If matrix is upper triangular in local index space, this query returns
true, otherwise it returns false.
"""
return _Epetra.VbrMatrix_UpperTriangular(self, *args)
def NoDiagonal(self, *args):
"""
NoDiagonal(self) -> bool
bool
Epetra_VbrMatrix::NoDiagonal() const
If matrix has no diagonal entries based on global row/column index
comparisons, this query returns true, otherwise it returns false.
"""
return _Epetra.VbrMatrix_NoDiagonal(self, *args)
def NormInf(self, *args):
"""
NormInf(self) -> double
double
Epetra_VbrMatrix::NormInf() const
Returns the infinity norm of the global matrix.
"""
return _Epetra.VbrMatrix_NormInf(self, *args)
def NormOne(self, *args):
"""
NormOne(self) -> double
double
Epetra_VbrMatrix::NormOne() const
Returns the one norm of the global matrix.
"""
return _Epetra.VbrMatrix_NormOne(self, *args)
def NormFrobenius(self, *args):
"""
NormFrobenius(self) -> double
double
Epetra_VbrMatrix::NormFrobenius() const
Returns the frobenius norm of the global matrix.
"""
return _Epetra.VbrMatrix_NormFrobenius(self, *args)
def MaxRowDim(self, *args):
"""
MaxRowDim(self) -> int
int
Epetra_VbrMatrix::MaxRowDim() const
Returns the maximum row dimension of all block entries on this
processor.
"""
return _Epetra.VbrMatrix_MaxRowDim(self, *args)
def MaxColDim(self, *args):
"""
MaxColDim(self) -> int
int
Epetra_VbrMatrix::MaxColDim() const
Returns the maximum column dimension of all block entries on this
processor.
"""
return _Epetra.VbrMatrix_MaxColDim(self, *args)
def GlobalMaxRowDim(self, *args):
"""
GlobalMaxRowDim(self) -> int
int
Epetra_VbrMatrix::GlobalMaxRowDim() const
Returns the maximum row dimension of all block entries across all
processors.
"""
return _Epetra.VbrMatrix_GlobalMaxRowDim(self, *args)
def GlobalMaxColDim(self, *args):
"""
GlobalMaxColDim(self) -> int
int
Epetra_VbrMatrix::GlobalMaxColDim() const
Returns the maximum column dimension of all block entries across all
processors.
"""
return _Epetra.VbrMatrix_GlobalMaxColDim(self, *args)
def NumMyRows(self, *args):
"""
NumMyRows(self) -> int
int
Epetra_VbrMatrix::NumMyRows() const
Returns the number of matrix rows owned by the calling processor.
"""
return _Epetra.VbrMatrix_NumMyRows(self, *args)
def NumMyCols(self, *args):
"""
NumMyCols(self) -> int
int
Epetra_VbrMatrix::NumMyCols() const
Returns the number of matrix columns owned by the calling processor.
"""
return _Epetra.VbrMatrix_NumMyCols(self, *args)
def NumMyNonzeros(self, *args):
"""
NumMyNonzeros(self) -> int
int
Epetra_VbrMatrix::NumMyNonzeros() const
Returns the number of nonzero entriesowned by the calling processor .
"""
return _Epetra.VbrMatrix_NumMyNonzeros(self, *args)
def NumGlobalRows(self, *args):
"""
NumGlobalRows(self) -> int
int
Epetra_VbrMatrix::NumGlobalRows() const
Returns the number of global matrix rows.
"""
return _Epetra.VbrMatrix_NumGlobalRows(self, *args)
def NumGlobalCols(self, *args):
"""
NumGlobalCols(self) -> int
int
Epetra_VbrMatrix::NumGlobalCols() const
Returns the number of global matrix columns.
"""
return _Epetra.VbrMatrix_NumGlobalCols(self, *args)
def NumGlobalNonzeros(self, *args):
"""
NumGlobalNonzeros(self) -> int
int
Epetra_VbrMatrix::NumGlobalNonzeros() const
Returns the number of nonzero entries in the global matrix.
"""
return _Epetra.VbrMatrix_NumGlobalNonzeros(self, *args)
def NumMyBlockRows(self, *args):
"""
NumMyBlockRows(self) -> int
int
Epetra_VbrMatrix::NumMyBlockRows() const
Returns the number of Block matrix rows owned by the calling
processor.
"""
return _Epetra.VbrMatrix_NumMyBlockRows(self, *args)
def NumMyBlockCols(self, *args):
"""
NumMyBlockCols(self) -> int
int
Epetra_VbrMatrix::NumMyBlockCols() const
Returns the number of Block matrix columns owned by the calling
processor.
"""
return _Epetra.VbrMatrix_NumMyBlockCols(self, *args)
def NumMyBlockDiagonals(self, *args):
"""
NumMyBlockDiagonals(self) -> int
int
Epetra_VbrMatrix::NumMyBlockDiagonals() const
Returns the number of local nonzero block diagonal entries, based on
global row/column index comparisons.
"""
return _Epetra.VbrMatrix_NumMyBlockDiagonals(self, *args)
def NumMyDiagonals(self, *args):
"""
NumMyDiagonals(self) -> int
int
Epetra_VbrMatrix::NumMyDiagonals() const
Returns the number of local nonzero diagonal entries, based on global
row/column index comparisons.
"""
return _Epetra.VbrMatrix_NumMyDiagonals(self, *args)
def NumGlobalBlockRows(self, *args):
"""
NumGlobalBlockRows(self) -> int
int
Epetra_VbrMatrix::NumGlobalBlockRows() const
Returns the number of global Block matrix rows.
