This file is indexed.

/usr/share/pyshared/PyTrilinos/Anasazi.py is in python-pytrilinos 10.4.0.dfsg-1ubuntu2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
4533
4534
4535
4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
4548
4549
4550
4551
4552
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
4570
4571
4572
4573
4574
4575
4576
4577
4578
4579
4580
4581
4582
4583
4584
4585
4586
4587
4588
4589
4590
4591
4592
4593
4594
4595
4596
4597
4598
4599
4600
4601
4602
4603
4604
4605
4606
4607
4608
4609
4610
4611
4612
4613
4614
4615
4616
4617
4618
4619
4620
4621
4622
4623
4624
4625
4626
4627
4628
4629
4630
4631
4632
4633
4634
4635
4636
4637
4638
4639
4640
4641
4642
4643
4644
4645
4646
4647
4648
4649
4650
4651
4652
4653
4654
4655
4656
4657
4658
4659
4660
4661
4662
4663
4664
4665
4666
4667
4668
4669
4670
4671
4672
4673
4674
4675
4676
4677
4678
4679
4680
4681
4682
4683
4684
4685
4686
4687
4688
4689
4690
4691
4692
4693
4694
4695
4696
4697
4698
4699
4700
4701
4702
4703
4704
4705
4706
4707
4708
4709
4710
4711
4712
4713
4714
4715
4716
4717
4718
4719
4720
4721
4722
4723
4724
4725
4726
4727
4728
4729
4730
4731
4732
4733
4734
4735
4736
4737
4738
4739
4740
4741
4742
4743
4744
4745
4746
4747
4748
4749
4750
4751
4752
4753
4754
4755
4756
4757
4758
4759
4760
4761
4762
4763
4764
4765
4766
4767
4768
4769
4770
4771
4772
4773
4774
4775
4776
4777
4778
4779
4780
4781
4782
4783
4784
4785
4786
4787
4788
4789
4790
4791
4792
4793
4794
4795
4796
4797
4798
4799
4800
4801
4802
4803
4804
4805
4806
4807
4808
4809
4810
4811
4812
4813
4814
4815
4816
4817
4818
4819
4820
4821
4822
4823
4824
4825
4826
4827
4828
4829
4830
4831
4832
4833
4834
4835
4836
4837
4838
4839
4840
4841
4842
4843
4844
4845
4846
4847
4848
4849
4850
4851
4852
4853
4854
4855
4856
4857
4858
4859
4860
4861
4862
4863
4864
4865
4866
4867
4868
4869
4870
4871
4872
4873
4874
4875
4876
4877
4878
4879
4880
4881
4882
4883
4884
4885
4886
4887
4888
4889
4890
4891
4892
4893
4894
4895
4896
4897
4898
4899
4900
4901
4902
4903
4904
4905
4906
4907
4908
4909
4910
4911
4912
4913
4914
4915
4916
4917
4918
4919
4920
4921
4922
4923
4924
4925
4926
4927
4928
4929
4930
4931
4932
4933
4934
4935
4936
4937
4938
4939
4940
4941
4942
4943
4944
4945
4946
4947
4948
4949
4950
4951
4952
4953
4954
4955
4956
4957
4958
4959
4960
4961
4962
4963
4964
4965
4966
4967
4968
4969
4970
4971
4972
4973
4974
4975
4976
4977
4978
4979
4980
4981
4982
4983
4984
4985
4986
4987
4988
4989
4990
4991
4992
4993
4994
4995
4996
4997
4998
4999
5000
5001
5002
5003
5004
5005
5006
5007
5008
5009
5010
5011
5012
5013
5014
5015
5016
5017
5018
5019
5020
5021
5022
5023
5024
5025
5026
5027
5028
5029
5030
5031
5032
5033
5034
5035
5036
5037
5038
5039
5040
5041
5042
5043
5044
5045
5046
5047
5048
5049
5050
5051
5052
5053
5054
5055
5056
5057
5058
5059
5060
5061
5062
5063
5064
5065
5066
5067
5068
5069
5070
5071
5072
5073
5074
5075
5076
5077
5078
5079
5080
5081
5082
5083
5084
5085
5086
5087
5088
5089
5090
5091
5092
5093
5094
5095
5096
5097
5098
5099
5100
5101
5102
5103
5104
5105
5106
5107
5108
5109
5110
5111
5112
5113
5114
5115
5116
5117
5118
5119
5120
5121
5122
5123
5124
5125
5126
5127
5128
5129
5130
5131
5132
5133
5134
5135
5136
5137
5138
5139
5140
5141
5142
5143
5144
5145
5146
5147
5148
5149
5150
5151
5152
5153
5154
5155
5156
5157
5158
5159
5160
5161
5162
5163
5164
5165
5166
5167
5168
5169
5170
5171
5172
5173
5174
5175
5176
5177
5178
5179
5180
5181
5182
5183
5184
5185
5186
5187
5188
5189
5190
5191
5192
5193
5194
5195
5196
5197
5198
5199
5200
5201
5202
5203
5204
5205
5206
5207
5208
5209
5210
5211
5212
5213
5214
5215
5216
5217
5218
5219
5220
5221
5222
5223
5224
5225
5226
5227
5228
5229
5230
5231
5232
5233
5234
5235
5236
5237
5238
5239
5240
5241
5242
5243
5244
5245
5246
5247
5248
5249
5250
5251
5252
5253
5254
5255
5256
5257
5258
5259
5260
5261
5262
5263
5264
5265
5266
5267
5268
5269
5270
5271
5272
5273
5274
5275
5276
5277
5278
5279
5280
5281
5282
5283
5284
5285
5286
5287
5288
5289
5290
5291
5292
5293
5294
5295
5296
5297
5298
5299
5300
5301
5302
5303
5304
5305
5306
5307
5308
5309
5310
5311
5312
5313
5314
5315
5316
5317
5318
5319
5320
5321
5322
5323
5324
5325
5326
5327
5328
5329
5330
5331
5332
5333
5334
5335
5336
5337
5338
5339
5340
5341
5342
5343
5344
5345
5346
5347
5348
5349
5350
5351
5352
5353
5354
5355
5356
5357
5358
5359
5360
5361
5362
5363
5364
5365
5366
5367
5368
5369
5370
5371
5372
5373
5374
5375
5376
5377
5378
5379
5380
5381
5382
5383
5384
5385
5386
5387
5388
5389
5390
5391
5392
5393
5394
5395
5396
5397
5398
5399
5400
5401
5402
5403
5404
5405
5406
5407
5408
5409
5410
5411
5412
5413
5414
5415
5416
5417
5418
5419
5420
5421
5422
5423
5424
5425
5426
5427
5428
5429
5430
5431
5432
5433
5434
5435
5436
5437
5438
5439
5440
5441
5442
5443
5444
5445
5446
5447
5448
5449
5450
5451
5452
5453
5454
5455
5456
5457
5458
5459
5460
5461
5462
5463
5464
5465
5466
5467
5468
5469
5470
5471
5472
5473
5474
5475
5476
5477
5478
5479
5480
5481
5482
5483
5484
5485
5486
5487
5488
5489
5490
5491
5492
5493
5494
5495
5496
5497
5498
5499
5500
5501
5502
5503
5504
5505
5506
5507
5508
5509
5510
5511
5512
5513
5514
5515
5516
5517
5518
5519
5520
5521
5522
5523
5524
5525
5526
5527
5528
5529
5530
5531
5532
5533
5534
5535
5536
5537
5538
5539
5540
5541
5542
5543
5544
5545
5546
5547
5548
5549
5550
5551
5552
5553
5554
5555
5556
5557
5558
5559
5560
5561
5562
5563
5564
5565
5566
5567
5568
5569
5570
5571
5572
5573
5574
5575
5576
5577
5578
5579
5580
5581
5582
5583
5584
5585
5586
5587
5588
5589
5590
5591
5592
5593
5594
5595
5596
5597
5598
5599
5600
5601
5602
5603
5604
5605
5606
5607
5608
5609
5610
5611
5612
5613
5614
5615
5616
5617
5618
5619
5620
5621
5622
5623
5624
5625
5626
5627
5628
5629
5630
5631
5632
5633
5634
5635
5636
5637
5638
5639
5640
5641
5642
5643
5644
5645
5646
5647
5648
5649
5650
5651
5652
5653
5654
5655
5656
5657
5658
5659
5660
5661
5662
5663
5664
5665
5666
5667
5668
5669
5670
5671
5672
5673
5674
5675
5676
5677
5678
5679
5680
5681
5682
5683
5684
5685
5686
5687
5688
5689
5690
5691
5692
5693
5694
5695
5696
5697
5698
5699
5700
5701
5702
5703
5704
5705
5706
5707
5708
5709
5710
5711
5712
5713
5714
5715
5716
5717
5718
5719
5720
5721
5722
5723
5724
5725
5726
5727
5728
5729
5730
5731
5732
5733
5734
5735
5736
5737
5738
5739
5740
5741
5742
5743
5744
5745
5746
5747
5748
5749
5750
5751
5752
5753
5754
5755
5756
5757
5758
5759
5760
5761
5762
5763
5764
5765
5766
5767
5768
5769
5770
5771
5772
5773
5774
5775
5776
5777
5778
5779
5780
5781
5782
5783
5784
5785
5786
5787
5788
5789
5790
5791
5792
5793
5794
5795
5796
5797
5798
5799
5800
5801
5802
5803
5804
5805
5806
5807
5808
5809
5810
5811
5812
5813
5814
5815
5816
5817
5818
5819
5820
5821
5822
5823
5824
5825
5826
5827
5828
5829
5830
5831
5832
5833
5834
5835
5836
5837
5838
5839
5840
5841
5842
5843
5844
5845
5846
5847
5848
5849
5850
5851
5852
5853
5854
5855
5856
5857
5858
5859
5860
5861
5862
5863
5864
5865
5866
5867
5868
5869
5870
5871
5872
5873
5874
5875
5876
5877
5878
5879
5880
5881
5882
5883
5884
5885
5886
5887
5888
5889
5890
5891
5892
5893
5894
5895
5896
5897
5898
5899
5900
5901
5902
5903
5904
5905
5906
5907
5908
5909
5910
5911
5912
5913
5914
5915
5916
5917
5918
5919
5920
5921
5922
5923
5924
5925
5926
5927
5928
5929
5930
5931
5932
5933
5934
5935
5936
5937
5938
5939
5940
5941
5942
5943
5944
5945
5946
5947
5948
5949
5950
5951
5952
5953
5954
5955
5956
5957
5958
5959
5960
5961
5962
5963
5964
5965
5966
5967
5968
5969
5970
5971
5972
5973
5974
5975
5976
5977
5978
5979
5980
5981
5982
5983
5984
5985
5986
5987
5988
5989
5990
5991
5992
5993
5994
5995
5996
5997
5998
5999
6000
6001
6002
6003
6004
6005
6006
6007
6008
6009
6010
6011
6012
6013
6014
6015
6016
6017
6018
6019
6020
6021
6022
6023
6024
6025
6026
6027
6028
6029
6030
6031
6032
6033
6034
6035
6036
6037
6038
6039
6040
6041
6042
6043
6044
6045
6046
6047
6048
6049
6050
6051
6052
6053
6054
6055
6056
6057
6058
6059
6060
6061
6062
6063
6064
6065
6066
6067
6068
6069
6070
6071
6072
6073
6074
6075
6076
6077
6078
6079
6080
6081
6082
6083
6084
6085
6086
6087
6088
6089
6090
6091
6092
6093
6094
6095
6096
6097
6098
6099
6100
6101
6102
6103
6104
6105
6106
6107
6108
6109
6110
6111
6112
6113
6114
6115
6116
6117
6118
6119
6120
6121
6122
6123
6124
6125
6126
6127
6128
6129
6130
6131
6132
6133
6134
6135
6136
6137
6138
6139
6140
6141
6142
6143
6144
6145
6146
6147
6148
6149
6150
6151
6152
6153
6154
6155
6156
6157
6158
6159
6160
6161
6162
6163
6164
6165
6166
6167
6168
6169
6170
6171
6172
6173
6174
6175
6176
6177
6178
6179
6180
6181
6182
6183
6184
6185
6186
6187
6188
6189
6190
6191
6192
6193
6194
6195
6196
6197
6198
6199
6200
6201
6202
6203
6204
6205
6206
6207
6208
6209
6210
6211
6212
6213
6214
6215
6216
6217
6218
6219
6220
6221
6222
6223
6224
6225
6226
6227
6228
6229
6230
6231
6232
6233
6234
6235
6236
6237
6238
6239
6240
6241
6242
6243
6244
6245
6246
6247
6248
6249
6250
6251
6252
6253
6254
6255
6256
6257
6258
6259
6260
6261
6262
6263
6264
6265
6266
6267
6268
6269
6270
6271
6272
6273
6274
6275
6276
6277
6278
6279
6280
6281
6282
6283
6284
6285
6286
6287
6288
6289
6290
6291
6292
6293
6294
6295
6296
6297
6298
6299
6300
6301
6302
6303
6304
6305
6306
6307
6308
6309
6310
6311
6312
6313
6314
6315
6316
6317
6318
6319
6320
6321
6322
6323
6324
6325
6326
6327
6328
6329
6330
6331
6332
6333
6334
6335
6336
6337
6338
6339
6340
6341
6342
6343
6344
6345
6346
6347
6348
6349
6350
6351
6352
6353
6354
6355
6356
6357
6358
6359
6360
6361
6362
6363
6364
6365
6366
6367
6368
6369
6370
6371
6372
6373
6374
6375
6376
6377
6378
6379
6380
6381
6382
6383
6384
6385
6386
6387
6388
6389
6390
6391
6392
6393
6394
6395
6396
6397
6398
6399
6400
6401
6402
6403
6404
6405
6406
6407
6408
6409
6410
6411
6412
6413
6414
6415
6416
6417
6418
6419
6420
6421
6422
6423
6424
6425
6426
6427
6428
6429
6430
6431
6432
6433
6434
6435
6436
6437
6438
6439
6440
6441
6442
6443
6444
6445
6446
6447
6448
6449
6450
6451
6452
6453
6454
6455
6456
6457
6458
6459
6460
6461
6462
6463
6464
6465
6466
6467
6468
6469
6470
6471
6472
6473
6474
6475
6476
6477
6478
6479
6480
6481
6482
6483
6484
6485
6486
6487
6488
6489
6490
6491
6492
6493
6494
6495
6496
6497
6498
6499
6500
6501
6502
6503
6504
6505
6506
6507
6508
6509
6510
6511
6512
6513
6514
6515
6516
6517
6518
6519
6520
6521
6522
6523
6524
6525
6526
6527
6528
6529
6530
6531
6532
6533
6534
6535
6536
6537
6538
6539
6540
6541
6542
6543
6544
6545
6546
6547
6548
6549
6550
6551
6552
6553
6554
6555
6556
6557
6558
6559
6560
6561
6562
6563
6564
6565
6566
6567
6568
6569
6570
6571
6572
6573
6574
6575
6576
6577
6578
6579
6580
6581
6582
6583
6584
6585
6586
6587
6588
6589
6590
6591
6592
6593
6594
6595
6596
6597
6598
6599
6600
6601
6602
6603
6604
6605
6606
6607
6608
6609
6610
6611
6612
6613
6614
6615
6616
6617
6618
6619
6620
6621
6622
6623
6624
6625
6626
6627
6628
6629
6630
6631
6632
6633
6634
6635
6636
6637
6638
6639
6640
6641
6642
6643
6644
6645
6646
6647
6648
6649
6650
6651
6652
6653
6654
6655
6656
6657
6658
6659
6660
6661
6662
6663
6664
6665
6666
6667
6668
6669
6670
6671
6672
6673
6674
6675
6676
6677
6678
6679
6680
6681
6682
6683
6684
6685
6686
6687
6688
6689
6690
6691
6692
6693
6694
6695
6696
6697
6698
6699
6700
6701
6702
6703
6704
6705
6706
6707
6708
6709
6710
6711
6712
6713
6714
6715
6716
6717
6718
6719
6720
6721
6722
6723
6724
6725
6726
6727
6728
6729
6730
6731
6732
6733
6734
6735
6736
6737
6738
6739
6740
6741
6742
6743
6744
6745
6746
6747
6748
6749
6750
6751
6752
6753
6754
6755
6756
6757
6758
6759
6760
6761
6762
6763
6764
6765
6766
6767
6768
6769
6770
6771
6772
6773
6774
6775
6776
6777
6778
6779
6780
6781
6782
6783
6784
6785
6786
6787
6788
6789
6790
6791
6792
6793
6794
6795
6796
6797
6798
6799
6800
6801
6802
6803
6804
6805
6806
6807
6808
6809
6810
6811
6812
6813
6814
6815
6816
6817
6818
6819
6820
6821
6822
6823
6824
6825
6826
6827
6828
6829
6830
6831
6832
6833
6834
6835
6836
6837
6838
6839
6840
6841
6842
6843
6844
6845
6846
6847
6848
6849
6850
6851
6852
6853
6854
6855
6856
6857
6858
6859
6860
6861
6862
6863
6864
6865
6866
6867
6868
6869
6870
6871
6872
6873
6874
6875
6876
6877
6878
6879
6880
6881
6882
6883
6884
6885
6886
6887
6888
6889
6890
6891
6892
6893
6894
6895
6896
6897
6898
6899
6900
6901
6902
6903
6904
6905
6906
6907
6908
6909
6910
6911
6912
6913
6914
6915
6916
6917
6918
6919
6920
6921
6922
6923
6924
6925
6926
6927
6928
6929
6930
6931
6932
6933
6934
6935
6936
6937
6938
6939
6940
6941
6942
6943
6944
6945
6946
6947
6948
6949
6950
6951
6952
6953
6954
6955
6956
6957
6958
6959
6960
6961
6962
6963
6964
6965
6966
6967
6968
6969
6970
6971
6972
6973
6974
6975
6976
6977
6978
6979
6980
6981
6982
6983
6984
6985
6986
6987
6988
6989
6990
6991
6992
6993
6994
6995
6996
6997
6998
6999
7000
7001
7002
7003
7004
7005
7006
7007
7008
7009
7010
7011
7012
7013
7014
7015
7016
7017
7018
7019
7020
7021
7022
7023
7024
7025
7026
7027
7028
7029
7030
7031
7032
7033
7034
7035
7036
7037
7038
7039
7040
7041
7042
7043
7044
7045
7046
7047
7048
7049
7050
7051
7052
7053
7054
7055
7056
7057
7058
7059
7060
7061
7062
7063
7064
7065
7066
7067
7068
7069
7070
7071
7072
7073
7074
7075
7076
7077
7078
7079
7080
7081
7082
7083
7084
7085
7086
7087
7088
7089
7090
7091
7092
7093
7094
7095
7096
7097
7098
7099
7100
7101
7102
7103
7104
7105
7106
7107
7108
7109
7110
7111
7112
7113
7114
7115
7116
7117
7118
7119
7120
7121
7122
7123
7124
7125
7126
7127
7128
7129
7130
7131
7132
7133
7134
7135
7136
7137
7138
7139
7140
7141
7142
7143
7144
7145
7146
7147
7148
7149
7150
7151
7152
7153
7154
7155
7156
7157
7158
7159
7160
7161
7162
7163
7164
7165
7166
7167
7168
7169
7170
7171
7172
7173
7174
7175
7176
7177
7178
7179
7180
7181
7182
7183
7184
7185
7186
7187
7188
7189
7190
7191
7192
7193
7194
7195
7196
7197
7198
7199
7200
7201
7202
7203
7204
7205
7206
7207
7208
7209
7210
7211
7212
7213
7214
7215
7216
7217
7218
7219
7220
7221
7222
7223
7224
7225
7226
7227
7228
7229
7230
7231
7232
7233
7234
7235
7236
7237
7238
7239
7240
7241
7242
7243
7244
7245
7246
7247
7248
7249
7250
7251
7252
7253
7254
7255
7256
7257
7258
7259
7260
7261
7262
7263
7264
7265
7266
7267
7268
7269
7270
7271
7272
7273
7274
7275
7276
7277
7278
7279
7280
7281
7282
7283
7284
7285
7286
7287
7288
7289
7290
7291
7292
7293
7294
7295
7296
7297
7298
7299
7300
7301
7302
7303
7304
7305
7306
7307
7308
7309
7310
7311
7312
7313
7314
7315
7316
7317
7318
7319
7320
7321
7322
7323
7324
7325
7326
7327
7328
7329
7330
7331
7332
7333
7334
7335
7336
7337
7338
7339
7340
7341
7342
7343
7344
7345
7346
7347
7348
7349
7350
7351
7352
7353
7354
7355
7356
7357
7358
7359
7360
7361
7362
7363
7364
7365
7366
7367
7368
7369
7370
7371
7372
7373
7374
7375
7376
7377
7378
7379
7380
7381
7382
7383
7384
7385
7386
7387
7388
7389
7390
7391
7392
7393
7394
7395
7396
7397
7398
7399
7400
7401
7402
7403
7404
7405
7406
7407
7408
7409
7410
7411
7412
7413
7414
7415
7416
7417
7418
7419
7420
7421
7422
7423
7424
7425
7426
7427
7428
7429
7430
7431
7432
7433
7434
7435
7436
7437
7438
7439
7440
7441
7442
7443
7444
7445
7446
7447
7448
7449
7450
7451
7452
7453
7454
7455
7456
7457
7458
7459
7460
7461
7462
7463
7464
7465
7466
7467
7468
7469
7470
7471
7472
7473
7474
7475
7476
7477
7478
7479
7480
7481
7482
7483
7484
7485
7486
7487
7488
7489
7490
7491
7492
7493
7494
7495
7496
7497
7498
7499
7500
7501
7502
7503
7504
7505
7506
7507
7508
7509
7510
7511
7512
7513
7514
7515
7516
7517
7518
7519
7520
7521
7522
7523
7524
7525
7526
7527
7528
7529
7530
7531
7532
7533
7534
7535
7536
7537
7538
7539
7540
7541
7542
7543
7544
7545
7546
7547
7548
7549
7550
7551
7552
7553
7554
7555
7556
7557
7558
7559
7560
7561
7562
7563
7564
7565
7566
7567
7568
7569
7570
7571
7572
7573
7574
7575
7576
7577
7578
7579
7580
7581
7582
7583
7584
7585
7586
7587
7588
7589
7590
7591
7592
7593
7594
7595
7596
7597
7598
7599
7600
7601
7602
7603
7604
7605
7606
7607
7608
7609
7610
7611
7612
7613
7614
7615
7616
7617
7618
7619
7620
7621
7622
7623
7624
7625
7626
7627
7628
7629
7630
7631
7632
7633
7634
7635
7636
7637
7638
7639
7640
7641
7642
7643
7644
7645
7646
7647
7648
7649
7650
7651
7652
7653
7654
7655
7656
7657
7658
7659
7660
7661
7662
7663
7664
7665
7666
7667
7668
7669
7670
7671
7672
7673
7674
7675
7676
7677
7678
7679
7680
7681
7682
7683
7684
7685
7686
7687
7688
7689
7690
7691
7692
7693
7694
7695
7696
7697
7698
7699
7700
7701
7702
7703
7704
7705
7706
7707
7708
7709
7710
7711
7712
7713
7714
7715
7716
7717
7718
7719
7720
7721
7722
7723
7724
7725
7726
7727
7728
7729
7730
7731
7732
7733
7734
7735
7736
7737
7738
7739
7740
7741
7742
7743
7744
7745
7746
7747
7748
7749
7750
7751
7752
7753
7754
7755
7756
7757
7758
7759
7760
7761
7762
7763
7764
7765
7766
7767
7768
7769
7770
7771
7772
7773
7774
7775
7776
7777
7778
7779
7780
7781
7782
7783
7784
7785
7786
7787
7788
7789
7790
7791
7792
7793
7794
7795
7796
7797
7798
7799
7800
7801
7802
7803
7804
7805
7806
7807
7808
7809
7810
7811
7812
7813
7814
7815
7816
7817
7818
7819
7820
7821
7822
7823
7824
7825
7826
7827
7828
7829
7830
7831
7832
7833
7834
7835
7836
7837
7838
7839
7840
7841
7842
7843
7844
7845
7846
7847
7848
7849
7850
7851
7852
7853
7854
7855
7856
7857
7858
7859
7860
7861
7862
7863
7864
7865
7866
7867
7868
7869
# This file was automatically generated by SWIG (http://www.swig.org).
# Version 2.0.4
#
# Do not make changes to this file unless you know what you are doing--modify
# the SWIG interface file instead.