"""
return _Epetra.VbrMatrix_NumGlobalBlockRows(self, *args)
def NumGlobalBlockCols(self, *args):
"""
NumGlobalBlockCols(self) -> int
int
Epetra_VbrMatrix::NumGlobalBlockCols() const
Returns the number of global Block matrix columns.
"""
return _Epetra.VbrMatrix_NumGlobalBlockCols(self, *args)
def NumGlobalBlockDiagonals(self, *args):
"""
NumGlobalBlockDiagonals(self) -> int
int
Epetra_VbrMatrix::NumGlobalBlockDiagonals() const
Returns the number of global nonzero block diagonal entries, based on
global row/column index comparisions.
"""
return _Epetra.VbrMatrix_NumGlobalBlockDiagonals(self, *args)
def NumGlobalDiagonals(self, *args):
"""
NumGlobalDiagonals(self) -> int
int
Epetra_VbrMatrix::NumGlobalDiagonals() const
Returns the number of global nonzero diagonal entries, based on global
row/column index comparisions.
"""
return _Epetra.VbrMatrix_NumGlobalDiagonals(self, *args)
def NumGlobalBlockEntries(self, *args):
"""
NumGlobalBlockEntries(self) -> int
NumGlobalBlockEntries(self, int Row) -> int
int
Epetra_VbrMatrix::NumGlobalBlockEntries(int Row) const
Returns the current number of nonzero Block entries in specified
global row on this processor.
"""
return _Epetra.VbrMatrix_NumGlobalBlockEntries(self, *args)
def NumAllocatedGlobalBlockEntries(self, *args):
"""
NumAllocatedGlobalBlockEntries(self, int Row) -> int
int
Epetra_VbrMatrix::NumAllocatedGlobalBlockEntries(int Row) const
Returns the allocated number of nonzero Block entries in specified
global row on this processor.
"""
return _Epetra.VbrMatrix_NumAllocatedGlobalBlockEntries(self, *args)
def MaxNumBlockEntries(self, *args):
"""
MaxNumBlockEntries(self) -> int
int
Epetra_VbrMatrix::MaxNumBlockEntries() const
Returns the maximum number of nonzero entries across all rows on this
processor.
"""
return _Epetra.VbrMatrix_MaxNumBlockEntries(self, *args)
def GlobalMaxNumBlockEntries(self, *args):
"""
GlobalMaxNumBlockEntries(self) -> int
int Epetra_VbrMatrix::GlobalMaxNumBlockEntries() const
Returns the maximum number of nonzero entries across all rows on this
processor.
"""
return _Epetra.VbrMatrix_GlobalMaxNumBlockEntries(self, *args)
def NumMyBlockEntries(self, *args):
"""
NumMyBlockEntries(self) -> int
NumMyBlockEntries(self, int Row) -> int
int
Epetra_VbrMatrix::NumMyBlockEntries(int Row) const
Returns the current number of nonzero Block entries in specified local
row on this processor.
"""
return _Epetra.VbrMatrix_NumMyBlockEntries(self, *args)
def NumAllocatedMyBlockEntries(self, *args):
"""
NumAllocatedMyBlockEntries(self, int Row) -> int
int Epetra_VbrMatrix::NumAllocatedMyBlockEntries(int Row) const
Returns the allocated number of nonzero Block entries in specified
local row on this processor.
"""
return _Epetra.VbrMatrix_NumAllocatedMyBlockEntries(self, *args)
def MaxNumNonzeros(self, *args):
"""
MaxNumNonzeros(self) -> int
int
Epetra_VbrMatrix::MaxNumNonzeros() const
Returns the maximum number of nonzero entries across all block rows on
this processor.
Let ki = the number of nonzero values in the ith block row of the
VbrMatrix object. For example, if the ith block row had 5 block
entries and the size of each entry was 4-by-4, ki would be 80. Then
this function return the max over all ki for all row on this
processor.
"""
return _Epetra.VbrMatrix_MaxNumNonzeros(self, *args)
def GlobalMaxNumNonzeros(self, *args):
"""
GlobalMaxNumNonzeros(self) -> int
int
Epetra_VbrMatrix::GlobalMaxNumNonzeros() const
Returns the maximum number of nonzero entries across all block rows on
all processors.
This function returns the max over all processor of MaxNumNonzeros().
"""
return _Epetra.VbrMatrix_GlobalMaxNumNonzeros(self, *args)
def IndexBase(self, *args):
"""
IndexBase(self) -> int
int
Epetra_VbrMatrix::IndexBase() const
Returns the index base for row and column indices for this graph.
"""
return _Epetra.VbrMatrix_IndexBase(self, *args)
def Graph(self, *args):
"""
Graph(self) -> CrsGraph
const
Epetra_CrsGraph& Epetra_VbrMatrix::Graph() const
Returns a pointer to the Epetra_CrsGraph object associated with this
matrix.
"""
return _Epetra.VbrMatrix_Graph(self, *args)
def Importer(self, *args):
"""
Importer(self) -> Import
const
Epetra_Import* Epetra_VbrMatrix::Importer() const
Returns the Epetra_Import object that contains the import operations
for distributed operations.
"""
return _Epetra.VbrMatrix_Importer(self, *args)
def Exporter(self, *args):
"""
Exporter(self) -> Export
const
Epetra_Export* Epetra_VbrMatrix::Exporter() const
Returns the Epetra_Export object that contains the export operations
for distributed operations.