"""

PyTrilinos.Anasazi is the python interface to the Trilinos eigensolver
package Anasazi:

    http://trilinos.sandia.gov/packages/anasazi

Anasazi is a collection of eigensolver technologies.  The C++ version
makes liberal use of templates to abstract out the scalar type,
multivector type and operator type.  Currently, the python version
supports only an Epetra interface, so that the scalar type is float
(C++ double), the multivector type is Epetra.MultiVector and the
operator type is Epetra.Operator.  The following python factories
produce python wrappers to underlying C++ instances of the given C++
names with concrete Epetra implementations:

    * SortManager
    * BasicSort
    * Eigenproblem
    * BasicEigenproblem
    * StatusTest
    * StatusTestCombo
    * StatusTestMaxIters
    * StatusTestOutput
    * StatusTestResNorm
    * OrthoManager
    * MatOrthoManager
    * SVQBOrthoManager
    * Eigensolver
    * SolverManager
    * BlockDavidson
    * BlockDavidsonSolMgr
    * BlockKrylovSchur
    * BlockKrylovSchurSolMgr
    * LOBPCG
    * LOBPCGSolMgr
    * Eigensolution

For an example of usage of Anasazi to solve an eigenproblem, see the
following script in the example subdirectory of the PyTrilinos
package:

    * exAnasazi_BlockDavidson.py

"""


from sys import version_info
if version_info >= (2,6,0):
    def swig_import_helper():
        from os.path import dirname
        import imp
        fp = None
        try:
            fp, pathname, description = imp.find_module('_Anasazi', [dirname(__file__)])
        except ImportError:
            import _Anasazi
            return _Anasazi
        if fp is not None:
            try:
                _mod = imp.load_module('_Anasazi', fp, pathname, description)
            finally:
                fp.close()
            return _mod
    _Anasazi = swig_import_helper()
    del swig_import_helper
else:
    import _Anasazi
del version_info
try:
    _swig_property = property
except NameError:
    pass # Python < 2.2 doesn't have 'property'.
def _swig_setattr_nondynamic(self,class_type,name,value,static=1):
    if (name == "thisown"): return self.this.own(value)
    if (name == "this"):
        if type(value).__name__ == 'SwigPyObject':
            self.__dict__[name] = value
            return
    method = class_type.__swig_setmethods__.get(name,None)
    if method: return method(self,value)
    if (not static):
        self.__dict__[name] = value
    else:
        raise AttributeError("You cannot add attributes to %s" % self)

def _swig_setattr(self,class_type,name,value):
    return _swig_setattr_nondynamic(self,class_type,name,value,0)

def _swig_getattr(self,class_type,name):
    if (name == "thisown"): return self.this.own()
    method = class_type.__swig_getmethods__.get(name,None)
    if method: return method(self)
    raise AttributeError(name)

def _swig_repr(self):
    try: strthis = "proxy of " + self.this.__repr__()
    except: strthis = ""
    return "<%s.%s; %s >" % (self.__class__.__module__, self.__class__.__name__, strthis,)

try:
    _object = object
    _newclass = 1
except AttributeError:
    class _object : pass
    _newclass = 0


try:
    import weakref
    weakref_proxy = weakref.proxy
except:
    weakref_proxy = lambda x: x


HAVE_EPETRA_THYRA = _Anasazi.HAVE_EPETRA_THYRA
class SwigPyIterator(_object):
    """Proxy of C++ swig::SwigPyIterator class"""
    __swig_setmethods__ = {}
    __setattr__ = lambda self, name, value: _swig_setattr(self, SwigPyIterator, name, value)
    __swig_getmethods__ = {}
    __getattr__ = lambda self, name: _swig_getattr(self, SwigPyIterator, name)
    def __init__(self, *args, **kwargs): raise AttributeError("No constructor defined - class is abstract")
    __repr__ = _swig_repr
    __swig_destroy__ = _Anasazi.delete_SwigPyIterator
    __del__ = lambda self : None;
    def value(self):
        """value(self) -> PyObject"""
        return _Anasazi.SwigPyIterator_value(self)

    def incr(self, n = 1):
        """
        incr(self, size_t n = 1) -> SwigPyIterator
        incr(self) -> SwigPyIterator
        """
        return _Anasazi.SwigPyIterator_incr(self, n)

    def decr(self, n = 1):
        """
        decr(self, size_t n = 1) -> SwigPyIterator
        decr(self) -> SwigPyIterator
        """
        return _Anasazi.SwigPyIterator_decr(self, n)

    def distance(self, *args):
        """distance(self, SwigPyIterator x) -> ptrdiff_t"""
        return _Anasazi.SwigPyIterator_distance(self, *args)

    def equal(self, *args):
        """equal(self, SwigPyIterator x) -> bool"""
        return _Anasazi.SwigPyIterator_equal(self, *args)

    def copy(self):
        """copy(self) -> SwigPyIterator"""
        return _Anasazi.SwigPyIterator_copy(self)

    def next(self):
        """next(self) -> PyObject"""
        return _Anasazi.SwigPyIterator_next(self)

    def __next__(self):
        """__next__(self) -> PyObject"""
        return _Anasazi.SwigPyIterator___next__(self)

    def previous(self):
        """previous(self) -> PyObject"""
        return _Anasazi.SwigPyIterator_previous(self)

    def advance(self, *args):
        """advance(self, ptrdiff_t n) -> SwigPyIterator"""
        return _Anasazi.SwigPyIterator_advance(self, *args)

    def __eq__(self, *args):
        """__eq__(self, SwigPyIterator x) -> bool"""
        return _Anasazi.SwigPyIterator___eq__(self, *args)

    def __ne__(self, *args):
        """__ne__(self, SwigPyIterator x) -> bool"""
        return _Anasazi.SwigPyIterator___ne__(self, *args)

    def __iadd__(self, *args):
        """__iadd__(self, ptrdiff_t n) -> SwigPyIterator"""
        return _Anasazi.SwigPyIterator___iadd__(self, *args)

    def __isub__(self, *args):
        """__isub__(self, ptrdiff_t n) -> SwigPyIterator"""
        return _Anasazi.SwigPyIterator___isub__(self, *args)

    def __add__(self, *args):
        """__add__(self, ptrdiff_t n) -> SwigPyIterator"""
        return _Anasazi.SwigPyIterator___add__(self, *args)

    def __sub__(self, *args):
        """
        __sub__(self, ptrdiff_t n) -> SwigPyIterator
        __sub__(self, SwigPyIterator x) -> ptrdiff_t
        """
        return _Anasazi.SwigPyIterator___sub__(self, *args)

    def __iter__(self): return self
SwigPyIterator_swigregister = _Anasazi.SwigPyIterator_swigregister
SwigPyIterator_swigregister(SwigPyIterator)

import Teuchos
import Epetra

def Anasazi_Version(*args):
  """
    Anasazi_Version() -> string

    std::string
    Anasazi::Anasazi_Version() 
    """
  return _Anasazi.Anasazi_Version(*args)
__version__ = Anasazi_Version().split()[2]

class AnasaziError(_object):
    """
    An exception class parent to all Anasazi exceptions.

    C++ includes: AnasaziTypes.hpp 
    """
    __swig_setmethods__ = {}
    __setattr__ = lambda self, name, value: _swig_setattr(self, AnasaziError, name, value)
    __swig_getmethods__ = {}
    __getattr__ = lambda self, name: _swig_getattr(self, AnasaziError, name)
    __repr__ = _swig_repr
    def __init__(self, *args): 
        """
        __init__(self, string what_arg) -> AnasaziError

        Anasazi::AnasaziError::AnasaziError(const std::string &what_arg) 
        """
        this = _Anasazi.new_AnasaziError(*args)
        try: self.this.append(this)
        except: self.this = this
    __swig_destroy__ = _Anasazi.delete_AnasaziError
    __del__ = lambda self : None;
AnasaziError_swigregister = _Anasazi.AnasaziError_swigregister
AnasaziError_swigregister(AnasaziError)

Converged = _Anasazi.Converged
Unconverged = _Anasazi.Unconverged
NO_CONJ = _Anasazi.NO_CONJ
CONJ = _Anasazi.CONJ
Passed = _Anasazi.Passed
Failed = _Anasazi.Failed
Undefined = _Anasazi.Undefined
Errors = _Anasazi.Errors
Warnings = _Anasazi.Warnings
IterationDetails = _Anasazi.IterationDetails
OrthoDetails = _Anasazi.OrthoDetails
FinalSummary = _Anasazi.FinalSummary
TimingDetails = _Anasazi.TimingDetails
StatusTestDetails = _Anasazi.StatusTestDetails
Debug = _Anasazi.Debug
class ValueDouble(_object):
    """
    This struct is used for storing eigenvalues and Ritz values, as a pair
    of real values.

    C++ includes: AnasaziTypes.hpp 
    """
    __swig_setmethods__ = {}
    __setattr__ = lambda self, name, value: _swig_setattr(self, ValueDouble, name, value)
    __swig_getmethods__ = {}
    __getattr__ = lambda self, name: _swig_getattr(self, ValueDouble, name)
    __repr__ = _swig_repr
    __swig_setmethods__["realpart"] = _Anasazi.ValueDouble_realpart_set
    __swig_getmethods__["realpart"] = _Anasazi.ValueDouble_realpart_get
    if _newclass:realpart = _swig_property(_Anasazi.ValueDouble_realpart_get, _Anasazi.ValueDouble_realpart_set)
    __swig_setmethods__["imagpart"] = _Anasazi.ValueDouble_imagpart_set
    __swig_getmethods__["imagpart"] = _Anasazi.ValueDouble_imagpart_get
    if _newclass:imagpart = _swig_property(_Anasazi.ValueDouble_imagpart_get, _Anasazi.ValueDouble_imagpart_set)
    def set(self, *args):
        """
        set(self, magnitudeType rp, magnitudeType ip)

        void Anasazi::Value<
        ScalarType >::set(const typename Teuchos::ScalarTraits< ScalarType
        >::magnitudeType &rp, const typename Teuchos::ScalarTraits< ScalarType
        >::magnitudeType &ip) 
        """
        return _Anasazi.ValueDouble_set(self, *args)

    def __str__(self, *args):
        """__str__(self) -> string"""
        return _Anasazi.ValueDouble___str__(self, *args)

    def __init__(self, *args): 
        """
        __init__(self) -> ValueDouble

        This struct is used for storing eigenvalues and Ritz values, as a pair
        of real values.

        C++ includes: AnasaziTypes.hpp 
        """
        this = _Anasazi.new_ValueDouble(*args)
        try: self.this.append(this)
        except: self.this = this
    __swig_destroy__ = _Anasazi.delete_ValueDouble
    __del__ = lambda self : None;
ValueDouble_swigregister = _Anasazi.ValueDouble_swigregister
ValueDouble_swigregister(ValueDouble)

class OutputManagerDouble(_object):
    """
    Output managers remove the need for the eigensolver to know any
    information about the required output. Calling isVerbosity( MsgType
    type ) informs the solver if it is supposed to output the information
    corresponding to the message type.

    Chris Baker, Ulrich Hetmaniuk, Rich Lehoucq, and Heidi Thornquist

    C++ includes: AnasaziOutputManager.hpp 
    """
    __swig_setmethods__ = {}
    __setattr__ = lambda self, name, value: _swig_setattr(self, OutputManagerDouble, name, value)
    __swig_getmethods__ = {}
    __getattr__ = lambda self, name: _swig_getattr(self, OutputManagerDouble, name)
    def __init__(self, *args, **kwargs): raise AttributeError("No constructor defined - class is abstract")
    __repr__ = _swig_repr
    __swig_destroy__ = _Anasazi.delete_OutputManagerDouble
    __del__ = lambda self : None;
    def setVerbosity(self, *args):
        """
        setVerbosity(self, int vb)

        virtual
        void Anasazi::OutputManager< ScalarType >::setVerbosity(int vb)

        Set the message output types for this manager. 
        """
        return _Anasazi.OutputManagerDouble_setVerbosity(self, *args)

    def getVerbosity(self, *args):
        """
        getVerbosity(self) -> int

        virtual
        int Anasazi::OutputManager< ScalarType >::getVerbosity() const

        Get the message output types for this manager. 
        """
        return _Anasazi.OutputManagerDouble_getVerbosity(self, *args)

    def isVerbosity(self, *args):
        """
        isVerbosity(self, MsgType type) -> bool

        virtual
        bool Anasazi::OutputManager< ScalarType >::isVerbosity(MsgType type)
        const =0

        Find out whether we need to print out information for this message
        type.

        This method is used by the solver to determine whether computations
        are necessary for this message type. 
        """
        return _Anasazi.OutputManagerDouble_isVerbosity(self, *args)

    def stream(self, *args):
        """
        stream(self, MsgType type)

        virtual
        std::ostream& Anasazi::OutputManager< ScalarType >::stream(MsgType
        type)=0

        Create a stream for outputting to. 
        """
        return _Anasazi.OutputManagerDouble_stream(self, *args)

OutputManagerDouble_swigregister = _Anasazi.OutputManagerDouble_swigregister
OutputManagerDouble_swigregister(OutputManagerDouble)

class BasicOutputManagerDouble(OutputManagerDouble):
    """
    Anasazi's basic output manager for sending information of select
    verbosity levels to the appropriate output stream.

    Chris Baker, Ulrich Hetmaniuk, Rich Lehoucq, and Heidi Thornquist

    C++ includes: AnasaziBasicOutputManager.hpp 
    """
    __swig_setmethods__ = {}
    for _s in [OutputManagerDouble]: __swig_setmethods__.update(getattr(_s,'__swig_setmethods__',{}))
    __setattr__ = lambda self, name, value: _swig_setattr(self, BasicOutputManagerDouble, name, value)
    __swig_getmethods__ = {}
    for _s in [OutputManagerDouble]: __swig_getmethods__.update(getattr(_s,'__swig_getmethods__',{}))
    __getattr__ = lambda self, name: _swig_getattr(self, BasicOutputManagerDouble, name)
    __repr__ = _swig_repr
    def __init__(self, *args): 
        """
        __init__(self, int vb = Errors, Teuchos::RCP<(std::ostream)> os = Teuchos::rcpFromRef(std::cout), 
            int printingRank = 0) -> BasicOutputManagerDouble

        Anasazi::BasicOutputManager< ScalarType >::BasicOutputManager(int
        vb=Anasazi::Errors, Teuchos::RCP< ostream >
        os=Teuchos::rcpFromRef(std::cout), int printingRank=0)

        Default constructor. 
        """
        this = _Anasazi.new_BasicOutputManagerDouble(*args)
        try: self.this.append(this)
        except: self.this = this
    __swig_destroy__ = _Anasazi.delete_BasicOutputManagerDouble
    __del__ = lambda self : None;
    def setOStream(self, *args):
        """
        setOStream(self, Teuchos::RCP<(std::ostream)> os)

        void
        Anasazi::BasicOutputManager< ScalarType >::setOStream(Teuchos::RCP<
        ostream > os)

        Set the output stream for this manager. 
        """
        return _Anasazi.BasicOutputManagerDouble_setOStream(self, *args)

    def getOStream(self, *args):
        """
        getOStream(self) -> Teuchos::RCP<(std::ostream)>

        Teuchos::RCP< ostream > Anasazi::BasicOutputManager< ScalarType
        >::getOStream()

        Get the output stream for this manager. 
        """
        return _Anasazi.BasicOutputManagerDouble_getOStream(self, *args)

    def isVerbosity(self, *args):
        """
        isVerbosity(self, MsgType type) -> bool

        bool
        Anasazi::BasicOutputManager< ScalarType >::isVerbosity(MsgType type)
        const

        Find out whether we need to print out information for this message
        type.

        This method is used by the solver to determine whether computations
        are necessary for this message type. 
        """
        return _Anasazi.BasicOutputManagerDouble_isVerbosity(self, *args)

    def stream(self, *args):
        """
        stream(self, MsgType type)

        ostream &
        Anasazi::BasicOutputManager< ScalarType >::stream(MsgType type)

        Return a stream for outputting to. 
        """
        return _Anasazi.BasicOutputManagerDouble_stream(self, *args)

BasicOutputManagerDouble_swigregister = _Anasazi.BasicOutputManagerDouble_swigregister
BasicOutputManagerDouble_swigregister(BasicOutputManagerDouble)

class SortManagerError(AnasaziError):
    """
    SortManagerError is thrown when the Anasazi::SortManager is unable to
    sort the numbers, due to some failure of the sort method or error in
    calling it.

    C++ includes: AnasaziSortManager.hpp 
    """
    __swig_setmethods__ = {}
    for _s in [AnasaziError]: __swig_setmethods__.update(getattr(_s,'__swig_setmethods__',{}))
    __setattr__ = lambda self, name, value: _swig_setattr(self, SortManagerError, name, value)
    __swig_getmethods__ = {}
    for _s in [AnasaziError]: __swig_getmethods__.update(getattr(_s,'__swig_getmethods__',{}))
    __getattr__ = lambda self, name: _swig_getattr(self, SortManagerError, name)
    __repr__ = _swig_repr
    def __init__(self, *args): 
        """
        __init__(self, string what_arg) -> SortManagerError

        Anasazi::SortManagerError::SortManagerError(const std::string
        &what_arg) 
        """
        this = _Anasazi.new_SortManagerError(*args)
        try: self.this.append(this)
        except: self.this = this
    __swig_destroy__ = _Anasazi.delete_SortManagerError
    __del__ = lambda self : None;
SortManagerError_swigregister = _Anasazi.SortManagerError_swigregister
SortManagerError_swigregister(SortManagerError)

class MultiVecDouble(_object):
    """
    Anasazi's templated virtual class for constructing a multi-vector that
    can interface with the MultiVecTraits class used by the eigensolvers.

    A concrete implementation of this class is necessary. The user can
    create their own implementation if those supplied are not suitable for
    their needs.

    Ulrich Hetmaniuk, Rich Lehoucq, and Heidi Thornquist

    C++ includes: AnasaziMultiVec.hpp 
    """
    __swig_setmethods__ = {}
    __setattr__ = lambda self, name, value: _swig_setattr(self, MultiVecDouble, name, value)
    __swig_getmethods__ = {}
    __getattr__ = lambda self, name: _swig_getattr(self, MultiVecDouble, name)
    def __init__(self, *args, **kwargs): raise AttributeError("No constructor defined - class is abstract")
    __repr__ = _swig_repr
    __swig_destroy__ = _Anasazi.delete_MultiVecDouble
    __del__ = lambda self : None;
    def Clone(self, *args):
        """
        Clone(self, int numvecs) -> MultiVecDouble

        virtual
        MultiVec<ScalarType>* Anasazi::MultiVec< ScalarType >::Clone(const int
        numvecs) const =0

        Creates a new empty Anasazi::MultiVec containing numvecs columns.

        Pointer to the new multivector 
        """
        return _Anasazi.MultiVecDouble_Clone(self, *args)

    def CloneCopy(self, *args):
        """
        CloneCopy(self) -> MultiVecDouble
        CloneCopy(self, VectorInt index) -> MultiVecDouble

        virtual
        MultiVec<ScalarType>* Anasazi::MultiVec< ScalarType >::CloneCopy(const
        std::vector< int > &index) const =0

        Creates a new Anasazi::MultiVec and copies the selected contents of
        *this into the new vector (deep copy). The copied vectors from *this
        are indicated by the index.size() indices in index.

        Pointer to the new multivector 
        """
        return _Anasazi.MultiVecDouble_CloneCopy(self, *args)

    def CloneView(self, *args):
        """
        CloneView(self, VectorInt index) -> MultiVecDouble

        virtual
        MultiVec<ScalarType>* Anasazi::MultiVec< ScalarType >::CloneView(const
        std::vector< int > &index)=0

        Creates a new Anasazi::MultiVec that shares the selected contents of
        *this. The index of the numvecs vectors shallow copied from *this are
        indicated by the indices given in index.

        Pointer to the new multivector 
        """
        return _Anasazi.MultiVecDouble_CloneView(self, *args)

    def CloneViewNonConst(self, *args):
        """CloneViewNonConst(self, VectorInt index) -> MultiVecDouble"""
        return _Anasazi.MultiVecDouble_CloneViewNonConst(self, *args)

    def GetVecLength(self, *args):
        """
        GetVecLength(self) -> int

        virtual int
        Anasazi::MultiVec< ScalarType >::GetVecLength() const =0

        Obtain the vector length of *this. 
        """
        return _Anasazi.MultiVecDouble_GetVecLength(self, *args)

    def GetNumberVecs(self, *args):
        """
        GetNumberVecs(self) -> int

        virtual int
        Anasazi::MultiVec< ScalarType >::GetNumberVecs() const =0

        Obtain the number of vectors in *this. 
        """
        return _Anasazi.MultiVecDouble_GetNumberVecs(self, *args)

    def MvTimesMatAddMv(self, *args):
        """
        MvTimesMatAddMv(self, double alpha, MultiVecDouble A, Teuchos::SerialDenseMatrix<(int,double)> B, 
            double beta)

        virtual
        void Anasazi::MultiVec< ScalarType >::MvTimesMatAddMv(ScalarType
        alpha, const MultiVec< ScalarType > &A, const
        Teuchos::SerialDenseMatrix< int, ScalarType > &B, ScalarType beta)=0

        Update *this with alpha * A * B + beta * ( *this). 
        """
        return _Anasazi.MultiVecDouble_MvTimesMatAddMv(self, *args)

    def MvAddMv(self, *args):
        """
        MvAddMv(self, double alpha, MultiVecDouble A, double beta, MultiVecDouble B)

        virtual void
        Anasazi::MultiVec< ScalarType >::MvAddMv(ScalarType alpha, const
        MultiVec< ScalarType > &A, ScalarType beta, const MultiVec< ScalarType
        > &B)=0

        Replace *this with alpha * A + beta * B. 
        """
        return _Anasazi.MultiVecDouble_MvAddMv(self, *args)

    def MvTransMv(self, *args):
        """
        MvTransMv(self, double alpha, MultiVecDouble A, Teuchos::SerialDenseMatrix<(int,double)> B)

        virtual void
        Anasazi::MultiVec< ScalarType >::MvTransMv(ScalarType alpha, const
        MultiVec< ScalarType > &A, Teuchos::SerialDenseMatrix< int, ScalarType
        > &B) const =0

        Compute a dense matrix B through the matrix-matrix multiply alpha *
        A^T * ( *this). 
        """
        return _Anasazi.MultiVecDouble_MvTransMv(self, *args)

    def MvDot(self, *args):
        """
        MvDot(self, MultiVecDouble A, std::vector<(double,std::allocator<(double)>)> b)

        virtual void
        Anasazi::MultiVec< ScalarType >::MvDot(const MultiVec< ScalarType >
        &A, std::vector< ScalarType > &b) const =0

        Compute a vector b where the components are the individual dot-
        products, i.e. b[i] = A[i]^H* this[i] where A[i] is the i-th column of
        A. 
        """
        return _Anasazi.MultiVecDouble_MvDot(self, *args)

    def MvNorm(self, *args):
        """
        MvNorm(self, std::vector<(Teuchos::ScalarTraits<(double)>::magnitudeType,std::allocator<(Teuchos::ScalarTraits<(double)>::magnitudeType)>)> normvec)

        virtual void
        Anasazi::MultiVec< ScalarType >::MvNorm(std::vector< typename
        Teuchos::ScalarTraits< ScalarType >::magnitudeType > &normvec) const
        =0

        Compute the 2-norm of each individual vector of *this. Upon return,
        normvec[i] holds the 2-norm of the i-th vector of *this. 
        """
        return _Anasazi.MultiVecDouble_MvNorm(self, *args)

    def SetBlock(self, *args):
        """
        SetBlock(self, MultiVecDouble A, VectorInt index)

        virtual void
        Anasazi::MultiVec< ScalarType >::SetBlock(const MultiVec< ScalarType >
        &A, const std::vector< int > &index)=0

        Copy the vectors in A to a set of vectors in *this. The numvecs
        vectors in A are copied to a subset of vectors in *this indicated by
        the indices given in index. 
        """
        return _Anasazi.MultiVecDouble_SetBlock(self, *args)

    def MvScale(self, *args):
        """
        MvScale(self, double alpha)
        MvScale(self, std::vector<(double,std::allocator<(double)>)> alpha)

        virtual void
        Anasazi::MultiVec< ScalarType >::MvScale(const std::vector< ScalarType
        > &alpha)=0

        Scale each element of the i-th vector in *this with alpha[i]. 
        """
        return _Anasazi.MultiVecDouble_MvScale(self, *args)

    def MvRandom(self, *args):
        """
        MvRandom(self)

        virtual void
        Anasazi::MultiVec< ScalarType >::MvRandom()=0

        Fill the vectors in *this with random numbers. 
        """
        return _Anasazi.MultiVecDouble_MvRandom(self, *args)

    def MvInit(self, *args):
        """
        MvInit(self, double alpha)

        virtual void
        Anasazi::MultiVec< ScalarType >::MvInit(ScalarType alpha)=0

        Replace each element of the vectors in *this with alpha. 
        """
        return _Anasazi.MultiVecDouble_MvInit(self, *args)

    def MvPrint(self, *args):
        """
        MvPrint(self,  os)

        virtual void
        Anasazi::MultiVec< ScalarType >::MvPrint(std::ostream &os) const =0

        Print *this multivector to the os output stream. 
        """
        return _Anasazi.MultiVecDouble_MvPrint(self, *args)

MultiVecDouble_swigregister = _Anasazi.MultiVecDouble_swigregister
MultiVecDouble_swigregister(MultiVecDouble)

class OperatorError(AnasaziError):
    """
    Exceptions thrown to signal error in operator application.

    C++ includes: AnasaziOperatorTraits.hpp 
    """
    __swig_setmethods__ = {}
    for _s in [AnasaziError]: __swig_setmethods__.update(getattr(_s,'__swig_setmethods__',{}))
    __setattr__ = lambda self, name, value: _swig_setattr(self, OperatorError, name, value)
    __swig_getmethods__ = {}
    for _s in [AnasaziError]: __swig_getmethods__.update(getattr(_s,'__swig_getmethods__',{}))
    __getattr__ = lambda self, name: _swig_getattr(self, OperatorError, name)
    __repr__ = _swig_repr
    def __init__(self, *args): 
        """
        __init__(self, string what_arg) -> OperatorError

        Anasazi::OperatorError::OperatorError(const std::string &what_arg) 
        """
        this = _Anasazi.new_OperatorError(*args)
        try: self.this.append(this)
        except: self.this = this
    __swig_destroy__ = _Anasazi.delete_OperatorError
    __del__ = lambda self : None;
OperatorError_swigregister = _Anasazi.OperatorError_swigregister
OperatorError_swigregister(OperatorError)

class OperatorDouble(_object):
    """
    Anasazi's templated virtual class for constructing an operator that
    can interface with the OperatorTraits class used by the eigensolvers.

    A concrete implementation of this class is necessary. The user can
    create their own implementation if those supplied are not suitable for
    their needs.

    Ulrich Hetmaniuk, Rich Lehoucq, and Heidi Thornquist

    C++ includes: AnasaziOperator.hpp 
    """
    __swig_setmethods__ = {}
    __setattr__ = lambda self, name, value: _swig_setattr(self, OperatorDouble, name, value)
    __swig_getmethods__ = {}
    __getattr__ = lambda self, name: _swig_getattr(self, OperatorDouble, name)
    def __init__(self, *args, **kwargs): raise AttributeError("No constructor defined - class is abstract")
    __repr__ = _swig_repr
    __swig_destroy__ = _Anasazi.delete_OperatorDouble
    __del__ = lambda self : None;
    def Apply(self, *args):
        """
        Apply(self, MultiVecDouble x, MultiVecDouble y)

        virtual void
        Anasazi::Operator< ScalarType >::Apply(const MultiVec< ScalarType >
        &x, MultiVec< ScalarType > &y) const =0

        This method takes the Anasazi::MultiVec x and applies the operator to
        it resulting in the Anasazi::MultiVec y. 
        """
        return _Anasazi.OperatorDouble_Apply(self, *args)

OperatorDouble_swigregister = _Anasazi.OperatorDouble_swigregister
OperatorDouble_swigregister(OperatorDouble)

class StatusTestError(AnasaziError):
    """
    Exception thrown to signal error in a status test during
    Anasazi::StatusTest::checkStatus().

    C++ includes: AnasaziStatusTest.hpp 
    """
    __swig_setmethods__ = {}
    for _s in [AnasaziError]: __swig_setmethods__.update(getattr(_s,'__swig_setmethods__',{}))
    __setattr__ = lambda self, name, value: _swig_setattr(self, StatusTestError, name, value)
    __swig_getmethods__ = {}
    for _s in [AnasaziError]: __swig_getmethods__.update(getattr(_s,'__swig_getmethods__',{}))
    __getattr__ = lambda self, name: _swig_getattr(self, StatusTestError, name)
    __repr__ = _swig_repr
    def __init__(self, *args): 
        """
        __init__(self, string what_arg) -> StatusTestError

        Anasazi::StatusTestError::StatusTestError(const std::string &what_arg)

        """
        this = _Anasazi.new_StatusTestError(*args)
        try: self.this.append(this)
        except: self.this = this
    __swig_destroy__ = _Anasazi.delete_StatusTestError
    __del__ = lambda self : None;
StatusTestError_swigregister = _Anasazi.StatusTestError_swigregister
StatusTestError_swigregister(StatusTestError)

class ResNormNaNError(AnasaziError):
    """
    ResNormNaNError is thrown from StatusTestResNorm::checkStatus() when a
    NaN ("not a number") is detected among the residual norms returned
    by the eigensolver.

    This behavior is optional and is controlled by flag to
    StatusTestResNorm::StatusTestResNorm().

    C++ includes: AnasaziStatusTestResNorm.hpp 
    """
    __swig_setmethods__ = {}
    for _s in [AnasaziError]: __swig_setmethods__.update(getattr(_s,'__swig_setmethods__',{}))
    __setattr__ = lambda self, name, value: _swig_setattr(self, ResNormNaNError, name, value)
    __swig_getmethods__ = {}
    for _s in [AnasaziError]: __swig_getmethods__.update(getattr(_s,'__swig_getmethods__',{}))
    __getattr__ = lambda self, name: _swig_getattr(self, ResNormNaNError, name)
    __repr__ = _swig_repr
    def __init__(self, *args): 
        """
        __init__(self, string what_arg) -> ResNormNaNError

        Anasazi::ResNormNaNError::ResNormNaNError(const std::string &what_arg)

        """
        this = _Anasazi.new_ResNormNaNError(*args)
        try: self.this.append(this)
        except: self.this = this
    __swig_destroy__ = _Anasazi.delete_ResNormNaNError
    __del__ = lambda self : None;
ResNormNaNError_swigregister = _Anasazi.ResNormNaNError_swigregister
ResNormNaNError_swigregister(ResNormNaNError)

class OrthoError(AnasaziError):
    """
    Exception thrown to signal error in an orthogonalization manager
    method.

    C++ includes: AnasaziOrthoManager.hpp 
    """
    __swig_setmethods__ = {}
    for _s in [AnasaziError]: __swig_setmethods__.update(getattr(_s,'__swig_setmethods__',{}))
    __setattr__ = lambda self, name, value: _swig_setattr(self, OrthoError, name, value)
    __swig_getmethods__ = {}
    for _s in [AnasaziError]: __swig_getmethods__.update(getattr(_s,'__swig_getmethods__',{}))
    __getattr__ = lambda self, name: _swig_getattr(self, OrthoError, name)
    __repr__ = _swig_repr
    def __init__(self, *args): 
        """
        __init__(self, string what_arg) -> OrthoError

        Anasazi::OrthoError::OrthoError(const std::string &what_arg) 
        """
        this = _Anasazi.new_OrthoError(*args)
        try: self.this.append(this)
        except: self.this = this
    __swig_destroy__ = _Anasazi.delete_OrthoError
    __del__ = lambda self : None;
OrthoError_swigregister = _Anasazi.OrthoError_swigregister
OrthoError_swigregister(OrthoError)

class BlockDavidsonInitFailure(AnasaziError):
    """
    BlockDavidsonInitFailure is thrown when the BlockDavidson solver is
    unable to generate an initial iterate in the
    BlockDavidson::initialize() routine.

    This exception is thrown from the BlockDavidson::initialize() method,
    which is called by the user or from the BlockDavidson::iterate()
    method if isInitialized() == false.

    In the case that this exception is thrown,
    BlockDavidson::isInitialized() will be false and the user will need to
    provide a new initial iterate to the solver.

    C++ includes: AnasaziBlockDavidson.hpp 
    """
    __swig_setmethods__ = {}
    for _s in [AnasaziError]: __swig_setmethods__.update(getattr(_s,'__swig_setmethods__',{}))
    __setattr__ = lambda self, name, value: _swig_setattr(self, BlockDavidsonInitFailure, name, value)
    __swig_getmethods__ = {}
    for _s in [AnasaziError]: __swig_getmethods__.update(getattr(_s,'__swig_getmethods__',{}))
    __getattr__ = lambda self, name: _swig_getattr(self, BlockDavidsonInitFailure, name)
    __repr__ = _swig_repr
    def __init__(self, *args): 
        """
        __init__(self, string what_arg) -> BlockDavidsonInitFailure

        Anasazi::BlockDavidsonInitFailure::BlockDavidsonInitFailure(const
        std::string &what_arg) 
        """
        this = _Anasazi.new_BlockDavidsonInitFailure(*args)
        try: self.this.append(this)
        except: self.this = this
    __swig_destroy__ = _Anasazi.delete_BlockDavidsonInitFailure
    __del__ = lambda self : None;
BlockDavidsonInitFailure_swigregister = _Anasazi.BlockDavidsonInitFailure_swigregister
BlockDavidsonInitFailure_swigregister(BlockDavidsonInitFailure)

class BlockDavidsonOrthoFailure(AnasaziError):
    """
    BlockDavidsonOrthoFailure is thrown when the orthogonalization manager
    is unable to orthogonalize the preconditioned residual against (a.k.a.
    H) the current basis (a.k.a. V).

    This exception is thrown from the BlockDavidson::iterate() method.

    C++ includes: AnasaziBlockDavidson.hpp 
    """
    __swig_setmethods__ = {}
    for _s in [AnasaziError]: __swig_setmethods__.update(getattr(_s,'__swig_setmethods__',{}))
    __setattr__ = lambda self, name, value: _swig_setattr(self, BlockDavidsonOrthoFailure, name, value)
    __swig_getmethods__ = {}
    for _s in [AnasaziError]: __swig_getmethods__.update(getattr(_s,'__swig_getmethods__',{}))
    __getattr__ = lambda self, name: _swig_getattr(self, BlockDavidsonOrthoFailure, name)
    __repr__ = _swig_repr
    def __init__(self, *args): 
        """
        __init__(self, string what_arg) -> BlockDavidsonOrthoFailure

        Anasazi::BlockDavidsonOrthoFailure::BlockDavidsonOrthoFailure(const
        std::string &what_arg) 
        """
        this = _Anasazi.new_BlockDavidsonOrthoFailure(*args)
        try: self.this.append(this)
        except: self.this = this
    __swig_destroy__ = _Anasazi.delete_BlockDavidsonOrthoFailure
    __del__ = lambda self : None;
BlockDavidsonOrthoFailure_swigregister = _Anasazi.BlockDavidsonOrthoFailure_swigregister
BlockDavidsonOrthoFailure_swigregister(BlockDavidsonOrthoFailure)

class BlockKrylovSchurInitFailure(AnasaziError):
    """
    BlockKrylovSchurInitFailure is thrown when the BlockKrylovSchur solver
    is unable to generate an initial iterate in the
    BlockKrylovSchur::initialize() routine.

    This exception is thrown from the BlockKrylovSchur::initialize()
    method, which is called by the user or from the
    BlockKrylovSchur::iterate() method if isInitialized() == false.

    In the case that this exception is thrown,
    BlockKrylovSchur::isInitialized() will be false and the user will need
    to provide a new initial iterate to the solver.

    C++ includes: AnasaziBlockKrylovSchur.hpp 
    """
    __swig_setmethods__ = {}
    for _s in [AnasaziError]: __swig_setmethods__.update(getattr(_s,'__swig_setmethods__',{}))
    __setattr__ = lambda self, name, value: _swig_setattr(self, BlockKrylovSchurInitFailure, name, value)
    __swig_getmethods__ = {}
    for _s in [AnasaziError]: __swig_getmethods__.update(getattr(_s,'__swig_getmethods__',{}))
    __getattr__ = lambda self, name: _swig_getattr(self, BlockKrylovSchurInitFailure, name)
    __repr__ = _swig_repr
    def __init__(self, *args): 
        """
        __init__(self, string what_arg) -> BlockKrylovSchurInitFailure

        Anasazi::BlockKrylovSchurInitFailure::BlockKrylovSchurInitFailure(const
        std::string &what_arg) 
        """
        this = _Anasazi.new_BlockKrylovSchurInitFailure(*args)
        try: self.this.append(this)
        except: self.this = this
    __swig_destroy__ = _Anasazi.delete_BlockKrylovSchurInitFailure
    __del__ = lambda self : None;
BlockKrylovSchurInitFailure_swigregister = _Anasazi.BlockKrylovSchurInitFailure_swigregister
BlockKrylovSchurInitFailure_swigregister(BlockKrylovSchurInitFailure)

class BlockKrylovSchurOrthoFailure(AnasaziError):
    """
    BlockKrylovSchurOrthoFailure is thrown when the orthogonalization
    manager is unable to generate orthonormal columns from the new basis
    vectors.

    This exception is thrown from the BlockKrylovSchur::iterate() method.

    C++ includes: AnasaziBlockKrylovSchur.hpp 
    """
    __swig_setmethods__ = {}
    for _s in [AnasaziError]: __swig_setmethods__.update(getattr(_s,'__swig_setmethods__',{}))
    __setattr__ = lambda self, name, value: _swig_setattr(self, BlockKrylovSchurOrthoFailure, name, value)
    __swig_getmethods__ = {}
    for _s in [AnasaziError]: __swig_getmethods__.update(getattr(_s,'__swig_getmethods__',{}))
    __getattr__ = lambda self, name: _swig_getattr(self, BlockKrylovSchurOrthoFailure, name)
    __repr__ = _swig_repr
    def __init__(self, *args): 
        """
        __init__(self, string what_arg) -> BlockKrylovSchurOrthoFailure

        Anasazi::BlockKrylovSchurOrthoFailure::BlockKrylovSchurOrthoFailure(const
        std::string &what_arg) 
        """
        this = _Anasazi.new_BlockKrylovSchurOrthoFailure(*args)
        try: self.this.append(this)
        except: self.this = this
    __swig_destroy__ = _Anasazi.delete_BlockKrylovSchurOrthoFailure
    __del__ = lambda self : None;
BlockKrylovSchurOrthoFailure_swigregister = _Anasazi.BlockKrylovSchurOrthoFailure_swigregister
BlockKrylovSchurOrthoFailure_swigregister(BlockKrylovSchurOrthoFailure)

class LOBPCGRitzFailure(AnasaziError):
    """
    LOBPCGRitzFailure is thrown when the LOBPCG solver is unable to
    continue a call to LOBPCG::iterate() due to a failure of the
    algorithm.

    This signals that the Rayleigh-Ritz analysis over the subspace
    colsp([X H P]) detected ill-conditioning of the projected mass matrix
    and the inability to generate a set of orthogonal eigenvectors for the
    projected problem.

    This exception is only thrown from the LOBPCG::iterate() routine.
    After catching this exception, the user can recover the subspace via
    LOBPCG::getState(). This information can be used to restart the
    solver.

    C++ includes: AnasaziLOBPCG.hpp 
    """
    __swig_setmethods__ = {}
    for _s in [AnasaziError]: __swig_setmethods__.update(getattr(_s,'__swig_setmethods__',{}))
    __setattr__ = lambda self, name, value: _swig_setattr(self, LOBPCGRitzFailure, name, value)
    __swig_getmethods__ = {}
    for _s in [AnasaziError]: __swig_getmethods__.update(getattr(_s,'__swig_getmethods__',{}))
    __getattr__ = lambda self, name: _swig_getattr(self, LOBPCGRitzFailure, name)
    __repr__ = _swig_repr
    def __init__(self, *args): 
        """
        __init__(self, string what_arg) -> LOBPCGRitzFailure

        Anasazi::LOBPCGRitzFailure::LOBPCGRitzFailure(const std::string
        &what_arg) 
        """
        this = _Anasazi.new_LOBPCGRitzFailure(*args)
        try: self.this.append(this)
        except: self.this = this
    __swig_destroy__ = _Anasazi.delete_LOBPCGRitzFailure
    __del__ = lambda self : None;
LOBPCGRitzFailure_swigregister = _Anasazi.LOBPCGRitzFailure_swigregister
LOBPCGRitzFailure_swigregister(LOBPCGRitzFailure)

class LOBPCGInitFailure(AnasaziError):
    """
    LOBPCGInitFailure is thrown when the LOBPCG solver is unable to
    generate an initial iterate in the LOBPCG::initialize() routine.

    This exception is thrown from the LOBPCG::initialize() method, which
    is called by the user or from the LOBPCG::iterate() method when
    isInitialized() == false.

    In the case that this exception is thrown, LOBPCG::hasP() and
    LOBPCG::isInitialized() will be false and the user will need to
    provide a new initial iterate to the solver.