"""
return _Epetra.VbrMatrix_Exporter(self, *args)
def DomainMap(self, *args):
"""
DomainMap(self) -> BlockMap
const
Epetra_BlockMap& Epetra_VbrMatrix::DomainMap() const
Returns the Epetra_BlockMap object associated with the domain of this
matrix operator.
"""
return _Epetra.VbrMatrix_DomainMap(self, *args)
def RangeMap(self, *args):
"""
RangeMap(self) -> BlockMap
const
Epetra_BlockMap& Epetra_VbrMatrix::RangeMap() const
Returns the Epetra_BlockMap object associated with the range of this
matrix operator.
"""
return _Epetra.VbrMatrix_RangeMap(self, *args)
def RowMap(self, *args):
"""
RowMap(self) -> BlockMap
const
Epetra_BlockMap& Epetra_VbrMatrix::RowMap() const
Returns the RowMap object as an Epetra_BlockMap (the Epetra_Map base
class) needed for implementing Epetra_RowMatrix.
"""
return _Epetra.VbrMatrix_RowMap(self, *args)
def ColMap(self, *args):
"""
ColMap(self) -> BlockMap
const
Epetra_BlockMap& Epetra_VbrMatrix::ColMap() const
Returns the ColMap as an Epetra_BlockMap (the Epetra_Map base class)
needed for implementing Epetra_RowMatrix.
"""
return _Epetra.VbrMatrix_ColMap(self, *args)
def Comm(self, *args):
"""
Comm(self) -> Comm
const Epetra_Comm&
Epetra_VbrMatrix::Comm() const
Fills a matrix with rows from a source matrix based on the specified
importer.
Returns a pointer to the Epetra_Comm communicator associated with this
matrix.
"""
return _Epetra.VbrMatrix_Comm(self, *args)
def LRID(self, *args):
"""
LRID(self, int GRID_in) -> int
int
Epetra_VbrMatrix::LRID(int GRID_in) const
Returns the local row index for given global row index, returns -1 if
no local row for this global row.
"""
return _Epetra.VbrMatrix_LRID(self, *args)
def GRID(self, *args):
"""
GRID(self, int LRID_in) -> int
int
Epetra_VbrMatrix::GRID(int LRID_in) const
Returns the global row index for give local row index, returns
IndexBase-1 if we don't have this local row.
"""
return _Epetra.VbrMatrix_GRID(self, *args)
def LCID(self, *args):
"""
LCID(self, int GCID_in) -> int
int
Epetra_VbrMatrix::LCID(int GCID_in) const
Returns the local column index for given global column index, returns
-1 if no local column for this global column.
"""
return _Epetra.VbrMatrix_LCID(self, *args)
def GCID(self, *args):
"""
GCID(self, int LCID_in) -> int
int
Epetra_VbrMatrix::GCID(int LCID_in) const
Returns the global column index for give local column index, returns
IndexBase-1 if we don't have this local column.
"""
return _Epetra.VbrMatrix_GCID(self, *args)
def MyGRID(self, *args):
"""
MyGRID(self, int GRID_in) -> bool
bool
Epetra_VbrMatrix::MyGRID(int GRID_in) const
Returns true if the GRID passed in belongs to the calling processor in
this map, otherwise returns false.
"""
return _Epetra.VbrMatrix_MyGRID(self, *args)
def MyLRID(self, *args):
"""
MyLRID(self, int LRID_in) -> bool
bool
Epetra_VbrMatrix::MyLRID(int LRID_in) const
Returns true if the LRID passed in belongs to the calling processor in
this map, otherwise returns false.
"""
return _Epetra.VbrMatrix_MyLRID(self, *args)
def MyGCID(self, *args):
"""
MyGCID(self, int GCID_in) -> bool
bool
Epetra_VbrMatrix::MyGCID(int GCID_in) const
Returns true if the GCID passed in belongs to the calling processor in
this map, otherwise returns false.
"""
return _Epetra.VbrMatrix_MyGCID(self, *args)
def MyLCID(self, *args):
"""
MyLCID(self, int LCID_in) -> bool
bool
Epetra_VbrMatrix::MyLCID(int LCID_in) const
Returns true if the LRID passed in belongs to the calling processor in
this map, otherwise returns false.
"""
return _Epetra.VbrMatrix_MyLCID(self, *args)
def MyGlobalBlockRow(self, *args):
"""
MyGlobalBlockRow(self, int GID) -> bool
bool
Epetra_VbrMatrix::MyGlobalBlockRow(int GID) const
Returns true of GID is owned by the calling processor, otherwise it
returns false.
"""
return _Epetra.VbrMatrix_MyGlobalBlockRow(self, *args)
def Label(self, *args):
"""
Label(self) -> char
const char*
Epetra_VbrMatrix::Label() const
Returns a character string describing the operator.
"""
return _Epetra.VbrMatrix_Label(self, *args)
def SetUseTranspose(self, *args):
"""
SetUseTranspose(self, bool UseTranspose_in) -> int
int
Epetra_VbrMatrix::SetUseTranspose(bool UseTranspose_in)
If set true, transpose of this operator will be applied.
This flag allows the transpose of the given operator to be used
implicitly. Setting this flag affects only the Apply() and
ApplyInverse() methods. If the implementation of this interface does
not support transpose use, this method should return a value of -1.
Parameters:
-----------
In: UseTranspose -If true, multiply by the transpose of operator,
otherwise just use operator.
Always returns 0.
"""
return _Epetra.VbrMatrix_SetUseTranspose(self, *args)
def Apply(self, *args):
"""
Apply(self, Epetra_MultiVector X, Epetra_MultiVector Y) -> int
int
Epetra_VbrMatrix::Apply(const Epetra_MultiVector &X,
Epetra_MultiVector &Y) const
Returns the result of a Epetra_Operator applied to a
Epetra_MultiVector X in Y.
Parameters:
-----------
In: X - A Epetra_MultiVector of dimension NumVectors to multiply with
matrix.
Out: Y -A Epetra_MultiVector of dimension NumVectors containing
result.
Integer error code, set to 0 if successful.
"""
return _Epetra.VbrMatrix_Apply(self, *args)
def ApplyInverse(self, *args):
"""
ApplyInverse(self, Epetra_MultiVector X, Epetra_MultiVector Y) -> int
int
Epetra_VbrMatrix::ApplyInverse(const Epetra_MultiVector &X,
Epetra_MultiVector &Y) const
Returns the result of a Epetra_Operator inverse applied to an
Epetra_MultiVector X in Y.
In this implementation, we use several existing attributes to
determine how virtual method ApplyInverse() should call the concrete
method Solve(). We pass in the UpperTriangular(), the
Epetra_VbrMatrix::UseTranspose(), and NoDiagonal() methods. The most
notable warning is that if a matrix has no diagonal values we assume
that there is an implicit unit diagonal that should be accounted for
when doing a triangular solve.
Parameters:
-----------
In: X - A Epetra_MultiVector of dimension NumVectors to solve for.
Out: Y -A Epetra_MultiVector of dimension NumVectors containing
result.
Integer error code, set to 0 if successful.
"""
return _Epetra.VbrMatrix_ApplyInverse(self, *args)
def HasNormInf(self, *args):
"""
HasNormInf(self) -> bool
bool
Epetra_VbrMatrix::HasNormInf() const
Returns true because this class can compute an Inf-norm.
"""
return _Epetra.VbrMatrix_HasNormInf(self, *args)
def UseTranspose(self, *args):
"""
UseTranspose(self) -> bool
bool
Epetra_VbrMatrix::UseTranspose() const
Returns the current UseTranspose setting.
"""
return _Epetra.VbrMatrix_UseTranspose(self, *args)
def OperatorDomainMap(self, *args):
"""
OperatorDomainMap(self) -> Map
const
Epetra_Map& Epetra_VbrMatrix::OperatorDomainMap() const
Returns the Epetra_Map object associated with the domain of this
matrix operator.
"""
return _Epetra.VbrMatrix_OperatorDomainMap(self, *args)
def OperatorRangeMap(self, *args):
"""
OperatorRangeMap(self) -> Map
const
Epetra_Map& Epetra_VbrMatrix::OperatorRangeMap() const
Returns the Epetra_Map object associated with the range of this matrix
operator.
"""
return _Epetra.VbrMatrix_OperatorRangeMap(self, *args)
def ExtractGlobalRowCopy(self, *args):
"""
ExtractGlobalRowCopy(self, int GlobalRow, int Length, int NumEntries, double Values,
int Indices) -> int
int
Epetra_VbrMatrix::ExtractGlobalRowCopy(int GlobalRow, int Length, int
&NumEntries, double *Values, int *Indices) const
Returns a copy of the specified global row in user-provided arrays.
Parameters:
-----------
In: GlobalRow - Global row to extract.
In: Length - Length of Values and Indices.
Out: NumEntries - Number of nonzero entries extracted.
Out: Values - Extracted values for this row.
Out: Indices - Extracted global column indices for the corresponding
values.
Integer error code, set to 0 if successful.
"""
return _Epetra.VbrMatrix_ExtractGlobalRowCopy(self, *args)
def ExtractMyRowCopy(self, *args):
"""
ExtractMyRowCopy(self, int MyRow, int Length, int NumEntries, double Values,
int Indices) -> int
int
Epetra_VbrMatrix::ExtractMyRowCopy(int MyRow, int Length, int
&NumEntries, double *Values, int *Indices) const
Returns a copy of the specified local row in user-provided arrays.
Parameters:
-----------
In: MyRow - Local row to extract.
In: Length - Length of Values and Indices.
Out: NumEntries - Number of nonzero entries extracted.
Out: Values - Extracted values for this row.
Out: Indices - Extracted local column indices for the corresponding
values.
Integer error code, set to 0 if successful.
"""
return _Epetra.VbrMatrix_ExtractMyRowCopy(self, *args)
def NumMyRowEntries(self, *args):
"""
NumMyRowEntries(self, int MyRow, int NumEntries) -> int
int
Epetra_VbrMatrix::NumMyRowEntries(int MyRow, int &NumEntries) const
Return the current number of values stored for the specified local
row.
Parameters:
-----------
In: MyRow - Local row.
Out: NumEntries - Number of nonzero values.
Integer error code, set to 0 if successful.
"""
return _Epetra.VbrMatrix_NumMyRowEntries(self, *args)
def MaxNumEntries(self, *args):
"""
MaxNumEntries(self) -> int
int
Epetra_VbrMatrix::MaxNumEntries() const
Returns the maximum of NumMyRowEntries() over all rows.
"""
return _Epetra.VbrMatrix_MaxNumEntries(self, *args)
def Map(self, *args):
"""
Map(self) -> BlockMap
const Epetra_BlockMap&
Epetra_VbrMatrix::Map() const
Map() method inherited from Epetra_DistObject.
"""
return _Epetra.VbrMatrix_Map(self, *args)
def RowMatrixRowMap(self, *args):
"""
RowMatrixRowMap(self) -> Map
const
Epetra_Map& Epetra_VbrMatrix::RowMatrixRowMap() const
Returns the EpetraMap object associated with the rows of this matrix.