    C++ includes: AnasaziLOBPCG.hpp 
    """
    __swig_setmethods__ = {}
    for _s in [AnasaziError]: __swig_setmethods__.update(getattr(_s,'__swig_setmethods__',{}))
    __setattr__ = lambda self, name, value: _swig_setattr(self, LOBPCGInitFailure, name, value)
    __swig_getmethods__ = {}
    for _s in [AnasaziError]: __swig_getmethods__.update(getattr(_s,'__swig_getmethods__',{}))
    __getattr__ = lambda self, name: _swig_getattr(self, LOBPCGInitFailure, name)
    __repr__ = _swig_repr
    def __init__(self, *args): 
        """
        __init__(self, string what_arg) -> LOBPCGInitFailure

        Anasazi::LOBPCGInitFailure::LOBPCGInitFailure(const std::string
        &what_arg) 
        """
        this = _Anasazi.new_LOBPCGInitFailure(*args)
        try: self.this.append(this)
        except: self.this = this
    __swig_destroy__ = _Anasazi.delete_LOBPCGInitFailure
    __del__ = lambda self : None;
LOBPCGInitFailure_swigregister = _Anasazi.LOBPCGInitFailure_swigregister
LOBPCGInitFailure_swigregister(LOBPCGInitFailure)

class LOBPCGOrthoFailure(AnasaziError):
    """
    LOBPCGOrthoFailure is thrown when an orthogonalization attempt fails.

    This is thrown in one of two scenarstd::ios. After preconditioning the
    residual, the orthogonalization manager is asked to orthogonalize the
    preconditioned residual (H) against the auxiliary vectors. If full
    orthogonalization is enabled, H is also orthogonalized against X and P
    and normalized.

    The second scenario involves the generation of new X and P from the
    basis [X H P]. When full orthogonalization is enabled, an attempt is
    made to select coefficients for X and P so that they will be mutually
    orthogonal and orthonormal.

    If either of these attempts fail, the solver throws an
    LOBPCGOrthoFailure exception.

    C++ includes: AnasaziLOBPCG.hpp 
    """
    __swig_setmethods__ = {}
    for _s in [AnasaziError]: __swig_setmethods__.update(getattr(_s,'__swig_setmethods__',{}))
    __setattr__ = lambda self, name, value: _swig_setattr(self, LOBPCGOrthoFailure, name, value)
    __swig_getmethods__ = {}
    for _s in [AnasaziError]: __swig_getmethods__.update(getattr(_s,'__swig_getmethods__',{}))
    __getattr__ = lambda self, name: _swig_getattr(self, LOBPCGOrthoFailure, name)
    __repr__ = _swig_repr
    def __init__(self, *args): 
        """
        __init__(self, string what_arg) -> LOBPCGOrthoFailure

        Anasazi::LOBPCGOrthoFailure::LOBPCGOrthoFailure(const std::string
        &what_arg) 
        """
        this = _Anasazi.new_LOBPCGOrthoFailure(*args)
        try: self.this.append(this)
        except: self.this = this
    __swig_destroy__ = _Anasazi.delete_LOBPCGOrthoFailure
    __del__ = lambda self : None;
LOBPCGOrthoFailure_swigregister = _Anasazi.LOBPCGOrthoFailure_swigregister
LOBPCGOrthoFailure_swigregister(LOBPCGOrthoFailure)

class EpetraMultiVecFailure(AnasaziError):
    """Proxy of C++ Anasazi::EpetraMultiVecFailure class"""
    __swig_setmethods__ = {}
    for _s in [AnasaziError]: __swig_setmethods__.update(getattr(_s,'__swig_setmethods__',{}))
    __setattr__ = lambda self, name, value: _swig_setattr(self, EpetraMultiVecFailure, name, value)
    __swig_getmethods__ = {}
    for _s in [AnasaziError]: __swig_getmethods__.update(getattr(_s,'__swig_getmethods__',{}))
    __getattr__ = lambda self, name: _swig_getattr(self, EpetraMultiVecFailure, name)
    __repr__ = _swig_repr
    def __init__(self, *args): 
        """__init__(self, string what_arg) -> EpetraMultiVecFailure"""
        this = _Anasazi.new_EpetraMultiVecFailure(*args)
        try: self.this.append(this)
        except: self.this = this
    __swig_destroy__ = _Anasazi.delete_EpetraMultiVecFailure
    __del__ = lambda self : None;
EpetraMultiVecFailure_swigregister = _Anasazi.EpetraMultiVecFailure_swigregister
EpetraMultiVecFailure_swigregister(EpetraMultiVecFailure)

class EpetraOpFailure(AnasaziError):
    """Proxy of C++ Anasazi::EpetraOpFailure class"""
    __swig_setmethods__ = {}
    for _s in [AnasaziError]: __swig_setmethods__.update(getattr(_s,'__swig_setmethods__',{}))
    __setattr__ = lambda self, name, value: _swig_setattr(self, EpetraOpFailure, name, value)
    __swig_getmethods__ = {}
    for _s in [AnasaziError]: __swig_getmethods__.update(getattr(_s,'__swig_getmethods__',{}))
    __getattr__ = lambda self, name: _swig_getattr(self, EpetraOpFailure, name)
    __repr__ = _swig_repr
    def __init__(self, *args): 
        """__init__(self, string what_arg) -> EpetraOpFailure"""
        this = _Anasazi.new_EpetraOpFailure(*args)
        try: self.this.append(this)
        except: self.this = this
    __swig_destroy__ = _Anasazi.delete_EpetraOpFailure
    __del__ = lambda self : None;
EpetraOpFailure_swigregister = _Anasazi.EpetraOpFailure_swigregister
EpetraOpFailure_swigregister(EpetraOpFailure)

class EpetraMultiVec(MultiVecDouble,Epetra.Epetra_MultiVector):
    """Proxy of C++ Anasazi::EpetraMultiVec class"""
    __swig_setmethods__ = {}
    for _s in [MultiVecDouble,Epetra.Epetra_MultiVector]: __swig_setmethods__.update(getattr(_s,'__swig_setmethods__',{}))
    __setattr__ = lambda self, name, value: _swig_setattr(self, EpetraMultiVec, name, value)
    __swig_getmethods__ = {}
    for _s in [MultiVecDouble,Epetra.Epetra_MultiVector]: __swig_getmethods__.update(getattr(_s,'__swig_getmethods__',{}))
    __getattr__ = lambda self, name: _swig_getattr(self, EpetraMultiVec, name)
    __repr__ = _swig_repr
    def __init__(self, *args): 
        """
        __init__(self, BlockMap Map_in, int numvecs) -> EpetraMultiVec
        __init__(self, Epetra_MultiVector P_vec) -> EpetraMultiVec
        __init__(self, BlockMap Map_in, double array, int numvecs, int stride = 0) -> EpetraMultiVec
        __init__(self, Epetra_DataAccess CV, Epetra_MultiVector P_vec, VectorInt index) -> EpetraMultiVec
        """
        this = _Anasazi.new_EpetraMultiVec(*args)
        try: self.this.append(this)
        except: self.this = this
    __swig_destroy__ = _Anasazi.delete_EpetraMultiVec
    __del__ = lambda self : None;
    def Clone(self, *args):
        """Clone(self, int numvecs) -> MultiVecDouble"""
        return _Anasazi.EpetraMultiVec_Clone(self, *args)

    def CloneCopy(self, *args):
        """
        CloneCopy(self) -> MultiVecDouble
        CloneCopy(self, VectorInt index) -> MultiVecDouble
        """
        return _Anasazi.EpetraMultiVec_CloneCopy(self, *args)

    def CloneViewNonConst(self, *args):
        """CloneViewNonConst(self, VectorInt index) -> MultiVecDouble"""
        return _Anasazi.EpetraMultiVec_CloneViewNonConst(self, *args)

    def CloneView(self, *args):
        """CloneView(self, VectorInt index) -> MultiVecDouble"""
        return _Anasazi.EpetraMultiVec_CloneView(self, *args)

    def GetNumberVecs(self, *args):
        """GetNumberVecs(self) -> int"""
        return _Anasazi.EpetraMultiVec_GetNumberVecs(self, *args)

    def GetVecLength(self, *args):
        """GetVecLength(self) -> int"""
        return _Anasazi.EpetraMultiVec_GetVecLength(self, *args)

    def MvTimesMatAddMv(self, *args):
        """
        MvTimesMatAddMv(self, double alpha, MultiVecDouble A, Teuchos::SerialDenseMatrix<(int,double)> B, 
            double beta)
        """
        return _Anasazi.EpetraMultiVec_MvTimesMatAddMv(self, *args)

    def MvAddMv(self, *args):
        """MvAddMv(self, double alpha, MultiVecDouble A, double beta, MultiVecDouble B)"""
        return _Anasazi.EpetraMultiVec_MvAddMv(self, *args)

    def MvTransMv(self, *args):
        """MvTransMv(self, double alpha, MultiVecDouble A, Teuchos::SerialDenseMatrix<(int,double)> B)"""
        return _Anasazi.EpetraMultiVec_MvTransMv(self, *args)

    def MvDot(self, *args):
        """MvDot(self, MultiVecDouble A, std::vector<(double,std::allocator<(double)>)> b)"""
        return _Anasazi.EpetraMultiVec_MvDot(self, *args)

    def MvScale(self, *args):
        """
        MvScale(self, double alpha)
        MvScale(self, std::vector<(double,std::allocator<(double)>)> alpha)
        """
        return _Anasazi.EpetraMultiVec_MvScale(self, *args)

    def MvNorm(self, *args):
        """MvNorm(self, std::vector<(double,std::allocator<(double)>)> normvec)"""
        return _Anasazi.EpetraMultiVec_MvNorm(self, *args)

    def SetBlock(self, *args):
        """SetBlock(self, MultiVecDouble A, VectorInt index)"""
        return _Anasazi.EpetraMultiVec_SetBlock(self, *args)

    def MvRandom(self, *args):
        """MvRandom(self)"""
        return _Anasazi.EpetraMultiVec_MvRandom(self, *args)

    def MvInit(self, *args):
        """MvInit(self, double alpha)"""
        return _Anasazi.EpetraMultiVec_MvInit(self, *args)

    def MvPrint(self, *args):
        """MvPrint(self,  os)"""
        return _Anasazi.EpetraMultiVec_MvPrint(self, *args)

EpetraMultiVec_swigregister = _Anasazi.EpetraMultiVec_swigregister
EpetraMultiVec_swigregister(EpetraMultiVec)

class EpetraOp(OperatorDouble):
    """Proxy of C++ Anasazi::EpetraOp class"""
    __swig_setmethods__ = {}
    for _s in [OperatorDouble]: __swig_setmethods__.update(getattr(_s,'__swig_setmethods__',{}))
    __setattr__ = lambda self, name, value: _swig_setattr(self, EpetraOp, name, value)
    __swig_getmethods__ = {}
    for _s in [OperatorDouble]: __swig_getmethods__.update(getattr(_s,'__swig_getmethods__',{}))
    __getattr__ = lambda self, name: _swig_getattr(self, EpetraOp, name)
    __repr__ = _swig_repr
    def __init__(self, *args): 
        """__init__(self, Teuchos::RCP<(Epetra_Operator)> Op) -> EpetraOp"""
        this = _Anasazi.new_EpetraOp(*args)
        try: self.this.append(this)
        except: self.this = this
    __swig_destroy__ = _Anasazi.delete_EpetraOp
    __del__ = lambda self : None;
    def Apply(self, *args):
        """Apply(self, MultiVecDouble X, MultiVecDouble Y)"""
        return _Anasazi.EpetraOp_Apply(self, *args)

EpetraOp_swigregister = _Anasazi.EpetraOp_swigregister
EpetraOp_swigregister(EpetraOp)

class EpetraGenOp(OperatorDouble,Epetra.Operator):
    """Proxy of C++ Anasazi::EpetraGenOp class"""
    __swig_setmethods__ = {}
    for _s in [OperatorDouble,Epetra.Operator]: __swig_setmethods__.update(getattr(_s,'__swig_setmethods__',{}))
    __setattr__ = lambda self, name, value: _swig_setattr(self, EpetraGenOp, name, value)
    __swig_getmethods__ = {}
    for _s in [OperatorDouble,Epetra.Operator]: __swig_getmethods__.update(getattr(_s,'__swig_getmethods__',{}))
    __getattr__ = lambda self, name: _swig_getattr(self, EpetraGenOp, name)
    __repr__ = _swig_repr
    def __init__(self, *args): 
        """
        __init__(self, Teuchos::RCP<(Epetra_Operator)> AOp, Teuchos::RCP<(Epetra_Operator)> MOp, 
            bool isAInverse = True) -> EpetraGenOp
        """
        this = _Anasazi.new_EpetraGenOp(*args)
        try: self.this.append(this)
        except: self.this = this
    __swig_destroy__ = _Anasazi.delete_EpetraGenOp
    __del__ = lambda self : None;
    def Apply(self, *args):
        """
        Apply(self, MultiVector x, MultiVector y) -> int

        In C++, the Apply() method is pure virtual, thus intended to be
        overridden by derived classes.  In python, cross-language polymorphism
        is supported, and you are expected to derive classes from this base
        class and redefine the Apply() method.  C++ code (e.g., AztecOO
        solvers) can call back to your Apply() method as needed.  You must
        support two arguments, labeled here MultiVector x and MultiVector y.
        These will be converted from Epetra_MultiVector C++ objects to
        numpy-hybrid Epetra.MultiVector objects before they are passed to you.
        Thus, it is legal to use slice indexing and other numpy features to
        compute y from x.

        If application of your operator is successful, return 0; else return
        some non-zero error code.

        It is strongly suggested that you prevent Apply() from raising any
        exceptions.  Accidental errors can be prevented by wrapping your code
        in a try block:

            try:
                # Your code goes here...
            except Exception, e:
                print 'A python exception was raised by method Apply:'
                print e
                return -1

        By returning a -1, you inform the calling routine that Apply() was
        unsuccessful.

        Apply(self, MultiVector x, MultiVector y) -> int

        In C++, the Apply() method is pure virtual, thus intended to be
        overridden by derived classes.  In python, cross-language polymorphism
        is supported, and you are expected to derive classes from this base
        class and redefine the Apply() method.  C++ code (e.g., AztecOO
        solvers) can call back to your Apply() method as needed.  You must
        support two arguments, labeled here MultiVector x and MultiVector y.
        These will be converted from Epetra_MultiVector C++ objects to
        numpy-hybrid Epetra.MultiVector objects before they are passed to you.
        Thus, it is legal to use slice indexing and other numpy features to
        compute y from x.

        If application of your operator is successful, return 0; else return
        some non-zero error code.

        It is strongly suggested that you prevent Apply() from raising any
        exceptions.  Accidental errors can be prevented by wrapping your code
        in a try block:

            try:
                # Your code goes here...
            except Exception, e:
                print 'A python exception was raised by method Apply:'
                print e
                return -1

        By returning a -1, you inform the calling routine that Apply() was
        unsuccessful.


        virtual int
        Epetra_Operator::Apply(const Epetra_MultiVector &X, Epetra_MultiVector
        &Y) const =0

        Returns the result of a Epetra_Operator applied to a
        Epetra_MultiVector X in Y.

        Parameters:
        -----------

        In:  X - A Epetra_MultiVector of dimension NumVectors to multiply with
        matrix.

        Out:  Y -A Epetra_MultiVector of dimension NumVectors containing
        result.

        Integer error code, set to 0 if successful. 
        """
        return _Anasazi.EpetraGenOp_Apply(self, *args)

    def ApplyInverse(self, *args):
        """
        ApplyInverse(self, MultiVector x, MultiVector y) -> int

        In C++, the ApplyInverse() method is pure virtual, thus intended to be
        overridden by derived classes.  In python, cross-language polymorphism
        is supported, and you are expected to derive classes from this base
        class and redefine the ApplyInverse() method.  C++ code (e.g., AztecOO
        solvers) can call back to your ApplyInverse() method as needed.  You
        must support two arguments, labeled here MultiVector x and MultiVector
        y.  These will be converted from Epetra_MultiVector C++ objects to
        numpy-hybrid Epetra.MultiVector objects before they are passed to you.
        Thus, it is legal to use slice indexing and other numpy features to
        compute y from x.

        If application of your operator is successful, return 0; else return
        some non-zero error code.

        It is strongly suggested that you prevent ApplyInverse() from raising
        any exceptions.  Accidental errors can be prevented by wrapping your
        code in a try block:

            try:
                # Your code goes here...
            except Exception, e:
                print 'A python exception was raised by method ApplyInverse:'
                print e
                return -1

        By returning a -1, you inform the calling routine that ApplyInverse()
        was unsuccessful.


        virtual int
        Epetra_Operator::ApplyInverse(const Epetra_MultiVector &X,
        Epetra_MultiVector &Y) const =0

        Returns the result of a Epetra_Operator inverse applied to an
        Epetra_MultiVector X in Y.

        Parameters:
        -----------

        In:  X - A Epetra_MultiVector of dimension NumVectors to solve for.

        Out:  Y -A Epetra_MultiVector of dimension NumVectors containing
        result.

        Integer error code, set to 0 if successful.

        WARNING:  In order to work with AztecOO, any implementation of this
        method must support the case where X and Y are the same object. 
        """
        return _Anasazi.EpetraGenOp_ApplyInverse(self, *args)

    def Label(self, *args):
        """
        Label(self) -> char

        virtual const char*
        Epetra_Operator::Label() const =0

        Returns a character string describing the operator. 
        """
        return _Anasazi.EpetraGenOp_Label(self, *args)

    def UseTranspose(self, *args):
        """
        UseTranspose(self) -> bool

        virtual bool
        Epetra_Operator::UseTranspose() const =0

        Returns the current UseTranspose setting. 
        """
        return _Anasazi.EpetraGenOp_UseTranspose(self, *args)

    def SetUseTranspose(self, *args):
        """
        SetUseTranspose(self, bool arg0) -> int

        virtual int
        Epetra_Operator::SetUseTranspose(bool UseTranspose)=0

        If set true, transpose of this operator will be applied.

        This flag allows the transpose of the given operator to be used
        implicitly. Setting this flag affects only the Apply() and
        ApplyInverse() methods. If the implementation of this interface does
        not support transpose use, this method should return a value of -1.

        Parameters:
        -----------

        In:  UseTranspose -If true, multiply by the transpose of operator,
        otherwise just use operator.

        Integer error code, set to 0 if successful. Set to -1 if this
        implementation does not support transpose. 
        """
        return _Anasazi.EpetraGenOp_SetUseTranspose(self, *args)

    def HasNormInf(self, *args):
        """
        HasNormInf(self) -> bool

        virtual bool
        Epetra_Operator::HasNormInf() const =0

        Returns true if the this object can provide an approximate Inf-norm,
        false otherwise. 
        """
        return _Anasazi.EpetraGenOp_HasNormInf(self, *args)

    def NormInf(self, *args):
        """
        NormInf(self) -> double

        virtual double
        Epetra_Operator::NormInf() const =0

        Returns the infinity norm of the global matrix. 
        """
        return _Anasazi.EpetraGenOp_NormInf(self, *args)

    def Comm(self, *args):
        """
        Comm(self) -> Comm

        virtual const
        Epetra_Comm& Epetra_Operator::Comm() const =0

        Returns a pointer to the Epetra_Comm communicator associated with this
        operator. 
        """
        return _Anasazi.EpetraGenOp_Comm(self, *args)

    def OperatorDomainMap(self, *args):
        """
        OperatorDomainMap(self) -> Map

        virtual
        const Epetra_Map& Epetra_Operator::OperatorDomainMap() const =0

        Returns the Epetra_Map object associated with the domain of this
        operator. 
        """
        return _Anasazi.EpetraGenOp_OperatorDomainMap(self, *args)

    def OperatorRangeMap(self, *args):
        """
        OperatorRangeMap(self) -> Map

        virtual
        const Epetra_Map& Epetra_Operator::OperatorRangeMap() const =0

        Returns the Epetra_Map object associated with the range of this
        operator. 
        """
        return _Anasazi.EpetraGenOp_OperatorRangeMap(self, *args)

EpetraGenOp_swigregister = _Anasazi.EpetraGenOp_swigregister
EpetraGenOp_swigregister(EpetraGenOp)

class EpetraSymOp(OperatorDouble,Epetra.Operator):
    """Proxy of C++ Anasazi::EpetraSymOp class"""
    __swig_setmethods__ = {}
    for _s in [OperatorDouble,Epetra.Operator]: __swig_setmethods__.update(getattr(_s,'__swig_setmethods__',{}))
    __setattr__ = lambda self, name, value: _swig_setattr(self, EpetraSymOp, name, value)
    __swig_getmethods__ = {}
    for _s in [OperatorDouble,Epetra.Operator]: __swig_getmethods__.update(getattr(_s,'__swig_getmethods__',{}))
    __getattr__ = lambda self, name: _swig_getattr(self, EpetraSymOp, name)
    __repr__ = _swig_repr
    def __init__(self, *args): 
        """__init__(self, Teuchos::RCP<(Epetra_Operator)> Op, bool isTrans = False) -> EpetraSymOp"""
        this = _Anasazi.new_EpetraSymOp(*args)
        try: self.this.append(this)
        except: self.this = this
    __swig_destroy__ = _Anasazi.delete_EpetraSymOp
    __del__ = lambda self : None;
    def Apply(self, *args):
        """
        Apply(self, MultiVector x, MultiVector y) -> int

        In C++, the Apply() method is pure virtual, thus intended to be
        overridden by derived classes.  In python, cross-language polymorphism
        is supported, and you are expected to derive classes from this base
        class and redefine the Apply() method.  C++ code (e.g., AztecOO
        solvers) can call back to your Apply() method as needed.  You must
        support two arguments, labeled here MultiVector x and MultiVector y.
        These will be converted from Epetra_MultiVector C++ objects to
        numpy-hybrid Epetra.MultiVector objects before they are passed to you.
        Thus, it is legal to use slice indexing and other numpy features to
        compute y from x.

        If application of your operator is successful, return 0; else return
        some non-zero error code.

        It is strongly suggested that you prevent Apply() from raising any
        exceptions.  Accidental errors can be prevented by wrapping your code
        in a try block:

            try:
                # Your code goes here...
            except Exception, e:
                print 'A python exception was raised by method Apply:'
                print e
                return -1

        By returning a -1, you inform the calling routine that Apply() was
        unsuccessful.