"""
return _Epetra.VbrMatrix_RowMatrixRowMap(self, *args)
def RowMatrixColMap(self, *args):
"""
RowMatrixColMap(self) -> Map
const
Epetra_Map& Epetra_VbrMatrix::RowMatrixColMap() const
Returns the Epetra_Map object associated with columns of this matrix.
"""
return _Epetra.VbrMatrix_RowMatrixColMap(self, *args)
def RowMatrixImporter(self, *args):
"""
RowMatrixImporter(self) -> Import
const
Epetra_Import* Epetra_VbrMatrix::RowMatrixImporter() const
Returns the Epetra_Import object that contains the import operations
for distributed operations.
"""
return _Epetra.VbrMatrix_RowMatrixImporter(self, *args)
def BlockImportMap(self, *args):
"""
BlockImportMap(self) -> BlockMap
const
Epetra_BlockMap& Epetra_VbrMatrix::BlockImportMap() const
Use BlockColMap() instead.
"""
return _Epetra.VbrMatrix_BlockImportMap(self, *args)
def TransformToLocal(self, *args):
"""
TransformToLocal(self) -> int
TransformToLocal(self, BlockMap DomainMap, BlockMap RangeMap) -> int
int
Epetra_VbrMatrix::TransformToLocal(const Epetra_BlockMap *DomainMap,
const Epetra_BlockMap *RangeMap)
Use FillComplete(const Epetra_BlockMap& DomainMap, const
Epetra_BlockMap& RangeMap) instead.
"""
return _Epetra.VbrMatrix_TransformToLocal(self, *args)
def __init__(self, *args):
"""
__init__(self, Epetra_DataAccess CV, BlockMap rowMap, int
numBlockEntriesPerRow) -> VbrMatrix
VbrMatrix constructor with implicit column map and constant number
of block entries per row.
__init__(self, Epetra_DataAccess CV, BlockMap rowMap, BlockMap colMap,
int numBlockEntriesPerRow) -> VbrMatrix
VbrMatrix constructor with specified column map and constant number
of block entries per row.
__init__(self, Epetra_DataAccess CV, CrsGraph graph) -> VbrMatrix
CrsGraph constructor.
__init__(self, VbrMatrix matrix) -> VbrMatrix
Copy constructor.
__init__(self, Epetra_DataAccess CV, BlockMap rowMap, PySequence
numBlockEntriesPerRow) -> VbrMatrix
VbrMatrix constructor with implicit column map and variable number
of block entries per row.
__init__(self, Epetra_DataAccess CV, BlockMap rowMap, BlockMap colMap,
PySequence numBlockEntriesPerRow) -> VbrMatrix
VbrMatrix constructor with specified column map and variable number
of block entries per row.
Epetra_VbrMatrix::Epetra_VbrMatrix(const Epetra_VbrMatrix &Matrix)
Copy constructor.
"""
this = _Epetra.new_VbrMatrix(*args)
try: self.this.append(this)
except: self.this = this
VbrMatrix_swigregister = _Epetra.VbrMatrix_swigregister
VbrMatrix_swigregister(VbrMatrix)
class FEVbrMatrix(VbrMatrix):
"""
Epetra Finite-Element VbrMatrix. This class provides the ability to
input finite-element style sub-matrix data, including sub-matrices
with non-local rows (which could correspond to shared finite-element
nodes for example). This class inherits Epetra_VbrMatrix, and so all
Epetra_VbrMatrix functionality is also available.
C++ includes: Epetra_FEVbrMatrix.h
"""
__swig_setmethods__ = {}
for _s in [VbrMatrix]: __swig_setmethods__.update(getattr(_s,'__swig_setmethods__',{}))
__setattr__ = lambda self, name, value: _swig_setattr(self, FEVbrMatrix, name, value)
__swig_getmethods__ = {}
for _s in [VbrMatrix]: __swig_getmethods__.update(getattr(_s,'__swig_getmethods__',{}))
__getattr__ = lambda self, name: _swig_getattr(self, FEVbrMatrix, name)
__repr__ = _swig_repr
def __init__(self, *args):
"""
__init__(self, Epetra_DataAccess CV, BlockMap RowMap, int NumBlockEntriesPerRow,
bool ignoreNonLocalEntries = False) -> FEVbrMatrix
__init__(self, Epetra_DataAccess CV, BlockMap RowMap, int NumBlockEntriesPerRow,
bool ignoreNonLocalEntries = False) -> FEVbrMatrix
__init__(self, Epetra_DataAccess CV, BlockMap RowMap, BlockMap ColMap,
int NumBlockEntriesPerRow, bool ignoreNonLocalEntries = False) -> FEVbrMatrix
__init__(self, Epetra_DataAccess CV, BlockMap RowMap, BlockMap ColMap,
int NumBlockEntriesPerRow, bool ignoreNonLocalEntries = False) -> FEVbrMatrix
__init__(self, Epetra_DataAccess CV, CrsGraph Graph, bool ignoreNonLocalEntries = False) -> FEVbrMatrix
__init__(self, FEVbrMatrix src) -> FEVbrMatrix
Epetra_FEVbrMatrix::Epetra_FEVbrMatrix(const Epetra_FEVbrMatrix &src)
Copy Constructor.
"""
this = _Epetra.new_FEVbrMatrix(*args)
try: self.this.append(this)
except: self.this = this
__swig_destroy__ = _Epetra.delete_FEVbrMatrix
__del__ = lambda self : None;
def PutScalar(self, *args):
"""
PutScalar(self, double ScalarConstant) -> int
int
Epetra_FEVbrMatrix::PutScalar(double ScalarConstant)
Initialize all values in graph of the matrix with constant value.
Parameters:
-----------
In: ScalarConstant - Value to use.
Integer error code, set to 0 if successful.
"""
return _Epetra.FEVbrMatrix_PutScalar(self, *args)
def BeginInsertGlobalValues(self, *args):
"""
BeginInsertGlobalValues(self, int BlockRow, int NumBlockEntries, int BlockIndices) -> int
int Epetra_FEVbrMatrix::BeginInsertGlobalValues(int BlockRow, int
NumBlockEntries, int *BlockIndices)
Initiate insertion of a list of elements in a given global row of the
matrix, values are inserted via SubmitEntry().
Parameters:
-----------
In: BlockRow - Block Row number (in global coordinates) to put
elements.
In: NumBlockEntries - Number of entries.
In: Indices - Global column indices corresponding to values.
Integer error code, set to 0 if successful.
"""
return _Epetra.FEVbrMatrix_BeginInsertGlobalValues(self, *args)
def BeginReplaceGlobalValues(self, *args):
"""
BeginReplaceGlobalValues(self, int BlockRow, int NumBlockEntries, int BlockIndices) -> int
int Epetra_FEVbrMatrix::BeginReplaceGlobalValues(int BlockRow, int
NumBlockEntries, int *BlockIndices)
Initiate replacement of current values with this list of entries for a
given global row of the matrix, values are replaced via SubmitEntry().
Parameters:
-----------
In: Row - Block Row number (in global coordinates) to put elements.
In: NumBlockEntries - Number of entries.
In: Indices - Global column indices corresponding to values.
Integer error code, set to 0 if successful.
"""
return _Epetra.FEVbrMatrix_BeginReplaceGlobalValues(self, *args)
def BeginSumIntoGlobalValues(self, *args):
"""
BeginSumIntoGlobalValues(self, int BlockRow, int NumBlockEntries, int BlockIndices) -> int
int Epetra_FEVbrMatrix::BeginSumIntoGlobalValues(int BlockRow, int
NumBlockEntries, int *BlockIndices)
Initiate summing into current values with this list of entries for a
given global row of the matrix, values are replaced via SubmitEntry().
Parameters:
-----------
In: Row - Block Row number (in global coordinates) to put elements.
In: NumBlockEntries - Number of entries.
In: Indices - Global column indices corresponding to values.
Integer error code, set to 0 if successful.
"""
return _Epetra.FEVbrMatrix_BeginSumIntoGlobalValues(self, *args)
def SubmitBlockEntry(self, *args):
"""
SubmitBlockEntry(self, Epetra_SerialDenseMatrix Mat) -> int
SubmitBlockEntry(self, double Values, int LDA, int NumRows, int NumCols) -> int
int
Epetra_FEVbrMatrix::SubmitBlockEntry(double *Values, int LDA, int
NumRows, int NumCols)
Submit a block entry to the indicated block row and column specified
in the Begin routine.
"""
return _Epetra.FEVbrMatrix_SubmitBlockEntry(self, *args)
def EndSubmitEntries(self, *args):
"""
EndSubmitEntries(self) -> int
int
Epetra_FEVbrMatrix::EndSubmitEntries()
Completes processing of all data passed in for the current block row.
This function completes the processing of all block entries submitted
via SubmitBlockEntry(). It also checks to make sure that
SubmitBlockEntry was called the correct number of times as specified
by the Begin routine that initiated the entry process.
"""
return _Epetra.FEVbrMatrix_EndSubmitEntries(self, *args)
def GlobalAssemble(self, *args):
"""
GlobalAssemble(self, bool callFillComplete = True) -> int
int
Epetra_FEVbrMatrix::GlobalAssemble(bool callFillComplete=true)
"""
return _Epetra.FEVbrMatrix_GlobalAssemble(self, *args)
FEVbrMatrix_swigregister = _Epetra.FEVbrMatrix_swigregister
FEVbrMatrix_swigregister(FEVbrMatrix)
class JadMatrix(BasicRowMatrix):
"""
Epetra_JadMatrix: A class for constructing matrix objects optimized
for common kernels.
The Epetra_JadMatrix class takes an existing Epetra_RowMatrix ojbect,
analyzes it and builds a jagged diagonal equivalent of it. Once
constructed, it is also possible to update the values of the matrix
with values from another Epetra_RowMatrix that has the identical
structure.
C++ includes: Epetra_JadMatrix.h
"""
__swig_setmethods__ = {}
for _s in [BasicRowMatrix]: __swig_setmethods__.update(getattr(_s,'__swig_setmethods__',{}))
__setattr__ = lambda self, name, value: _swig_setattr(self, JadMatrix, name, value)
__swig_getmethods__ = {}
for _s in [BasicRowMatrix]: __swig_getmethods__.update(getattr(_s,'__swig_getmethods__',{}))
__getattr__ = lambda self, name: _swig_getattr(self, JadMatrix, name)
__repr__ = _swig_repr
def __init__(self, *args):
"""
__init__(self, RowMatrix Matrix) -> JadMatrix
Epetra_JadMatrix::Epetra_JadMatrix(const Epetra_RowMatrix &Matrix)
Epetra_JadMatrix constuctor.