        Apply(self, MultiVector x, MultiVector y) -> int

        In C++, the Apply() method is pure virtual, thus intended to be
        overridden by derived classes.  In python, cross-language polymorphism
        is supported, and you are expected to derive classes from this base
        class and redefine the Apply() method.  C++ code (e.g., AztecOO
        solvers) can call back to your Apply() method as needed.  You must
        support two arguments, labeled here MultiVector x and MultiVector y.
        These will be converted from Epetra_MultiVector C++ objects to
        numpy-hybrid Epetra.MultiVector objects before they are passed to you.
        Thus, it is legal to use slice indexing and other numpy features to
        compute y from x.

        If application of your operator is successful, return 0; else return
        some non-zero error code.

        It is strongly suggested that you prevent Apply() from raising any
        exceptions.  Accidental errors can be prevented by wrapping your code
        in a try block:

            try:
                # Your code goes here...
            except Exception, e:
                print 'A python exception was raised by method Apply:'
                print e
                return -1

        By returning a -1, you inform the calling routine that Apply() was
        unsuccessful.


        virtual int
        Epetra_Operator::Apply(const Epetra_MultiVector &X, Epetra_MultiVector
        &Y) const =0

        Returns the result of a Epetra_Operator applied to a
        Epetra_MultiVector X in Y.

        Parameters:
        -----------

        In:  X - A Epetra_MultiVector of dimension NumVectors to multiply with
        matrix.

        Out:  Y -A Epetra_MultiVector of dimension NumVectors containing
        result.

        Integer error code, set to 0 if successful. 
        """
        return _Anasazi.EpetraSymOp_Apply(self, *args)

    def ApplyInverse(self, *args):
        """
        ApplyInverse(self, MultiVector x, MultiVector y) -> int

        In C++, the ApplyInverse() method is pure virtual, thus intended to be
        overridden by derived classes.  In python, cross-language polymorphism
        is supported, and you are expected to derive classes from this base
        class and redefine the ApplyInverse() method.  C++ code (e.g., AztecOO
        solvers) can call back to your ApplyInverse() method as needed.  You
        must support two arguments, labeled here MultiVector x and MultiVector
        y.  These will be converted from Epetra_MultiVector C++ objects to
        numpy-hybrid Epetra.MultiVector objects before they are passed to you.
        Thus, it is legal to use slice indexing and other numpy features to
        compute y from x.

        If application of your operator is successful, return 0; else return
        some non-zero error code.

        It is strongly suggested that you prevent ApplyInverse() from raising
        any exceptions.  Accidental errors can be prevented by wrapping your
        code in a try block:

            try:
                # Your code goes here...
            except Exception, e:
                print 'A python exception was raised by method ApplyInverse:'
                print e
                return -1

        By returning a -1, you inform the calling routine that ApplyInverse()
        was unsuccessful.


        virtual int
        Epetra_Operator::ApplyInverse(const Epetra_MultiVector &X,
        Epetra_MultiVector &Y) const =0

        Returns the result of a Epetra_Operator inverse applied to an
        Epetra_MultiVector X in Y.

        Parameters:
        -----------

        In:  X - A Epetra_MultiVector of dimension NumVectors to solve for.

        Out:  Y -A Epetra_MultiVector of dimension NumVectors containing
        result.

        Integer error code, set to 0 if successful.

        WARNING:  In order to work with AztecOO, any implementation of this
        method must support the case where X and Y are the same object. 
        """
        return _Anasazi.EpetraSymOp_ApplyInverse(self, *args)

    def Label(self, *args):
        """
        Label(self) -> char

        virtual const char*
        Epetra_Operator::Label() const =0

        Returns a character string describing the operator. 
        """
        return _Anasazi.EpetraSymOp_Label(self, *args)

    def UseTranspose(self, *args):
        """
        UseTranspose(self) -> bool

        virtual bool
        Epetra_Operator::UseTranspose() const =0

        Returns the current UseTranspose setting. 
        """
        return _Anasazi.EpetraSymOp_UseTranspose(self, *args)

    def SetUseTranspose(self, *args):
        """
        SetUseTranspose(self, bool arg0) -> int

        virtual int
        Epetra_Operator::SetUseTranspose(bool UseTranspose)=0

        If set true, transpose of this operator will be applied.

        This flag allows the transpose of the given operator to be used
        implicitly. Setting this flag affects only the Apply() and
        ApplyInverse() methods. If the implementation of this interface does
        not support transpose use, this method should return a value of -1.

        Parameters:
        -----------

        In:  UseTranspose -If true, multiply by the transpose of operator,
        otherwise just use operator.

        Integer error code, set to 0 if successful. Set to -1 if this
        implementation does not support transpose. 
        """
        return _Anasazi.EpetraSymOp_SetUseTranspose(self, *args)

    def HasNormInf(self, *args):
        """
        HasNormInf(self) -> bool

        virtual bool
        Epetra_Operator::HasNormInf() const =0

        Returns true if the this object can provide an approximate Inf-norm,
        false otherwise. 
        """
        return _Anasazi.EpetraSymOp_HasNormInf(self, *args)

    def NormInf(self, *args):
        """
        NormInf(self) -> double

        virtual double
        Epetra_Operator::NormInf() const =0

        Returns the infinity norm of the global matrix. 
        """
        return _Anasazi.EpetraSymOp_NormInf(self, *args)

    def Comm(self, *args):
        """
        Comm(self) -> Comm

        virtual const
        Epetra_Comm& Epetra_Operator::Comm() const =0

        Returns a pointer to the Epetra_Comm communicator associated with this
        operator. 
        """
        return _Anasazi.EpetraSymOp_Comm(self, *args)

    def OperatorDomainMap(self, *args):
        """
        OperatorDomainMap(self) -> Map

        virtual
        const Epetra_Map& Epetra_Operator::OperatorDomainMap() const =0

        Returns the Epetra_Map object associated with the domain of this
        operator. 
        """
        return _Anasazi.EpetraSymOp_OperatorDomainMap(self, *args)

    def OperatorRangeMap(self, *args):
        """
        OperatorRangeMap(self) -> Map

        virtual
        const Epetra_Map& Epetra_Operator::OperatorRangeMap() const =0

        Returns the Epetra_Map object associated with the range of this
        operator. 
        """
        return _Anasazi.EpetraSymOp_OperatorRangeMap(self, *args)

EpetraSymOp_swigregister = _Anasazi.EpetraSymOp_swigregister
EpetraSymOp_swigregister(EpetraSymOp)

class EpetraSymMVOp(OperatorDouble):
    """Proxy of C++ Anasazi::EpetraSymMVOp class"""
    __swig_setmethods__ = {}
    for _s in [OperatorDouble]: __swig_setmethods__.update(getattr(_s,'__swig_setmethods__',{}))
    __setattr__ = lambda self, name, value: _swig_setattr(self, EpetraSymMVOp, name, value)
    __swig_getmethods__ = {}
    for _s in [OperatorDouble]: __swig_getmethods__.update(getattr(_s,'__swig_getmethods__',{}))
    __getattr__ = lambda self, name: _swig_getattr(self, EpetraSymMVOp, name)
    __repr__ = _swig_repr
    def __init__(self, *args): 
        """__init__(self, Teuchos::RCP<(q(const).Epetra_MultiVector)> MV, bool isTrans = False) -> EpetraSymMVOp"""
        this = _Anasazi.new_EpetraSymMVOp(*args)
        try: self.this.append(this)
        except: self.this = this
    __swig_destroy__ = _Anasazi.delete_EpetraSymMVOp
    __del__ = lambda self : None;
    def Apply(self, *args):
        """Apply(self, MultiVecDouble X, MultiVecDouble Y)"""
        return _Anasazi.EpetraSymMVOp_Apply(self, *args)

EpetraSymMVOp_swigregister = _Anasazi.EpetraSymMVOp_swigregister
EpetraSymMVOp_swigregister(EpetraSymMVOp)

class EpetraWSymMVOp(OperatorDouble):
    """Proxy of C++ Anasazi::EpetraWSymMVOp class"""
    __swig_setmethods__ = {}
    for _s in [OperatorDouble]: __swig_setmethods__.update(getattr(_s,'__swig_setmethods__',{}))
    __setattr__ = lambda self, name, value: _swig_setattr(self, EpetraWSymMVOp, name, value)
    __swig_getmethods__ = {}
    for _s in [OperatorDouble]: __swig_getmethods__.update(getattr(_s,'__swig_getmethods__',{}))
    __getattr__ = lambda self, name: _swig_getattr(self, EpetraWSymMVOp, name)
    __repr__ = _swig_repr
    def __init__(self, *args): 
        """__init__(self, Teuchos::RCP<(q(const).Epetra_MultiVector)> MV, Teuchos::RCP<(Epetra_Operator)> OP) -> EpetraWSymMVOp"""
        this = _Anasazi.new_EpetraWSymMVOp(*args)
        try: self.this.append(this)
        except: self.this = this
    __swig_destroy__ = _Anasazi.delete_EpetraWSymMVOp
    __del__ = lambda self : None;
    def Apply(self, *args):
        """Apply(self, MultiVecDouble X, MultiVecDouble Y)"""
        return _Anasazi.EpetraWSymMVOp_Apply(self, *args)

EpetraWSymMVOp_swigregister = _Anasazi.EpetraWSymMVOp_swigregister
EpetraWSymMVOp_swigregister(EpetraWSymMVOp)

class EpetraW2SymMVOp(OperatorDouble):
    """Proxy of C++ Anasazi::EpetraW2SymMVOp class"""
    __swig_setmethods__ = {}
    for _s in [OperatorDouble]: __swig_setmethods__.update(getattr(_s,'__swig_setmethods__',{}))
    __setattr__ = lambda self, name, value: _swig_setattr(self, EpetraW2SymMVOp, name, value)
    __swig_getmethods__ = {}
    for _s in [OperatorDouble]: __swig_getmethods__.update(getattr(_s,'__swig_getmethods__',{}))
    __getattr__ = lambda self, name: _swig_getattr(self, EpetraW2SymMVOp, name)
    __repr__ = _swig_repr
    def __init__(self, *args): 
        """__init__(self, Teuchos::RCP<(q(const).Epetra_MultiVector)> MV, Teuchos::RCP<(Epetra_Operator)> OP) -> EpetraW2SymMVOp"""
        this = _Anasazi.new_EpetraW2SymMVOp(*args)
        try: self.this.append(this)
        except: self.this = this
    __swig_destroy__ = _Anasazi.delete_EpetraW2SymMVOp
    __del__ = lambda self : None;
    def Apply(self, *args):
        """Apply(self, MultiVecDouble X, MultiVecDouble Y)"""
        return _Anasazi.EpetraW2SymMVOp_Apply(self, *args)

EpetraW2SymMVOp_swigregister = _Anasazi.EpetraW2SymMVOp_swigregister
EpetraW2SymMVOp_swigregister(EpetraW2SymMVOp)

class SortManagerEpetra(_object):
    """
    Anasazi's templated pure virtual class for managing the sorting of
    approximate eigenvalues computed by the eigensolver. A concrete
    implementation of this class is necessary.

    Ulrich Hetmaniuk, Rich Lehoucq, and Heidi Thornquist

    C++ includes: AnasaziSortManager.hpp 
    """
    __swig_setmethods__ = {}
    __setattr__ = lambda self, name, value: _swig_setattr(self, SortManagerEpetra, name, value)
    __swig_getmethods__ = {}
    __getattr__ = lambda self, name: _swig_getattr(self, SortManagerEpetra, name)
    def __init__(self, *args, **kwargs): raise AttributeError("No constructor defined - class is abstract")
    __repr__ = _swig_repr
    __swig_destroy__ = _Anasazi.delete_SortManagerEpetra
    __del__ = lambda self : None;
    def sort(self, *args):
        """
        sort(self, std::vector<(double,std::allocator<(double)>)> evals, 
            Teuchos::RCP<(std::vector<(int,std::allocator<(int)>)>)> perm = Teuchos::null, 
            int n = -1)
        sort(self, std::vector<(double,std::allocator<(double)>)> r_evals, 
            std::vector<(double,std::allocator<(double)>)> i_evals, 
            Teuchos::RCP<(std::vector<(int,std::allocator<(int)>)>)> perm = Teuchos::null, 
            int n = -1)

        virtual void
        Anasazi::SortManager< MagnitudeType >::sort(std::vector< MagnitudeType
        > &r_evals, std::vector< MagnitudeType > &i_evals, Teuchos::RCP<
        std::vector< int > > perm=Teuchos::null, int n=-1) const =0

        Sort complex eigenvalues, optionally returning the permutation vector.

        This routine takes two vectors, one for each part of a complex
        eigenvalue. This is helpful for solving real, non-symmetric eigenvalue
        problems.

        Parameters:
        -----------

        r_evals:  [in/out] Vector of length at least n containing the real
        part of the eigenvalues to be sorted.  On output, the first n
        eigenvalues will be sorted. The rest will be unchanged.

        i_evals:  [in/out] Vector of length at least n containing the
        imaginary part of the eigenvalues to be sorted.  On output, the first
        n eigenvalues will be sorted. The rest will be unchanged.

        perm:  [out] Vector of length at least n to store the permutation
        index (optional).  If specified, on output the first n eigenvalues
        will contain the permutation indices, in the range [0,n-1], such that
        r_evals_out[i] = r_evals_in[perm[i]] and similarly for i_evals.

        n:  [in] Number of values in r_evals, i_evals to be sorted. If n ==
        -1, all values will be sorted. 
        """
        return _Anasazi.SortManagerEpetra_sort(self, *args)

SortManagerEpetra_swigregister = _Anasazi.SortManagerEpetra_swigregister
SortManagerEpetra_swigregister(SortManagerEpetra)

class BasicSortEpetra(SortManagerEpetra):
    """
    An implementation of the Anasazi::SortManager that performs a
    collection of common sorting techniques.

    Chris Baker, Ulrich Hetmaniuk, Rich Lehoucq, and Heidi Thornquist

    C++ includes: AnasaziBasicSort.hpp 
    """
    __swig_setmethods__ = {}
    for _s in [SortManagerEpetra]: __swig_setmethods__.update(getattr(_s,'__swig_setmethods__',{}))
    __setattr__ = lambda self, name, value: _swig_setattr(self, BasicSortEpetra, name, value)
    __swig_getmethods__ = {}
    for _s in [SortManagerEpetra]: __swig_getmethods__.update(getattr(_s,'__swig_getmethods__',{}))
    __getattr__ = lambda self, name: _swig_getattr(self, BasicSortEpetra, name)
    __repr__ = _swig_repr
    def __init__(self, *args): 
        """
        __init__(self, ParameterList pl) -> BasicSortEpetra
        __init__(self, string which = "LM") -> BasicSortEpetra

        Anasazi::BasicSort< MagnitudeType >::BasicSort(const std::string
        &which="LM")

        String driven constructor.

        Directly pass the string specifying sort strategy. See setSortType()
        for valid options. 
        """
        this = _Anasazi.new_BasicSortEpetra(*args)
        try: self.this.append(this)
        except: self.this = this
    __swig_destroy__ = _Anasazi.delete_BasicSortEpetra
    __del__ = lambda self : None;
    def setSortType(self, *args):
        """
        setSortType(self, string which)

        void
        Anasazi::BasicSort< MagnitudeType >::setSortType(const std::string
        &which)

        Set sort type.

        Parameters:
        -----------

        which:  [in] The eigenvalues of interest for this eigenproblem.
        "LM" - Largest Magnitude [ default ]

        "SM" - Smallest Magnitude

        "LR" - Largest Real

        "SR" - Smallest Real

        "LI" - Largest Imaginary

        "SI" - Smallest Imaginary 
        """
        return _Anasazi.BasicSortEpetra_setSortType(self, *args)

    def sort(self, *args):
        """
        sort(self, std::vector<(double,std::allocator<(double)>)> evals, 
            Teuchos::RCP<(std::vector<(int,std::allocator<(int)>)>)> perm = Teuchos::null, 
            int n = -1)
        sort(self, std::vector<(double,std::allocator<(double)>)> r_evals, 
            std::vector<(double,std::allocator<(double)>)> i_evals, 
            Teuchos::RCP<(std::vector<(int,std::allocator<(int)>)>)> perm = Teuchos::null, 
            int n = -1)

        void
        Anasazi::BasicSort< MagnitudeType >::sort(std::vector< MagnitudeType >
        &r_evals, std::vector< MagnitudeType > &i_evals, Teuchos::RCP<
        std::vector< int > > perm=Teuchos::null, int n=-1) const

        Sort complex eigenvalues, optionally returning the permutation vector.

        This routine takes two vectors, one for each part of a complex
        eigenvalue. This is helpful for solving real, non-symmetric eigenvalue
        problems.

        Parameters:
        -----------

        r_evals:  [in/out] Vector of length at least n containing the real
        part of the eigenvalues to be sorted.  On output, the first n
        eigenvalues will be sorted. The rest will be unchanged.

        i_evals:  [in/out] Vector of length at least n containing the
        imaginary part of the eigenvalues to be sorted.  On output, the first
        n eigenvalues will be sorted. The rest will be unchanged.

        perm:  [out] Vector of length at least n to store the permutation
        index (optional).  If specified, on output the first n eigenvalues
        will contain the permutation indices, in the range [0,n-1], such that
        r_evals_out[i] = r_evals_in[perm[i]] and similarly for i_evals.

        n:  [in] Number of values in r_evals, i_evals to be sorted. If n ==
        -1, all values will be sorted, as decided by the minimum of the length
        of r_evals and the length of i_evals. 
        """
        return _Anasazi.BasicSortEpetra_sort(self, *args)

BasicSortEpetra_swigregister = _Anasazi.BasicSortEpetra_swigregister
BasicSortEpetra_swigregister(BasicSortEpetra)

class MultiVecTraitsEpetra(_object):
    """Proxy of C++ Anasazi::MultiVecTraits<(double,Epetra_MultiVector)> class"""
    __swig_setmethods__ = {}
    __setattr__ = lambda self, name, value: _swig_setattr(self, MultiVecTraitsEpetra, name, value)
    __swig_getmethods__ = {}
    __getattr__ = lambda self, name: _swig_getattr(self, MultiVecTraitsEpetra, name)
    __repr__ = _swig_repr
    def Clone(*args):
        """
        Clone(Epetra_MultiVector mv, int numvecs) -> Teuchos::RCP<(Epetra_MultiVector)>

        static
        Teuchos::RCP<MV> Anasazi::MultiVecTraits< ScalarType, MV
        >::Clone(const MV &mv, const int numvecs)

        Creates a new empty MV containing numvecs columns.

        Reference-counted pointer to the new multivector of type MV. 
        """
        return _Anasazi.MultiVecTraitsEpetra_Clone(*args)

    if _newclass:Clone = staticmethod(Clone)
    __swig_getmethods__["Clone"] = lambda x: Clone
    def CloneCopy(*args):
        """
        CloneCopy(Epetra_MultiVector mv) -> Teuchos::RCP<(Epetra_MultiVector)>
        CloneCopy(Epetra_MultiVector mv, VectorInt index) -> Teuchos::RCP<(Epetra_MultiVector)>

        static
        Teuchos::RCP<MV> Anasazi::MultiVecTraits< ScalarType, MV
        >::CloneCopy(const MV &mv, const std::vector< int > &index)

        Creates a new MV and copies the selected contents of mv into the new
        vector (deep copy).

        The copied vectors from mv are indicated by the index.size() indices
        in index. Reference-counted pointer to the new multivector of type MV.

        """
        return _Anasazi.MultiVecTraitsEpetra_CloneCopy(*args)

    if _newclass:CloneCopy = staticmethod(CloneCopy)
    __swig_getmethods__["CloneCopy"] = lambda x: CloneCopy
    def CloneViewNonConst(*args):
        """CloneViewNonConst(Epetra_MultiVector mv, VectorInt index) -> Teuchos::RCP<(Epetra_MultiVector)>"""
        return _Anasazi.MultiVecTraitsEpetra_CloneViewNonConst(*args)

    if _newclass:CloneViewNonConst = staticmethod(CloneViewNonConst)
    __swig_getmethods__["CloneViewNonConst"] = lambda x: CloneViewNonConst
    def GetVecLength(*args):
        """
        GetVecLength(Epetra_MultiVector mv) -> int

        static
        int Anasazi::MultiVecTraits< ScalarType, MV >::GetVecLength(const MV
        &mv)

        Obtain the vector length of mv. 
        """
        return _Anasazi.MultiVecTraitsEpetra_GetVecLength(*args)

    if _newclass:GetVecLength = staticmethod(GetVecLength)
    __swig_getmethods__["GetVecLength"] = lambda x: GetVecLength
    def GetNumberVecs(*args):
        """
        GetNumberVecs(Epetra_MultiVector mv) -> int

        static
        int Anasazi::MultiVecTraits< ScalarType, MV >::GetNumberVecs(const MV
        &mv)

        Obtain the number of vectors in mv. 
        """
        return _Anasazi.MultiVecTraitsEpetra_GetNumberVecs(*args)

    if _newclass:GetNumberVecs = staticmethod(GetNumberVecs)
    __swig_getmethods__["GetNumberVecs"] = lambda x: GetNumberVecs
    def MvTimesMatAddMv(*args):
        """
        MvTimesMatAddMv(double alpha, Epetra_MultiVector A, Teuchos::SerialDenseMatrix<(int,double)> B, 
            double beta, Epetra_MultiVector mv)

        static void Anasazi::MultiVecTraits< ScalarType, MV
        >::MvTimesMatAddMv(const ScalarType alpha, const MV &A, const
        Teuchos::SerialDenseMatrix< int, ScalarType > &B, const ScalarType
        beta, MV &mv)

        Update mv with $ \\alpha AB + \\beta mv $. 
        """
        return _Anasazi.MultiVecTraitsEpetra_MvTimesMatAddMv(*args)

    if _newclass:MvTimesMatAddMv = staticmethod(MvTimesMatAddMv)
    __swig_getmethods__["MvTimesMatAddMv"] = lambda x: MvTimesMatAddMv
    def MvAddMv(*args):
        """
        MvAddMv(double alpha, Epetra_MultiVector A, double beta, Epetra_MultiVector B, 
            Epetra_MultiVector mv)

        static void
        Anasazi::MultiVecTraits< ScalarType, MV >::MvAddMv(const ScalarType
        alpha, const MV &A, const ScalarType beta, const MV &B, MV &mv)

        Replace mv with $\\alpha A + \\beta B$. 
        """
        return _Anasazi.MultiVecTraitsEpetra_MvAddMv(*args)

    if _newclass:MvAddMv = staticmethod(MvAddMv)
    __swig_getmethods__["MvAddMv"] = lambda x: MvAddMv
    def MvTransMv(*args):
        """
        MvTransMv(double alpha, Epetra_MultiVector A, Epetra_MultiVector mv, 
            Teuchos::SerialDenseMatrix<(int,double)> B)

        static
        void Anasazi::MultiVecTraits< ScalarType, MV >::MvTransMv(const
        ScalarType alpha, const MV &A, const MV &mv,
        Teuchos::SerialDenseMatrix< int, ScalarType > &B)

        Compute a dense matrix B through the matrix-matrix multiply $
        \\alpha A^Hmv $. 
        """
        return _Anasazi.MultiVecTraitsEpetra_MvTransMv(*args)

    if _newclass:MvTransMv = staticmethod(MvTransMv)
    __swig_getmethods__["MvTransMv"] = lambda x: MvTransMv
    def MvDot(*args):
        """
        MvDot(Epetra_MultiVector A, Epetra_MultiVector B, std::vector<(double,std::allocator<(double)>)> b)

        static void
        Anasazi::MultiVecTraits< ScalarType, MV >::MvDot(const MV &mv, const
        MV &A, std::vector< ScalarType > &b)

        Compute a vector b where the components are the individual dot-
        products of the i-th columns of A and mv, i.e. $b[i] = A[i]^Hmv[i]$.

        """
        return _Anasazi.MultiVecTraitsEpetra_MvDot(*args)

    if _newclass:MvDot = staticmethod(MvDot)
    __swig_getmethods__["MvDot"] = lambda x: MvDot
    def MvNorm(*args):
        """
        MvNorm(Epetra_MultiVector mv, std::vector<(double,std::allocator<(double)>)> normvec)

        static void
        Anasazi::MultiVecTraits< ScalarType, MV >::MvNorm(const MV &mv,
        std::vector< typename Teuchos::ScalarTraits< ScalarType
        >::magnitudeType > &normvec)

        Compute the 2-norm of each individual vector of mv. Upon return,
        normvec[i] holds the value of $||mv_i||_2$, the i-th column of mv. 
        """
        return _Anasazi.MultiVecTraitsEpetra_MvNorm(*args)

    if _newclass:MvNorm = staticmethod(MvNorm)
    __swig_getmethods__["MvNorm"] = lambda x: MvNorm
    def SetBlock(*args):
        """
        SetBlock(Epetra_MultiVector A, VectorInt index, Epetra_MultiVector mv)

        static void
        Anasazi::MultiVecTraits< ScalarType, MV >::SetBlock(const MV &A, const
        std::vector< int > &index, MV &mv)

        Copy the vectors in A to a set of vectors in mv indicated by the
        indices given in index.

        The numvecs vectors in A are copied to a subset of vectors in mv
        indicated by the indices given in index, i.e.  mv[index[i]] = A[i]. 
        """
        return _Anasazi.MultiVecTraitsEpetra_SetBlock(*args)

    if _newclass:SetBlock = staticmethod(SetBlock)
    __swig_getmethods__["SetBlock"] = lambda x: SetBlock
    def MvScale(*args):
        """
        MvScale(Epetra_MultiVector mv, double alpha)
        MvScale(Epetra_MultiVector mv, std::vector<(double,std::allocator<(double)>)> alpha)

        static void
        Anasazi::MultiVecTraits< ScalarType, MV >::MvScale(MV &mv, const
        std::vector< ScalarType > &alpha)

        Scale each element of the i-th vector in mv with alpha[i]. 
        """
        return _Anasazi.MultiVecTraitsEpetra_MvScale(*args)

    if _newclass:MvScale = staticmethod(MvScale)
    __swig_getmethods__["MvScale"] = lambda x: MvScale
    def MvRandom(*args):
        """
        MvRandom(Epetra_MultiVector mv)

        static void
        Anasazi::MultiVecTraits< ScalarType, MV >::MvRandom(MV &mv)

        Replace the vectors in mv with random vectors. 
        """
        return _Anasazi.MultiVecTraitsEpetra_MvRandom(*args)

    if _newclass:MvRandom = staticmethod(MvRandom)
    __swig_getmethods__["MvRandom"] = lambda x: MvRandom
    def MvInit(*args):
        """
        MvInit(Epetra_MultiVector mv, double alpha = Teuchos::ScalarTraits< double >::zero())

        static void
        Anasazi::MultiVecTraits< ScalarType, MV >::MvInit(MV &mv, const
        ScalarType alpha=Teuchos::ScalarTraits< ScalarType >::zero())

        Replace each element of the vectors in mv with alpha. 
        """
        return _Anasazi.MultiVecTraitsEpetra_MvInit(*args)

    if _newclass:MvInit = staticmethod(MvInit)
    __swig_getmethods__["MvInit"] = lambda x: MvInit
    def MvPrint(*args):
        """
        MvPrint(Epetra_MultiVector mv,  os)

        static void
        Anasazi::MultiVecTraits< ScalarType, MV >::MvPrint(const MV &mv,
        std::ostream &os)

        Print the mv multi-vector to the os output stream. 
        """
        return _Anasazi.MultiVecTraitsEpetra_MvPrint(*args)

    if _newclass:MvPrint = staticmethod(MvPrint)
    __swig_getmethods__["MvPrint"] = lambda x: MvPrint
    def __init__(self, *args): 
        """
        __init__(self) -> MultiVecTraitsEpetra

        Virtual base class which defines basic traits for the multi-vector
        type.

        An adapter for this traits class must exist for the MV type. If not,
        this class will produce a compile-time error.

        C++ includes: AnasaziMultiVecTraits.hpp 
        """
        this = _Anasazi.new_MultiVecTraitsEpetra(*args)
        try: self.this.append(this)
        except: self.this = this
    __swig_destroy__ = _Anasazi.delete_MultiVecTraitsEpetra
    __del__ = lambda self : None;
MultiVecTraitsEpetra_swigregister = _Anasazi.MultiVecTraitsEpetra_swigregister
MultiVecTraitsEpetra_swigregister(MultiVecTraitsEpetra)

def MultiVecTraitsEpetra_Clone(*args):
  """
    MultiVecTraitsEpetra_Clone(Epetra_MultiVector mv, int numvecs) -> Teuchos::RCP<(Epetra_MultiVector)>

    static
    Teuchos::RCP<MV> Anasazi::MultiVecTraits< ScalarType, MV
    >::Clone(const MV &mv, const int numvecs)

    Creates a new empty MV containing numvecs columns.

    Reference-counted pointer to the new multivector of type MV. 
    """
  return _Anasazi.MultiVecTraitsEpetra_Clone(*args)

def MultiVecTraitsEpetra_CloneCopy(*args):
  """
    CloneCopy(Epetra_MultiVector mv) -> Teuchos::RCP<(Epetra_MultiVector)>
    MultiVecTraitsEpetra_CloneCopy(Epetra_MultiVector mv, VectorInt index) -> Teuchos::RCP<(Epetra_MultiVector)>

    static
    Teuchos::RCP<MV> Anasazi::MultiVecTraits< ScalarType, MV
    >::CloneCopy(const MV &mv, const std::vector< int > &index)

    Creates a new MV and copies the selected contents of mv into the new
    vector (deep copy).

    The copied vectors from mv are indicated by the index.size() indices
    in index. Reference-counted pointer to the new multivector of type MV.

    """
  return _Anasazi.MultiVecTraitsEpetra_CloneCopy(*args)

def MultiVecTraitsEpetra_CloneViewNonConst(*args):
  """MultiVecTraitsEpetra_CloneViewNonConst(Epetra_MultiVector mv, VectorInt index) -> Teuchos::RCP<(Epetra_MultiVector)>"""
  return _Anasazi.MultiVecTraitsEpetra_CloneViewNonConst(*args)

def MultiVecTraitsEpetra_GetVecLength(*args):
  """
    MultiVecTraitsEpetra_GetVecLength(Epetra_MultiVector mv) -> int

    static
    int Anasazi::MultiVecTraits< ScalarType, MV >::GetVecLength(const MV
    &mv)

    Obtain the vector length of mv. 
    """
  return _Anasazi.MultiVecTraitsEpetra_GetVecLength(*args)

def MultiVecTraitsEpetra_GetNumberVecs(*args):
  """
    MultiVecTraitsEpetra_GetNumberVecs(Epetra_MultiVector mv) -> int

    static
    int Anasazi::MultiVecTraits< ScalarType, MV >::GetNumberVecs(const MV
    &mv)

    Obtain the number of vectors in mv. 
    """
  return _Anasazi.MultiVecTraitsEpetra_GetNumberVecs(*args)

def MultiVecTraitsEpetra_MvTimesMatAddMv(*args):
  """
    MultiVecTraitsEpetra_MvTimesMatAddMv(double alpha, Epetra_MultiVector A, Teuchos::SerialDenseMatrix<(int,double)> B, 
        double beta, Epetra_MultiVector mv)

    static void Anasazi::MultiVecTraits< ScalarType, MV
    >::MvTimesMatAddMv(const ScalarType alpha, const MV &A, const
    Teuchos::SerialDenseMatrix< int, ScalarType > &B, const ScalarType
    beta, MV &mv)

    Update mv with $ \\alpha AB + \\beta mv $. 
    """
  return _Anasazi.MultiVecTraitsEpetra_MvTimesMatAddMv(*args)

def MultiVecTraitsEpetra_MvAddMv(*args):
  """
    MultiVecTraitsEpetra_MvAddMv(double alpha, Epetra_MultiVector A, double beta, Epetra_MultiVector B, 
        Epetra_MultiVector mv)

    static void
    Anasazi::MultiVecTraits< ScalarType, MV >::MvAddMv(const ScalarType
    alpha, const MV &A, const ScalarType beta, const MV &B, MV &mv)

    Replace mv with $\\alpha A + \\beta B$. 
    """
  return _Anasazi.MultiVecTraitsEpetra_MvAddMv(*args)

def MultiVecTraitsEpetra_MvTransMv(*args):
  """
    MultiVecTraitsEpetra_MvTransMv(double alpha, Epetra_MultiVector A, Epetra_MultiVector mv, 
        Teuchos::SerialDenseMatrix<(int,double)> B)

    static
    void Anasazi::MultiVecTraits< ScalarType, MV >::MvTransMv(const
    ScalarType alpha, const MV &A, const MV &mv,
    Teuchos::SerialDenseMatrix< int, ScalarType > &B)

    Compute a dense matrix B through the matrix-matrix multiply $
    \\alpha A^Hmv $. 
    """
  return _Anasazi.MultiVecTraitsEpetra_MvTransMv(*args)

def MultiVecTraitsEpetra_MvDot(*args):
  """
    MultiVecTraitsEpetra_MvDot(Epetra_MultiVector A, Epetra_MultiVector B, std::vector<(double,std::allocator<(double)>)> b)

    static void
    Anasazi::MultiVecTraits< ScalarType, MV >::MvDot(const MV &mv, const
    MV &A, std::vector< ScalarType > &b)

    Compute a vector b where the components are the individual dot-
    products of the i-th columns of A and mv, i.e. $b[i] = A[i]^Hmv[i]$.

    """
  return _Anasazi.MultiVecTraitsEpetra_MvDot(*args)

def MultiVecTraitsEpetra_MvNorm(*args):
  """
    MultiVecTraitsEpetra_MvNorm(Epetra_MultiVector mv, std::vector<(double,std::allocator<(double)>)> normvec)

    static void
    Anasazi::MultiVecTraits< ScalarType, MV >::MvNorm(const MV &mv,
    std::vector< typename Teuchos::ScalarTraits< ScalarType
    >::magnitudeType > &normvec)

    Compute the 2-norm of each individual vector of mv. Upon return,
    normvec[i] holds the value of $||mv_i||_2$, the i-th column of mv. 
    """
  return _Anasazi.MultiVecTraitsEpetra_MvNorm(*args)

def MultiVecTraitsEpetra_SetBlock(*args):
  """
    MultiVecTraitsEpetra_SetBlock(Epetra_MultiVector A, VectorInt index, Epetra_MultiVector mv)

    static void
    Anasazi::MultiVecTraits< ScalarType, MV >::SetBlock(const MV &A, const
    std::vector< int > &index, MV &mv)

    Copy the vectors in A to a set of vectors in mv indicated by the
    indices given in index.

    The numvecs vectors in A are copied to a subset of vectors in mv
    indicated by the indices given in index, i.e.  mv[index[i]] = A[i]. 
    """
  return _Anasazi.MultiVecTraitsEpetra_SetBlock(*args)

def MultiVecTraitsEpetra_MvScale(*args):
  """
    MvScale(Epetra_MultiVector mv, double alpha)
    MultiVecTraitsEpetra_MvScale(Epetra_MultiVector mv, std::vector<(double,std::allocator<(double)>)> alpha)

    static void
    Anasazi::MultiVecTraits< ScalarType, MV >::MvScale(MV &mv, const
    std::vector< ScalarType > &alpha)

    Scale each element of the i-th vector in mv with alpha[i]. 
    """
  return _Anasazi.MultiVecTraitsEpetra_MvScale(*args)

def MultiVecTraitsEpetra_MvRandom(*args):
  """
    MultiVecTraitsEpetra_MvRandom(Epetra_MultiVector mv)

    static void
    Anasazi::MultiVecTraits< ScalarType, MV >::MvRandom(MV &mv)

    Replace the vectors in mv with random vectors. 
    """
  return _Anasazi.MultiVecTraitsEpetra_MvRandom(*args)

def MultiVecTraitsEpetra_MvInit(*args):
  """
    MultiVecTraitsEpetra_MvInit(Epetra_MultiVector mv, double alpha = Teuchos::ScalarTraits< double >::zero())

    static void
    Anasazi::MultiVecTraits< ScalarType, MV >::MvInit(MV &mv, const
    ScalarType alpha=Teuchos::ScalarTraits< ScalarType >::zero())

    Replace each element of the vectors in mv with alpha. 
    """
  return _Anasazi.MultiVecTraitsEpetra_MvInit(*args)

def MultiVecTraitsEpetra_MvPrint(*args):
  """
    MultiVecTraitsEpetra_MvPrint(Epetra_MultiVector mv,  os)

    static void
    Anasazi::MultiVecTraits< ScalarType, MV >::MvPrint(const MV &mv,
    std::ostream &os)

    Print the mv multi-vector to the os output stream. 
    """
  return _Anasazi.MultiVecTraitsEpetra_MvPrint(*args)

class OperatorTraitsEpetra(_object):
    """Proxy of C++ Anasazi::OperatorTraits<(double,Epetra_MultiVector,Epetra_Operator)> class"""
    __swig_setmethods__ = {}
    __setattr__ = lambda self, name, value: _swig_setattr(self, OperatorTraitsEpetra, name, value)
    __swig_getmethods__ = {}
    __getattr__ = lambda self, name: _swig_getattr(self, OperatorTraitsEpetra, name)
    __repr__ = _swig_repr
    def Apply(*args):
        """
        Apply(Operator Op, Epetra_MultiVector x, Epetra_MultiVector y)

        static void
        Anasazi::OperatorTraits< ScalarType, MV, OP >::Apply(const OP &Op,
        const MV &x, MV &y)

        Application method which performs operation y = Op*x. An OperatorError
        exception is thrown if there is an error. 
        """
        return _Anasazi.OperatorTraitsEpetra_Apply(*args)

    if _newclass:Apply = staticmethod(Apply)
    __swig_getmethods__["Apply"] = lambda x: Apply
    def __init__(self, *args): 
        """
        __init__(self) -> OperatorTraitsEpetra

        Virtual base class which defines basic traits for the operator type.

        An adapter for this traits class must exist for the MV and OP types.
        If not, this class will produce a compile-time error.

        C++ includes: AnasaziOperatorTraits.hpp 
        """
        this = _Anasazi.new_OperatorTraitsEpetra(*args)
        try: self.this.append(this)
        except: self.this = this
    __swig_destroy__ = _Anasazi.delete_OperatorTraitsEpetra
    __del__ = lambda self : None;
OperatorTraitsEpetra_swigregister = _Anasazi.OperatorTraitsEpetra_swigregister
OperatorTraitsEpetra_swigregister(OperatorTraitsEpetra)

def OperatorTraitsEpetra_Apply(*args):
  """
    OperatorTraitsEpetra_Apply(Operator Op, Epetra_MultiVector x, Epetra_MultiVector y)

    static void
    Anasazi::OperatorTraits< ScalarType, MV, OP >::Apply(const OP &Op,
    const MV &x, MV &y)

    Application method which performs operation y = Op*x. An OperatorError
    exception is thrown if there is an error. 
    """
  return _Anasazi.OperatorTraitsEpetra_Apply(*args)

class EigenproblemEpetra(_object):
    """
    This class defines the interface required by an eigensolver and status
    test class to compute solutions to an eigenproblem.

    C++ includes: AnasaziEigenproblem.hpp 
    """
    __swig_setmethods__ = {}
    __setattr__ = lambda self, name, value: _swig_setattr(self, EigenproblemEpetra, name, value)
    __swig_getmethods__ = {}
    __getattr__ = lambda self, name: _swig_getattr(self, EigenproblemEpetra, name)
    def __init__(self, *args, **kwargs): raise AttributeError("No constructor defined - class is abstract")
    __repr__ = _swig_repr
    __swig_destroy__ = _Anasazi.delete_EigenproblemEpetra
    __del__ = lambda self : None;
    def setOperator(self, *args):
        """
        setOperator(self, Teuchos::RCP<(q(const).Epetra_Operator)> Op)

        virtual
        void Anasazi::Eigenproblem< ScalarType, MV, OP >::setOperator(const
        Teuchos::RCP< const OP > &Op)=0

        Set the operator for which eigenvalues will be computed.

        This may be different from the A if a spectral transformation is
        employed. For example, this operator may apply the operation
        $(A-\\sigma I)^{-1}$ if you are looking for eigenvalues of A around
        $\\sigma$. 
        """
        return _Anasazi.EigenproblemEpetra_setOperator(self, *args)

    def setA(self, *args):
        """
        setA(self, Teuchos::RCP<(q(const).Epetra_Operator)> A)

        virtual void
        Anasazi::Eigenproblem< ScalarType, MV, OP >::setA(const Teuchos::RCP<
        const OP > &A)=0

        Set the operator A of the eigenvalue problem $Ax=\\lambda Mx$. 
        """
        return _Anasazi.EigenproblemEpetra_setA(self, *args)

    def setM(self, *args):
        """
        setM(self, Teuchos::RCP<(q(const).Epetra_Operator)> M)

        virtual void
        Anasazi::Eigenproblem< ScalarType, MV, OP >::setM(const Teuchos::RCP<
        const OP > &M)=0

        Set the operator M of the eigenvalue problem $Ax=\\lambda Mx$. 
        """
        return _Anasazi.EigenproblemEpetra_setM(self, *args)

    def setPrec(self, *args):
        """
        setPrec(self, Teuchos::RCP<(q(const).Epetra_Operator)> Prec)

        virtual void
        Anasazi::Eigenproblem< ScalarType, MV, OP >::setPrec(const
        Teuchos::RCP< const OP > &Prec)=0

        Set the preconditioner for this eigenvalue problem $Ax=\\lambda Mx$.

        """
        return _Anasazi.EigenproblemEpetra_setPrec(self, *args)

    def setInitVec(self, *args):
        """
        setInitVec(self, Teuchos::RCP<(Epetra_MultiVector)> InitVec)

        virtual
        void Anasazi::Eigenproblem< ScalarType, MV, OP >::setInitVec(const
        Teuchos::RCP< MV > &InitVec)=0

        Set the initial guess.

        This multivector should have the same number of columns as the
        blocksize. 
        """
        return _Anasazi.EigenproblemEpetra_setInitVec(self, *args)

    def setAuxVecs(self, *args):
        """
        setAuxVecs(self, Teuchos::RCP<(q(const).Epetra_MultiVector)> AuxVecs)

        virtual
        void Anasazi::Eigenproblem< ScalarType, MV, OP >::setAuxVecs(const
        Teuchos::RCP< const MV > &AuxVecs)=0

        Set auxiliary vectors.

        This multivector can have any number of columns, and most likely will
        contain vectors that will be used by the eigensolver to orthogonalize
        against. 
        """
        return _Anasazi.EigenproblemEpetra_setAuxVecs(self, *args)

    def setNEV(self, *args):
        """
        setNEV(self, int nev)

        virtual void
        Anasazi::Eigenproblem< ScalarType, MV, OP >::setNEV(int nev)=0

        The number of eigenvalues (NEV) that are requested. 
        """
        return _Anasazi.EigenproblemEpetra_setNEV(self, *args)

    def setHermitian(self, *args):
        """
        setHermitian(self, bool isSym)

        virtual
        void Anasazi::Eigenproblem< ScalarType, MV, OP >::setHermitian(bool
        isSym)=0

        Specify the symmetry of the eigenproblem.

        This knowledge may allow the solver to take advantage of the
        eigenproblems' symmetry. Some computational work may be avoided by
        setting this properly. 
        """
        return _Anasazi.EigenproblemEpetra_setHermitian(self, *args)

    def setProblem(self, *args):
        """
        setProblem(self) -> bool

        virtual
        bool Anasazi::Eigenproblem< ScalarType, MV, OP >::setProblem()=0

        Specify that this eigenproblem is fully defined.