"""
this = _Epetra.new_JadMatrix(*args)
try: self.this.append(this)
except: self.this = this
__swig_destroy__ = _Epetra.delete_JadMatrix
__del__ = lambda self : None;
def UpdateValues(self, *args):
"""
UpdateValues(self, RowMatrix Matrix, bool CheckStructure = False) -> int
int
Epetra_JadMatrix::UpdateValues(const Epetra_RowMatrix &Matrix, bool
CheckStructure=false)
Update values using a matrix with identical structure.
"""
return _Epetra.JadMatrix_UpdateValues(self, *args)
def ExtractMyRowCopy(self, *args):
"""
ExtractMyRowCopy(self, int MyRow, int Length, int NumEntries, double Values,
int Indices) -> int
int
Epetra_JadMatrix::ExtractMyRowCopy(int MyRow, int Length, int
&NumEntries, double *Values, int *Indices) const
Returns a copy of the specified local row in user-provided arrays.
Parameters:
-----------
MyRow: (In) - Local row to extract.
Length: (In) - Length of Values and Indices.
NumEntries: (Out) - Number of nonzero entries extracted.
Values: (Out) - Extracted values for this row.
Indices: (Out) - Extracted global column indices for the
corresponding values.
Integer error code, set to 0 if successful, set to -1 if MyRow not
valid, -2 if Length is too short (NumEntries will have required
length).
"""
return _Epetra.JadMatrix_ExtractMyRowCopy(self, *args)
def NumMyRowEntries(self, *args):
"""
NumMyRowEntries(self, int MyRow, int NumEntries) -> int
int
Epetra_JadMatrix::NumMyRowEntries(int MyRow, int &NumEntries) const
Return the current number of values stored for the specified local
row.
Similar to NumMyEntries() except NumEntries is returned as an argument
and error checking is done on the input value MyRow.
Parameters:
-----------
MyRow: - (In) Local row.
NumEntries: - (Out) Number of nonzero values.
Integer error code, set to 0 if successful, set to -1 if MyRow not
valid.
None.
Unchanged.
"""
return _Epetra.JadMatrix_NumMyRowEntries(self, *args)
def Multiply(self, *args):
"""
Multiply(self, bool TransA, Epetra_MultiVector X, Epetra_MultiVector Y) -> int
int
Epetra_JadMatrix::Multiply(bool TransA, const Epetra_MultiVector &X,
Epetra_MultiVector &Y) const
Returns the result of a Epetra_JadMatrix multiplied by a
Epetra_MultiVector X in Y.
Parameters:
-----------
In: TransA -If true, multiply by the transpose of matrix, otherwise
just use matrix.
In: X - A Epetra_MultiVector of dimension NumVectors to multiply with
matrix.
Out: Y -A Epetra_MultiVector of dimension NumVectorscontaining
result.
Integer error code, set to 0 if successful.
"""
return _Epetra.JadMatrix_Multiply(self, *args)
def Solve(self, *args):
"""
Solve(self, bool Upper, bool Trans, bool UnitDiagonal, Epetra_MultiVector X,
Epetra_MultiVector Y) -> int
int
Epetra_JadMatrix::Solve(bool Upper, bool Trans, bool UnitDiagonal,
const Epetra_MultiVector &X, Epetra_MultiVector &Y) const
Returns the result of a Epetra_JadMatrix solve with a
Epetra_MultiVector X in Y (not implemented).
Parameters:
-----------
In: Upper -If true, solve Ux = y, otherwise solve Lx = y.
In: Trans -If true, solve transpose problem.
In: UnitDiagonal -If true, assume diagonal is unit (whether it's
stored or not).
In: X - A Epetra_MultiVector of dimension NumVectors to solve for.
Out: Y -A Epetra_MultiVector of dimension NumVectors containing
result.
Integer error code, set to 0 if successful.
"""
return _Epetra.JadMatrix_Solve(self, *args)
JadMatrix_swigregister = _Epetra.JadMatrix_swigregister
JadMatrix_swigregister(JadMatrix)
easy = _Epetra.easy
moderate = _Epetra.moderate
hard = _Epetra.hard
unsure = _Epetra.unsure
class LinearProblem(_object):
"""
Epetra_LinearProblem: The Epetra Linear Problem Class.
The Epetra_LinearProblem class is a wrapper that encapsulates the
general information needed for solving a linear system of equations.
Currently it accepts a Epetra matrix, initial guess and RHS and
returns the solution. the elapsed time for each calling processor.
C++ includes: Epetra_LinearProblem.h
"""
__swig_setmethods__ = {}
__setattr__ = lambda self, name, value: _swig_setattr(self, LinearProblem, name, value)
__swig_getmethods__ = {}
__getattr__ = lambda self, name: _swig_getattr(self, LinearProblem, name)
__repr__ = _swig_repr
def __init__(self, *args):
"""
__init__(self) -> LinearProblem
__init__(self, RowMatrix A, Epetra_MultiVector X, Epetra_MultiVector B) -> LinearProblem
__init__(self, Operator A, Epetra_MultiVector X, Epetra_MultiVector B) -> LinearProblem
__init__(self, LinearProblem Problem) -> LinearProblem
Epetra_LinearProblem::Epetra_LinearProblem(const Epetra_LinearProblem
&Problem)
Epetra_LinearProblem Copy Constructor.
Makes copy of an existing Epetra_LinearProblem instance.
"""
this = _Epetra.new_LinearProblem(*args)
try: self.this.append(this)
except: self.this = this
__swig_destroy__ = _Epetra.delete_LinearProblem
__del__ = lambda self : None;
def CheckInput(self, *args):
"""
CheckInput(self) -> int
int
Epetra_LinearProblem::CheckInput() const
Check input parameters for existence and size consistency.