        This routine serves multiple purpose: sanity check that the
        eigenproblem has been fully and consistently defined

        opportunity for the eigenproblem to allocate internal storage for
        eigenvalues and eigenvectors (to be used by eigensolvers and solver
        managers)

        The user MUST call this routine before they send the eigenproblem to
        any solver or solver manager.

        true signifies success, false signifies error. 
        """
        return _Anasazi.EigenproblemEpetra_setProblem(self, *args)

    def setSolution(self, *args):
        """
        setSolution(self, EigensolutionEpetra sol)

        virtual
        void Anasazi::Eigenproblem< ScalarType, MV, OP >::setSolution(const
        Eigensolution< ScalarType, MV > &sol)=0

        Set the solution to the eigenproblem.

        This mechanism allows an Eigensolution struct to be associated with an
        Eigenproblem object. setSolution() is usually called by a solver
        manager at the end of its SolverManager::solve() routine. 
        """
        return _Anasazi.EigenproblemEpetra_setSolution(self, *args)

    def getOperator(self, *args):
        """
        getOperator(self) -> Teuchos::RCP<(q(const).Epetra_Operator)>

        virtual
        Teuchos::RCP<const OP> Anasazi::Eigenproblem< ScalarType, MV, OP
        >::getOperator() const =0

        Get a pointer to the operator for which eigenvalues will be computed.

        """
        return _Anasazi.EigenproblemEpetra_getOperator(self, *args)

    def getA(self, *args):
        """
        getA(self) -> Teuchos::RCP<(q(const).Epetra_Operator)>

        virtual
        Teuchos::RCP<const OP> Anasazi::Eigenproblem< ScalarType, MV, OP
        >::getA() const =0

        Get a pointer to the operator A of the eigenproblem $AX=\\lambda
        Mx$. 
        """
        return _Anasazi.EigenproblemEpetra_getA(self, *args)

    def getM(self, *args):
        """
        getM(self) -> Teuchos::RCP<(q(const).Epetra_Operator)>

        virtual
        Teuchos::RCP<const OP> Anasazi::Eigenproblem< ScalarType, MV, OP
        >::getM() const =0

        Get a pointer to the operator M of the eigenproblem $AX=\\lambda
        Mx$. 
        """
        return _Anasazi.EigenproblemEpetra_getM(self, *args)

    def getPrec(self, *args):
        """
        getPrec(self) -> Teuchos::RCP<(q(const).Epetra_Operator)>

        virtual
        Teuchos::RCP<const OP> Anasazi::Eigenproblem< ScalarType, MV, OP
        >::getPrec() const =0

        Get a pointer to the preconditioner. 
        """
        return _Anasazi.EigenproblemEpetra_getPrec(self, *args)

    def getInitVec(self, *args):
        """
        getInitVec(self) -> Teuchos::RCP<(q(const).Epetra_MultiVector)>

        virtual
        Teuchos::RCP<const MV> Anasazi::Eigenproblem< ScalarType, MV, OP
        >::getInitVec() const =0

        Get a pointer to the initial vector. 
        """
        return _Anasazi.EigenproblemEpetra_getInitVec(self, *args)

    def getAuxVecs(self, *args):
        """
        getAuxVecs(self) -> Teuchos::RCP<(q(const).Epetra_MultiVector)>

        virtual
        Teuchos::RCP<const MV> Anasazi::Eigenproblem< ScalarType, MV, OP
        >::getAuxVecs() const =0

        Get a pointer to the auxiliary vector. 
        """
        return _Anasazi.EigenproblemEpetra_getAuxVecs(self, *args)

    def getNEV(self, *args):
        """
        getNEV(self) -> int

        virtual int
        Anasazi::Eigenproblem< ScalarType, MV, OP >::getNEV() const =0

        Get the number of eigenvalues (NEV) that are required by this
        eigenproblem. 
        """
        return _Anasazi.EigenproblemEpetra_getNEV(self, *args)

    def isHermitian(self, *args):
        """
        isHermitian(self) -> bool

        virtual
        bool Anasazi::Eigenproblem< ScalarType, MV, OP >::isHermitian() const
        =0

        Get the symmetry information for this eigenproblem. 
        """
        return _Anasazi.EigenproblemEpetra_isHermitian(self, *args)

    def isProblemSet(self, *args):
        """
        isProblemSet(self) -> bool

        virtual
        bool Anasazi::Eigenproblem< ScalarType, MV, OP >::isProblemSet() const
        =0

        If the problem has been set, this method will return true. 
        """
        return _Anasazi.EigenproblemEpetra_isProblemSet(self, *args)

    def getSolution(self, *args):
        """
        getSolution(self) -> EigensolutionEpetra

        virtual
        const Eigensolution<ScalarType,MV>& Anasazi::Eigenproblem< ScalarType,
        MV, OP >::getSolution() const =0

        Get the solution to the eigenproblem.

        There is no computation associated with this method. It only provides
        a mechanism for associating an Eigensolution with a Eigenproblem. 
        """
        return _Anasazi.EigenproblemEpetra_getSolution(self, *args)

EigenproblemEpetra_swigregister = _Anasazi.EigenproblemEpetra_swigregister
EigenproblemEpetra_swigregister(EigenproblemEpetra)

class BasicEigenproblemEpetra(EigenproblemEpetra):
    """
    This provides a basic implementation for defining standard or
    generalized eigenvalue problems.

    C++ includes: AnasaziBasicEigenproblem.hpp 
    """
    __swig_setmethods__ = {}
    for _s in [EigenproblemEpetra]: __swig_setmethods__.update(getattr(_s,'__swig_setmethods__',{}))
    __setattr__ = lambda self, name, value: _swig_setattr(self, BasicEigenproblemEpetra, name, value)
    __swig_getmethods__ = {}
    for _s in [EigenproblemEpetra]: __swig_getmethods__.update(getattr(_s,'__swig_getmethods__',{}))
    __getattr__ = lambda self, name: _swig_getattr(self, BasicEigenproblemEpetra, name)
    __repr__ = _swig_repr
    def __init__(self, *args): 
        """
        __init__(self) -> BasicEigenproblemEpetra
        __init__(self, Teuchos::RCP<(q(const).Epetra_Operator)> Op, Teuchos::RCP<(Epetra_MultiVector)> InitVec) -> BasicEigenproblemEpetra
        __init__(self, Teuchos::RCP<(q(const).Epetra_Operator)> Op, Teuchos::RCP<(q(const).Epetra_Operator)> B, 
            Teuchos::RCP<(Epetra_MultiVector)> InitVec) -> BasicEigenproblemEpetra
        __init__(self, BasicEigenproblemEpetra Problem) -> BasicEigenproblemEpetra

        Anasazi::BasicEigenproblem< ScalarType, MV, OP
        >::BasicEigenproblem(const BasicEigenproblem< ScalarType, MV, OP >
        &Problem)

        Copy Constructor. 
        """
        this = _Anasazi.new_BasicEigenproblemEpetra(*args)
        try: self.this.append(this)
        except: self.this = this
    __swig_destroy__ = _Anasazi.delete_BasicEigenproblemEpetra
    __del__ = lambda self : None;
    def setOperator(self, *args):
        """
        setOperator(self, Teuchos::RCP<(q(const).Epetra_Operator)> Op)

        void
        Anasazi::BasicEigenproblem< ScalarType, MV, OP >::setOperator(const
        Teuchos::RCP< const OP > &Op)

        Set the operator for which eigenvalues will be computed.

        This may be different from the A if a spectral transformation is
        employed. For example, this operator may apply the operation
        $(A-\\sigma I)^{-1}$ if you are looking for eigenvalues of A around
        $\\sigma$. 
        """
        return _Anasazi.BasicEigenproblemEpetra_setOperator(self, *args)

    def setA(self, *args):
        """
        setA(self, Teuchos::RCP<(q(const).Epetra_Operator)> A)

        void
        Anasazi::BasicEigenproblem< ScalarType, MV, OP >::setA(const
        Teuchos::RCP< const OP > &A)

        Set the operator A of the eigenvalue problem $Ax=Mx\\lambda$. 
        """
        return _Anasazi.BasicEigenproblemEpetra_setA(self, *args)

    def setM(self, *args):
        """
        setM(self, Teuchos::RCP<(q(const).Epetra_Operator)> M)

        void
        Anasazi::BasicEigenproblem< ScalarType, MV, OP >::setM(const
        Teuchos::RCP< const OP > &M)

        Set the operator M of the eigenvalue problem $Ax = Mx\\lambda$. 
        """
        return _Anasazi.BasicEigenproblemEpetra_setM(self, *args)

    def setPrec(self, *args):
        """
        setPrec(self, Teuchos::RCP<(q(const).Epetra_Operator)> Prec)

        void
        Anasazi::BasicEigenproblem< ScalarType, MV, OP >::setPrec(const
        Teuchos::RCP< const OP > &Prec)

        Set the preconditioner for this eigenvalue problem $Ax =
        Mx\\lambda$. 
        """
        return _Anasazi.BasicEigenproblemEpetra_setPrec(self, *args)

    def setInitVec(self, *args):
        """
        setInitVec(self, Teuchos::RCP<(Epetra_MultiVector)> InitVec)

        void
        Anasazi::BasicEigenproblem< ScalarType, MV, OP >::setInitVec(const
        Teuchos::RCP< MV > &InitVec)

        Set the initial guess.

        This vector is required to create all the space needed by Anasazi to
        solve the eigenvalue problem.

        Even if an initial guess is not known by the user, an initial vector
        must be passed in. 
        """
        return _Anasazi.BasicEigenproblemEpetra_setInitVec(self, *args)

    def setAuxVecs(self, *args):
        """
        setAuxVecs(self, Teuchos::RCP<(q(const).Epetra_MultiVector)> AuxVecs)

        void
        Anasazi::BasicEigenproblem< ScalarType, MV, OP >::setAuxVecs(const
        Teuchos::RCP< const MV > &AuxVecs)

        Set auxiliary vectors.

        This multivector can have any number of columns, and most likely will
        contain vectors that will be used by the eigensolver to orthogonalize
        against. 
        """
        return _Anasazi.BasicEigenproblemEpetra_setAuxVecs(self, *args)

    def setNEV(self, *args):
        """
        setNEV(self, int nev)

        void
        Anasazi::BasicEigenproblem< ScalarType, MV, OP >::setNEV(int nev)

        Specify the number of eigenvalues (NEV) that are requested. 
        """
        return _Anasazi.BasicEigenproblemEpetra_setNEV(self, *args)

    def setHermitian(self, *args):
        """
        setHermitian(self, bool isSym)

        void
        Anasazi::BasicEigenproblem< ScalarType, MV, OP >::setHermitian(bool
        isSym)

        Specify the symmetry of this eigenproblem.

        This knowledge may allow the solver to take advantage of the
        eigenproblems' symmetry. Some computational work can be avoided by
        setting this properly. 
        """
        return _Anasazi.BasicEigenproblemEpetra_setHermitian(self, *args)

    def setProblem(self, *args):
        """
        setProblem(self) -> bool

        bool
        Anasazi::BasicEigenproblem< ScalarType, MV, OP >::setProblem()

        Specify that this eigenproblem is fully defined.

        This routine serves multiple purpose: sanity check that the
        eigenproblem has been fully and consistently defined

        opportunity for the eigenproblem to allocate internal storage for
        eigenvalues and eigenvectors (to be used by eigensolvers and solver
        managers)

        This method reallocates internal storage, so that any previously
        retrieved references to internal storage (eigenvectors or eigenvalues)
        are invalidated.

        The user MUST call this routine before they send the eigenproblem to
        any solver or solver manager.

        true signifies success, false signifies error. 
        """
        return _Anasazi.BasicEigenproblemEpetra_setProblem(self, *args)

    def setSolution(self, *args):
        """
        setSolution(self, EigensolutionEpetra sol)

        void
        Anasazi::BasicEigenproblem< ScalarType, MV, OP >::setSolution(const
        Eigensolution< ScalarType, MV > &sol)

        Set the solution to the eigenproblem.

        This mechanism allows an Eigensolution struct to be associated with an
        Eigenproblem object. setSolution() is usually called by a solver
        manager at the end of its SolverManager::solve() routine. 
        """
        return _Anasazi.BasicEigenproblemEpetra_setSolution(self, *args)

    def getOperator(self, *args):
        """
        getOperator(self) -> Teuchos::RCP<(q(const).Epetra_Operator)>

        Teuchos::RCP<const OP> Anasazi::BasicEigenproblem< ScalarType, MV, OP
        >::getOperator() const

        Get a pointer to the operator for which eigenvalues will be computed.

        """
        return _Anasazi.BasicEigenproblemEpetra_getOperator(self, *args)

    def getA(self, *args):
        """
        getA(self) -> Teuchos::RCP<(q(const).Epetra_Operator)>

        Teuchos::RCP<const OP> Anasazi::BasicEigenproblem< ScalarType, MV, OP
        >::getA() const

        Get a pointer to the operator A of the eigenproblem $Ax=\\lambda
        Mx$. 
        """
        return _Anasazi.BasicEigenproblemEpetra_getA(self, *args)

    def getM(self, *args):
        """
        getM(self) -> Teuchos::RCP<(q(const).Epetra_Operator)>

        Teuchos::RCP<const OP> Anasazi::BasicEigenproblem< ScalarType, MV, OP
        >::getM() const

        Get a pointer to the operator M of the eigenproblem $Ax=\\lambda
        Mx$. 
        """
        return _Anasazi.BasicEigenproblemEpetra_getM(self, *args)

    def getPrec(self, *args):
        """
        getPrec(self) -> Teuchos::RCP<(q(const).Epetra_Operator)>

        Teuchos::RCP<const OP> Anasazi::BasicEigenproblem< ScalarType, MV, OP
        >::getPrec() const

        Get a pointer to the preconditioner of the eigenproblem $Ax=\\lambda
        Mx$. 
        """
        return _Anasazi.BasicEigenproblemEpetra_getPrec(self, *args)

    def getInitVec(self, *args):
        """
        getInitVec(self) -> Teuchos::RCP<(q(const).Epetra_MultiVector)>

        Teuchos::RCP<const MV> Anasazi::BasicEigenproblem< ScalarType, MV, OP
        >::getInitVec() const

        Get a pointer to the initial vector. 
        """
        return _Anasazi.BasicEigenproblemEpetra_getInitVec(self, *args)

    def getAuxVecs(self, *args):
        """
        getAuxVecs(self) -> Teuchos::RCP<(q(const).Epetra_MultiVector)>

        Teuchos::RCP<const MV> Anasazi::BasicEigenproblem< ScalarType, MV, OP
        >::getAuxVecs() const

        Get a pointer to the auxiliary vector. 
        """
        return _Anasazi.BasicEigenproblemEpetra_getAuxVecs(self, *args)

    def getNEV(self, *args):
        """
        getNEV(self) -> int

        int
        Anasazi::BasicEigenproblem< ScalarType, MV, OP >::getNEV() const

        Get the number of eigenvalues (NEV) that are required by this
        eigenproblem. 
        """
        return _Anasazi.BasicEigenproblemEpetra_getNEV(self, *args)

    def isHermitian(self, *args):
        """
        isHermitian(self) -> bool

        bool
        Anasazi::BasicEigenproblem< ScalarType, MV, OP >::isHermitian() const

        Get the symmetry information for this eigenproblem. 
        """
        return _Anasazi.BasicEigenproblemEpetra_isHermitian(self, *args)

    def isProblemSet(self, *args):
        """
        isProblemSet(self) -> bool

        bool
        Anasazi::BasicEigenproblem< ScalarType, MV, OP >::isProblemSet() const

        If the problem has been set, this method will return true. 
        """
        return _Anasazi.BasicEigenproblemEpetra_isProblemSet(self, *args)

    def getSolution(self, *args):
        """
        getSolution(self) -> EigensolutionEpetra

        const
        Eigensolution<ScalarType,MV>& Anasazi::BasicEigenproblem< ScalarType,
        MV, OP >::getSolution() const

        Get the solution to the eigenproblem.

        There is no computation associated with this method. It only provides
        a mechanism for associating an Eigensolution with a Eigenproblem. 
        """
        return _Anasazi.BasicEigenproblemEpetra_getSolution(self, *args)

BasicEigenproblemEpetra_swigregister = _Anasazi.BasicEigenproblemEpetra_swigregister
BasicEigenproblemEpetra_swigregister(BasicEigenproblemEpetra)

class StatusTestEpetra(_object):
    """
    A pure virtual class for defining the status tests for the Anasazi
    iterative solvers.

    StatusTest is an interface that can be implemented to create
    convergence tests for all Anasazi solvers. Almost any kind of test can
    be expressed using this mechanism, including composite tests (see
    StatusTestCombo).

    C++ includes: AnasaziStatusTestDecl.hpp 
    """
    __swig_setmethods__ = {}
    __setattr__ = lambda self, name, value: _swig_setattr(self, StatusTestEpetra, name, value)
    __swig_getmethods__ = {}
    __getattr__ = lambda self, name: _swig_getattr(self, StatusTestEpetra, name)
    def __init__(self, *args, **kwargs): raise AttributeError("No constructor defined - class is abstract")
    __repr__ = _swig_repr
    __swig_destroy__ = _Anasazi.delete_StatusTestEpetra
    __del__ = lambda self : None;
    def checkStatus(self, *args):
        """
        checkStatus(self, EigensolverEpetra solver) -> TestStatus

        virtual
        TestStatus Anasazi::StatusTest< ScalarType, MV, OP
        >::checkStatus(Eigensolver< ScalarType, MV, OP > *solver)=0

        Check status as defined by test.

        TestStatus indicating whether the test passed or failed. 
        """
        return _Anasazi.StatusTestEpetra_checkStatus(self, *args)

    def getStatus(self, *args):
        """
        getStatus(self) -> TestStatus

        virtual
        TestStatus Anasazi::StatusTest< ScalarType, MV, OP >::getStatus()
        const =0

        Return the result of the most recent checkStatus call, or undefined if
        it has not been run. 
        """
        return _Anasazi.StatusTestEpetra_getStatus(self, *args)

    def whichVecs(self, *args):
        """
        whichVecs(self) -> VectorInt

        virtual
        std::vector<int> Anasazi::StatusTest< ScalarType, MV, OP
        >::whichVecs() const =0

        Get the indices for the vectors that passed the test. 
        """
        return _Anasazi.StatusTestEpetra_whichVecs(self, *args)

    def howMany(self, *args):
        """
        howMany(self) -> int

        virtual int
        Anasazi::StatusTest< ScalarType, MV, OP >::howMany() const =0

        Get the number of vectors that passed the test. 
        """
        return _Anasazi.StatusTestEpetra_howMany(self, *args)

    def reset(self, *args):
        """
        reset(self)

        virtual void
        Anasazi::StatusTest< ScalarType, MV, OP >::reset()=0

        Informs the status test that it should reset its internal
        configuration to the uninitialized state.

        This is necessary for the case when the status test is being reused by
        another solver or for another eigenvalue problem. The status test may
        have information that pertains to a particular problem or solver
        state. The internal information will be reset back to the
        uninitialized state. The user specified information that the
        convergence test uses will remain. 
        """
        return _Anasazi.StatusTestEpetra_reset(self, *args)

    def clearStatus(self, *args):
        """
        clearStatus(self)

        virtual void
        Anasazi::StatusTest< ScalarType, MV, OP >::clearStatus()=0

        Clears the results of the last status test.

        This should be distinguished from the reset() method, as it only
        clears the cached result from the last status test, so that a call to
        getStatus() will return Undefined. This is necessary for the SEQOR and
        SEQAND tests in the StatusTestCombo class, which may short circuit and
        not evaluate all of the StatusTests contained in them. 
        """
        return _Anasazi.StatusTestEpetra_clearStatus(self, *args)

StatusTestEpetra_swigregister = _Anasazi.StatusTestEpetra_swigregister
StatusTestEpetra_swigregister(StatusTestEpetra)

class StatusTestComboEpetra(StatusTestEpetra):
    """
    Status test for forming logical combinations of other status tests.

    Test types include StatusTestCombo::OR, StatusTestCombo::AND,
    StatusTestCombo::SEQOR and StatusTestCombo::SEQAND. The
    StatusTestCombo::OR and StatusTestCombo::AND tests evaluate all of the
    tests, in the order they were passed to the StatusTestCombo. The
    StatusTestCombo::SEQOR and StatusTestCombo::SEQAND run only the tests
    necessary to determine the final outcome, short- circuiting on the
    first test that conclusively decides the outcome. More formally,
    StatusTestCombo::SEQAND runs the tests in the order they were given to
    the StatusTestCombo class and stops after the first test that
    evaluates Failed. StatusTestCombo::SEQOR run the tests in the order
    they were given to the StatusTestCombo class and stops after the first
    test that evaluates Passed.

    C++ includes: AnasaziStatusTestCombo.hpp 
    """
    __swig_setmethods__ = {}
    for _s in [StatusTestEpetra]: __swig_setmethods__.update(getattr(_s,'__swig_setmethods__',{}))
    __setattr__ = lambda self, name, value: _swig_setattr(self, StatusTestComboEpetra, name, value)
    __swig_getmethods__ = {}
    for _s in [StatusTestEpetra]: __swig_getmethods__.update(getattr(_s,'__swig_getmethods__',{}))
    __getattr__ = lambda self, name: _swig_getattr(self, StatusTestComboEpetra, name)
    __repr__ = _swig_repr
    OR = _Anasazi.StatusTestComboEpetra_OR
    AND = _Anasazi.StatusTestComboEpetra_AND
    SEQOR = _Anasazi.StatusTestComboEpetra_SEQOR
    SEQAND = _Anasazi.StatusTestComboEpetra_SEQAND
    def __init__(self, *args): 
        """
        __init__(self) -> StatusTestComboEpetra
        __init__(self, ComboType type, Teuchos::Array<(Teuchos::RCP<(Anasazi::StatusTest<(double,Epetra_MultiVector,Epetra_Operator)>)>)> tests) -> StatusTestComboEpetra

        Anasazi::StatusTestCombo< ScalarType, MV, OP
        >::StatusTestCombo(ComboType type, Teuchos::Array< Teuchos::RCP<
        StatusTest< ScalarType, MV, OP > > > tests)

        Constructor specifying the StatusTestCombo::ComboType and the tests.