Returns 0 if all input parameters are valid. Returns +1 if operator is
not a matrix. This is not necessarily an error, but no scaling can be
done if the user passes in an Epetra_Operator that is not an
Epetra_Matrix
"""
return _Epetra.LinearProblem_CheckInput(self, *args)
def AssertSymmetric(self, *args):
"""
AssertSymmetric(self)
void
Epetra_LinearProblem::AssertSymmetric()
"""
return _Epetra.LinearProblem_AssertSymmetric(self, *args)
def SetPDL(self, *args):
"""
SetPDL(self, ProblemDifficultyLevel PDL)
void
Epetra_LinearProblem::SetPDL(ProblemDifficultyLevel PDL)
Set problem difficulty level.
Sets Aztec options and parameters based on a definition of easy
moderate or hard problem. Relieves the user from explicitly setting a
large number of individual parameter values. This function can be used
in conjunction with the SetOptions() and SetParams() functions.
"""
return _Epetra.LinearProblem_SetPDL(self, *args)
def SetOperator(self, *args):
"""
SetOperator(self, RowMatrix A)
SetOperator(self, Operator A)
void
Epetra_LinearProblem::SetOperator(Epetra_Operator *A)
Set Operator A of linear problem AX = B using an Epetra_Operator.
Sets a pointer to a Epetra_Operator. No copy of the operator is made.
"""
return _Epetra.LinearProblem_SetOperator(self, *args)
def SetLHS(self, *args):
"""
SetLHS(self, Epetra_MultiVector X)
void
Epetra_LinearProblem::SetLHS(Epetra_MultiVector *X)
Set left-hand-side X of linear problem AX = B.
Sets a pointer to a Epetra_MultiVector. No copy of the object is made.
"""
return _Epetra.LinearProblem_SetLHS(self, *args)
def SetRHS(self, *args):
"""
SetRHS(self, Epetra_MultiVector B)
void
Epetra_LinearProblem::SetRHS(Epetra_MultiVector *B)
Set right-hand-side B of linear problem AX = B.
Sets a pointer to a Epetra_MultiVector. No copy of the object is made.
"""
return _Epetra.LinearProblem_SetRHS(self, *args)
def LeftScale(self, *args):
"""
LeftScale(self, Epetra_Vector D) -> int
int
Epetra_LinearProblem::LeftScale(const Epetra_Vector &D)
Perform left scaling of a linear problem.
Applies the scaling vector D to the left side of the matrix A() and to
the right hand side B(). Note that the operator must be an
Epetra_RowMatrix, not just an Epetra_Operator (the base class of
Epetra_RowMatrix).
Parameters:
-----------
In: D - Vector containing scaling values. D[i] will be applied to the
ith row of A() and B().
Integer error code, set to 0 if successful. Return -1 if operator is
not a matrix.
"""
return _Epetra.LinearProblem_LeftScale(self, *args)
def RightScale(self, *args):
"""
RightScale(self, Epetra_Vector D) -> int
int
Epetra_LinearProblem::RightScale(const Epetra_Vector &D)
Perform right scaling of a linear problem.
Applies the scaling vector D to the right side of the matrix A().
Apply the inverse of D to the initial guess. Note that the operator
must be an Epetra_RowMatrix, not just an Epetra_Operator (the base
class of Epetra_RowMatrix).
Parameters:
-----------
In: D - Vector containing scaling values. D[i] will be applied to the
ith row of A(). 1/D[i] will be applied to the ith row of B().
Integer error code, set to 0 if successful. Return -1 if operator is
not a matrix.
"""
return _Epetra.LinearProblem_RightScale(self, *args)
def GetOperator(self, *args):
"""
GetOperator(self) -> Operator
Epetra_Operator* Epetra_LinearProblem::GetOperator() const
Get a pointer to the operator A.
"""
return _Epetra.LinearProblem_GetOperator(self, *args)
def GetMatrix(self, *args):
"""
GetMatrix(self) -> RowMatrix
Epetra_RowMatrix* Epetra_LinearProblem::GetMatrix() const
Get a pointer to the matrix A.
"""
return _Epetra.LinearProblem_GetMatrix(self, *args)
def GetLHS(self, *args):
"""
GetLHS(self) -> Epetra_MultiVector
Epetra_MultiVector* Epetra_LinearProblem::GetLHS() const
Get a pointer to the left-hand-side X.
"""
return _Epetra.LinearProblem_GetLHS(self, *args)
def GetRHS(self, *args):
"""
GetRHS(self) -> Epetra_MultiVector
Epetra_MultiVector* Epetra_LinearProblem::GetRHS() const
Get a pointer to the right-hand-side B.
"""
return _Epetra.LinearProblem_GetRHS(self, *args)
def GetPDL(self, *args):
"""
GetPDL(self) -> ProblemDifficultyLevel
ProblemDifficultyLevel Epetra_LinearProblem::GetPDL() const
Get problem difficulty level.
"""
return _Epetra.LinearProblem_GetPDL(self, *args)
def IsOperatorSymmetric(self, *args):
"""
IsOperatorSymmetric(self) -> bool
bool Epetra_LinearProblem::IsOperatorSymmetric() const
Get operator symmetry bool.
"""
return _Epetra.LinearProblem_IsOperatorSymmetric(self, *args)
LinearProblem_swigregister = _Epetra.LinearProblem_swigregister
LinearProblem_swigregister(LinearProblem)
# This file is compatible with both classic and new-style classes.
|