        Constructor 
        """
        this = _Anasazi.new_StatusTestComboEpetra(*args)
        try: self.this.append(this)
        except: self.this = this
    __swig_destroy__ = _Anasazi.delete_StatusTestComboEpetra
    __del__ = lambda self : None;
    def checkStatus(self, *args):
        """
        checkStatus(self, EigensolverEpetra solver) -> TestStatus

        TestStatus Anasazi::StatusTestCombo< ScalarType, MV, OP
        >::checkStatus(Eigensolver< ScalarType, MV, OP > *solver)

        Check status as defined by test.

        TestStatus indicating whether the test passed or failed. 
        """
        return _Anasazi.StatusTestComboEpetra_checkStatus(self, *args)

    def getStatus(self, *args):
        """
        getStatus(self) -> TestStatus

        TestStatus Anasazi::StatusTestCombo< ScalarType, MV, OP >::getStatus()
        const

        Return the result of the most recent checkStatus call. 
        """
        return _Anasazi.StatusTestComboEpetra_getStatus(self, *args)

    def whichVecs(self, *args):
        """
        whichVecs(self) -> VectorInt

        std::vector<int> Anasazi::StatusTestCombo< ScalarType, MV, OP
        >::whichVecs() const

        Get the indices for the vectors that passed the test.

        This returns some combination of the passing vectors from the tests
        comprising the StatusTestCombo. The nature of the combination depends
        on the StatusTestCombo::ComboType:  StatusTestCombo::SEQOR,
        StatusTestCombo::OR - whichVecs() returns the union of whichVecs()
        from all evaluated constituent tests

        StatusTestCombo::SEQAND, StatusTestCombo::AND - whichVecs() returns
        the intersection of whichVecs() from all evaluated constituent tests

        """
        return _Anasazi.StatusTestComboEpetra_whichVecs(self, *args)

    def howMany(self, *args):
        """
        howMany(self) -> int

        int
        Anasazi::StatusTestCombo< ScalarType, MV, OP >::howMany() const

        Get the number of vectors that passed the test. 
        """
        return _Anasazi.StatusTestComboEpetra_howMany(self, *args)

    def setComboType(self, *args):
        """
        setComboType(self, ComboType type)

        void
        Anasazi::StatusTestCombo< ScalarType, MV, OP >::setComboType(ComboType
        type)

        Set the maximum number of iterations. This also resets the test status
        to Undefined. 
        """
        return _Anasazi.StatusTestComboEpetra_setComboType(self, *args)

    def getComboType(self, *args):
        """
        getComboType(self) -> ComboType

        ComboType Anasazi::StatusTestCombo< ScalarType, MV, OP
        >::getComboType() const

        Get the maximum number of iterations. 
        """
        return _Anasazi.StatusTestComboEpetra_getComboType(self, *args)

    def setTests(self, *args):
        """
        setTests(self, Teuchos::Array<(Teuchos::RCP<(Anasazi::StatusTest<(double,Epetra_MultiVector,Epetra_Operator)>)>)> tests)

        void
        Anasazi::StatusTestCombo< ScalarType, MV, OP
        >::setTests(Teuchos::Array< Teuchos::RCP< StatusTest< ScalarType, MV,
        OP > > > tests)

        Set the tests This also resets the test status to Undefined. 
        """
        return _Anasazi.StatusTestComboEpetra_setTests(self, *args)

    def getTests(self, *args):
        """
        getTests(self) -> Teuchos::Array<(Teuchos::RCP<(Anasazi::StatusTest<(double,Epetra_MultiVector,Epetra_Operator)>)>)>

        Teuchos::Array<Teuchos::RCP<StatusTest<ScalarType,MV,OP> > >
        Anasazi::StatusTestCombo< ScalarType, MV, OP >::getTests() const

        Get the tests. 
        """
        return _Anasazi.StatusTestComboEpetra_getTests(self, *args)

    def addTest(self, *args):
        """
        addTest(self, Teuchos::RCP<(Anasazi::StatusTest<(double,Epetra_MultiVector,Epetra_Operator)>)> test)

        void
        Anasazi::StatusTestCombo< ScalarType, MV, OP >::addTest(Teuchos::RCP<
        StatusTest< ScalarType, MV, OP > > test)

        Add a test to the combination.

        This also resets the test status to Undefined. 
        """
        return _Anasazi.StatusTestComboEpetra_addTest(self, *args)

    def removeTest(self, *args):
        """
        removeTest(self, Teuchos::RCP<(Anasazi::StatusTest<(double,Epetra_MultiVector,Epetra_Operator)>)> test)

        void
        Anasazi::StatusTestCombo< ScalarType, MV, OP >::removeTest(const
        Teuchos::RCP< StatusTest< ScalarType, MV, OP > > &test)

        Removes a test from the combination, if it exists in the tester.

        This also resets the test status to Undefined, if a test was removed.

        """
        return _Anasazi.StatusTestComboEpetra_removeTest(self, *args)

    def reset(self, *args):
        """
        reset(self)

        void
        Anasazi::StatusTestCombo< ScalarType, MV, OP >::reset()

        Informs the status test that it should reset its internal
        configuration to the uninitialized state.

        The StatusTestCombo class has no internal state, but children classes
        might, so this method will call reset() on all child status tests. It
        also resets the test status to Undefined. 
        """
        return _Anasazi.StatusTestComboEpetra_reset(self, *args)

    def clearStatus(self, *args):
        """
        clearStatus(self)

        void
        Anasazi::StatusTestCombo< ScalarType, MV, OP >::clearStatus()

        Clears the results of the last status test.

        This should be distinguished from the reset() method, as it only
        clears the cached result from the last status test, so that a call to
        getStatus() will return Undefined. This is necessary for the
        StatusTestCombo::SEQOR and StatusTestCombo::SEQAND tests in the
        StatusTestCombo class, which may short circuit and not evaluate all of
        the StatusTests contained in them. 
        """
        return _Anasazi.StatusTestComboEpetra_clearStatus(self, *args)

StatusTestComboEpetra_swigregister = _Anasazi.StatusTestComboEpetra_swigregister
StatusTestComboEpetra_swigregister(StatusTestComboEpetra)

class StatusTestMaxItersEpetra(StatusTestEpetra):
    """
    A status test for testing the number of iterations.

    Anasazi::StatusTestMaxIters will test true when an eigensolver has
    reached some number of iterations. Specifically,
    { Passed,  if solver->getNumIters() >= maxIter status(solver) = {
    { Failed,  if solver->getNumIters()  < maxIter where maxIter is the
    parameter given to the status tester.

    This status test also supports negation, so that it negates the need
    for a StatusTestMinIters status tester. In this way, all tests on the
    range of iterations can be constructed through the appropriate use of
    StatusTestMaxIters and StatusTestCombo.

    C++ includes: AnasaziStatusTestMaxIters.hpp 
    """
    __swig_setmethods__ = {}
    for _s in [StatusTestEpetra]: __swig_setmethods__.update(getattr(_s,'__swig_setmethods__',{}))
    __setattr__ = lambda self, name, value: _swig_setattr(self, StatusTestMaxItersEpetra, name, value)
    __swig_getmethods__ = {}
    for _s in [StatusTestEpetra]: __swig_getmethods__.update(getattr(_s,'__swig_getmethods__',{}))
    __getattr__ = lambda self, name: _swig_getattr(self, StatusTestMaxItersEpetra, name)
    __repr__ = _swig_repr
    def __init__(self, *args): 
        """
        __init__(self, int maxIter, bool negate = False) -> StatusTestMaxItersEpetra

        Anasazi::StatusTestMaxIters< ScalarType, MV, OP
        >::StatusTestMaxIters(int maxIter, bool negate=false)

        Constructor. 
        """
        this = _Anasazi.new_StatusTestMaxItersEpetra(*args)
        try: self.this.append(this)
        except: self.this = this
    __swig_destroy__ = _Anasazi.delete_StatusTestMaxItersEpetra
    __del__ = lambda self : None;
    def checkStatus(self, *args):
        """
        checkStatus(self, EigensolverEpetra solver) -> TestStatus

        TestStatus Anasazi::StatusTestMaxIters< ScalarType, MV, OP
        >::checkStatus(Eigensolver< ScalarType, MV, OP > *solver)

        Check status as defined by test.

        TestStatus indicating whether the test passed or failed. 
        """
        return _Anasazi.StatusTestMaxItersEpetra_checkStatus(self, *args)

    def getStatus(self, *args):
        """
        getStatus(self) -> TestStatus

        TestStatus Anasazi::StatusTestMaxIters< ScalarType, MV, OP
        >::getStatus() const

        Return the result of the most recent checkStatus call. 
        """
        return _Anasazi.StatusTestMaxItersEpetra_getStatus(self, *args)

    def whichVecs(self, *args):
        """
        whichVecs(self) -> VectorInt

        std::vector<int> Anasazi::StatusTestMaxIters< ScalarType, MV, OP
        >::whichVecs() const

        Get the indices for the vectors that passed the test. 
        """
        return _Anasazi.StatusTestMaxItersEpetra_whichVecs(self, *args)

    def howMany(self, *args):
        """
        howMany(self) -> int

        int
        Anasazi::StatusTestMaxIters< ScalarType, MV, OP >::howMany() const

        Get the number of vectors that passed the test. 
        """
        return _Anasazi.StatusTestMaxItersEpetra_howMany(self, *args)

    def setMaxIters(self, *args):
        """
        setMaxIters(self, int maxIters)

        void
        Anasazi::StatusTestMaxIters< ScalarType, MV, OP >::setMaxIters(int
        maxIters)

        Set the maximum number of iterations.

        This also resets the test status to Undefined. 
        """
        return _Anasazi.StatusTestMaxItersEpetra_setMaxIters(self, *args)

    def getMaxIters(self, *args):
        """
        getMaxIters(self) -> int

        int
        Anasazi::StatusTestMaxIters< ScalarType, MV, OP >::getMaxIters()

        Get the maximum number of iterations. 
        """
        return _Anasazi.StatusTestMaxItersEpetra_getMaxIters(self, *args)

    def setNegate(self, *args):
        """
        setNegate(self, bool negate)

        void
        Anasazi::StatusTestMaxIters< ScalarType, MV, OP >::setNegate(bool
        negate)

        Set the negation policy for the status test.

        This also reset the test status to Undefined. 
        """
        return _Anasazi.StatusTestMaxItersEpetra_setNegate(self, *args)

    def getNegate(self, *args):
        """
        getNegate(self) -> bool

        bool
        Anasazi::StatusTestMaxIters< ScalarType, MV, OP >::getNegate() const

        Get the negation policy for the status test. 
        """
        return _Anasazi.StatusTestMaxItersEpetra_getNegate(self, *args)

    def reset(self, *args):
        """
        reset(self)

        void
        Anasazi::StatusTestMaxIters< ScalarType, MV, OP >::reset()

        Informs the status test that it should reset its internal
        configuration to the uninitialized state.

        The StatusTestMaxIters class has no internal state, so this call is
        equivalent to calling clearStatus(). eigenvalue problem. The status
        test may have information that pertains to a particular problem or
        solver state. The internal information will be reset back to the
        uninitialized state. The user specified information that the
        convergence test uses will remain. 
        """
        return _Anasazi.StatusTestMaxItersEpetra_reset(self, *args)

    def clearStatus(self, *args):
        """
        clearStatus(self)

        void
        Anasazi::StatusTestMaxIters< ScalarType, MV, OP >::clearStatus()

        Clears the results of the last status test.

        This should be distinguished from the reset() method, as it only
        clears the cached result from the last status test, so that a call to
        getStatus() will return Undefined. This is necessary for the SEQOR and
        SEQAND tests in the StatusTestCombo class, which may short circuit and
        not evaluate all of the StatusTests contained in them. 
        """
        return _Anasazi.StatusTestMaxItersEpetra_clearStatus(self, *args)

StatusTestMaxItersEpetra_swigregister = _Anasazi.StatusTestMaxItersEpetra_swigregister
StatusTestMaxItersEpetra_swigregister(StatusTestMaxItersEpetra)

class StatusTestOutputEpetra(StatusTestEpetra):
    """
    A special StatusTest for printing other status tests.

    StatusTestOutput is a wrapper around another StatusTest that calls
    StatusTest::print() on the underlying object on calls to
    StatusTestOutput::checkStatus(). The frequency and occasion of the
    printing can be dictated according to some parameters passed to
    StatusTestOutput::StatusTestOutput().

    C++ includes: AnasaziStatusTestOutput.hpp 
    """
    __swig_setmethods__ = {}
    for _s in [StatusTestEpetra]: __swig_setmethods__.update(getattr(_s,'__swig_setmethods__',{}))
    __setattr__ = lambda self, name, value: _swig_setattr(self, StatusTestOutputEpetra, name, value)
    __swig_getmethods__ = {}
    for _s in [StatusTestEpetra]: __swig_getmethods__.update(getattr(_s,'__swig_getmethods__',{}))
    __getattr__ = lambda self, name: _swig_getattr(self, StatusTestOutputEpetra, name)
    __repr__ = _swig_repr
    def __init__(self, *args): 
        """
        __init__(self, Teuchos::RCP<(Anasazi::OutputManager<(double)>)> printer, 
            Teuchos::RCP<(Anasazi::StatusTest<(double,Epetra_MultiVector,Epetra_Operator)>)> test, 
            int mod = 1, 
            int printStates = Passed) -> StatusTestOutputEpetra

        Anasazi::StatusTestOutput< ScalarType, MV, OP
        >::StatusTestOutput(const Teuchos::RCP< OutputManager< ScalarType > >
        &printer, Teuchos::RCP< StatusTest< ScalarType, MV, OP > > test, int
        mod=1, int printStates=Passed)

        Constructor.

        The StatusTestOutput requires an OutputManager for printing the
        underlying StatusTest on calls to checkStatus(), as well as an
        underlying StatusTest.

        StatusTestOutput can be initialized with a null pointer for argument
        test. However, calling checkStatus() with a null child pointer will
        result in a StatusTestError exception being thrown. See checkStatus()
        for more information.

        The last two parameters, described below, in addition to the verbosity
        level of the OutputManager, control when printing is called. When both
        the mod criterion and the printStates criterion are satisfied, the
        status test will be printed to the OutputManager with MsgType of
        StatusTestDetails.

        Parameters:
        -----------

        mod:  A positive number describes how often the output should be
        printed. On every call to checkStatus(), an internal counter is
        incremented. Printing may only occur when this counter is congruent to
        zero modulo mod. Default: 1 (attempt to print on every call to
        checkStatus())

        printStates:  A combination of TestStatus values for which the output
        may be printed. Default: Passed (attempt to print whenever
        checkStatus() will return Passed) 
        """
        this = _Anasazi.new_StatusTestOutputEpetra(*args)
        try: self.this.append(this)
        except: self.this = this
    __swig_destroy__ = _Anasazi.delete_StatusTestOutputEpetra
    __del__ = lambda self : None;
    def checkStatus(self, *args):
        """
        checkStatus(self, EigensolverEpetra solver) -> TestStatus

        TestStatus Anasazi::StatusTestOutput< ScalarType, MV, OP
        >::checkStatus(Eigensolver< ScalarType, MV, OP > *solver)

        Check and return status of underlying StatusTest.

        This method calls checkStatus() on the StatusTest object passed in the
        constructor. If appropriate, the method will follow this call with a
        call to print() on the underlying object, using the OutputManager
        passed via the constructor with verbosity level StatusTestDetails.

        The internal counter will be incremented during this call, but only
        after performing the tests to decide whether or not to print the
        underlying StatusTest. This way, the very first call to checkStatus()
        following initialization or reset() will enable the underlying
        StatusTest to be printed, regardless of the mod parameter, as the
        current number of calls will be zero.

        If the specified Teuchos::RCP for the child class is Teuchos::null,
        then calling checkStatus() will result in a StatusTestError exception
        being thrown.

        TestStatus indicating whether the underlying test passed or failed. 
        """
        return _Anasazi.StatusTestOutputEpetra_checkStatus(self, *args)

    def getStatus(self, *args):
        """
        getStatus(self) -> TestStatus

        TestStatus Anasazi::StatusTestOutput< ScalarType, MV, OP
        >::getStatus() const

        Return the result of the most recent checkStatus call, or undefined if
        it has not been run. 
        """
        return _Anasazi.StatusTestOutputEpetra_getStatus(self, *args)

    def whichVecs(self, *args):
        """
        whichVecs(self) -> VectorInt

        std::vector<int> Anasazi::StatusTestOutput< ScalarType, MV, OP
        >::whichVecs() const

        Get the indices for the vectors that passed the test. 
        """
        return _Anasazi.StatusTestOutputEpetra_whichVecs(self, *args)

    def howMany(self, *args):
        """
        howMany(self) -> int

        int
        Anasazi::StatusTestOutput< ScalarType, MV, OP >::howMany() const

        Get the number of vectors that passed the test. 
        """
        return _Anasazi.StatusTestOutputEpetra_howMany(self, *args)

    def setChild(self, *args):
        """
        setChild(self, Teuchos::RCP<(Anasazi::StatusTest<(double,Epetra_MultiVector,Epetra_Operator)>)> test)

        void
        Anasazi::StatusTestOutput< ScalarType, MV, OP
        >::setChild(Teuchos::RCP< StatusTest< ScalarType, MV, OP > > test)

        Set child test.

        This also resets the test status to Undefined. 
        """
        return _Anasazi.StatusTestOutputEpetra_setChild(self, *args)

    def getChild(self, *args):
        """
        getChild(self) -> Teuchos::RCP<(Anasazi::StatusTest<(double,Epetra_MultiVector,Epetra_Operator)>)>

        Teuchos::RCP<StatusTest<ScalarType,MV,OP> > Anasazi::StatusTestOutput<
        ScalarType, MV, OP >::getChild() const

        Get child test. 
        """
        return _Anasazi.StatusTestOutputEpetra_getChild(self, *args)

    def reset(self, *args):
        """
        reset(self)

        void
        Anasazi::StatusTestOutput< ScalarType, MV, OP >::reset()

        Informs the status test that it should reset its internal
        configuration to the uninitialized state.

        This resets the cached state to an Undefined state and calls reset()
        on the underlying test. It also resets the counter for the number of
        calls to checkStatus(). 
        """
        return _Anasazi.StatusTestOutputEpetra_reset(self, *args)

    def clearStatus(self, *args):
        """
        clearStatus(self)

        void
        Anasazi::StatusTestOutput< ScalarType, MV, OP >::clearStatus()

        Clears the results of the last status test. This resets the cached
        state to an Undefined state and calls clearStatus() on the underlying
        test. 
        """
        return _Anasazi.StatusTestOutputEpetra_clearStatus(self, *args)

StatusTestOutputEpetra_swigregister = _Anasazi.StatusTestOutputEpetra_swigregister
StatusTestOutputEpetra_swigregister(StatusTestOutputEpetra)

class StatusTestResNormEpetra(StatusTestEpetra):
    """
    A status test for testing the norm of the eigenvectors residuals.

    StatusTestResNorm was designed to be used as a test for convergence.
    The tester compares the norms of the residual vectors against a user
    specified tolerance.

    In addition to specifying the tolerance, the user may specify: the
    norm to be used: 2-norm or OrthoManager::norm() or
    Eigensolver::getRitzRes2Norms()

    the scale: absolute or relative to magnitude of Ritz value

    the quorum: the number of vectors required for the test to evaluate as
    Passed.

    C++ includes: AnasaziStatusTestResNorm.hpp 
    """
    __swig_setmethods__ = {}
    for _s in [StatusTestEpetra]: __swig_setmethods__.update(getattr(_s,'__swig_setmethods__',{}))
    __setattr__ = lambda self, name, value: _swig_setattr(self, StatusTestResNormEpetra, name, value)
    __swig_getmethods__ = {}
    for _s in [StatusTestEpetra]: __swig_getmethods__.update(getattr(_s,'__swig_getmethods__',{}))
    __getattr__ = lambda self, name: _swig_getattr(self, StatusTestResNormEpetra, name)
    __repr__ = _swig_repr
    RES_ORTH = _Anasazi.StatusTestResNormEpetra_RES_ORTH
    RES_2NORM = _Anasazi.StatusTestResNormEpetra_RES_2NORM
    RITZRES_2NORM = _Anasazi.StatusTestResNormEpetra_RITZRES_2NORM
    def __init__(self, *args): 
        """
        __init__(self, magnitudeType tol, int quorum = -1, ResType whichNorm = Anasazi::StatusTestResNorm< double,Epetra_MultiVector,Epetra_Operator >::RES_ORTH, 
            bool scaled = True, 
            bool throwExceptionOnNaN = True) -> StatusTestResNormEpetra

        Anasazi::StatusTestResNorm< ScalarType, MV, OP
        >::StatusTestResNorm(typename Teuchos::ScalarTraits< ScalarType
        >::magnitudeType tol, int quorum=-1, ResType whichNorm=RES_ORTH, bool
        scaled=true, bool throwExceptionOnNaN=true)

        Constructor. 
        """
        this = _Anasazi.new_StatusTestResNormEpetra(*args)
        try: self.this.append(this)
        except: self.this = this
    __swig_destroy__ = _Anasazi.delete_StatusTestResNormEpetra
    __del__ = lambda self : None;
    def checkStatus(self, *args):
        """
        checkStatus(self, EigensolverEpetra solver) -> TestStatus

        TestStatus Anasazi::StatusTestResNorm< ScalarType, MV, OP
        >::checkStatus(Eigensolver< ScalarType, MV, OP > *solver)

        Check status as defined by test.

        TestStatus indicating whether the test passed or failed. 
        """
        return _Anasazi.StatusTestResNormEpetra_checkStatus(self, *args)

    def getStatus(self, *args):
        """
        getStatus(self) -> TestStatus

        TestStatus Anasazi::StatusTestResNorm< ScalarType, MV, OP
        >::getStatus() const

        Return the result of the most recent checkStatus call, or undefined if
        it has not been run. 
        """
        return _Anasazi.StatusTestResNormEpetra_getStatus(self, *args)

    def whichVecs(self, *args):
        """
        whichVecs(self) -> VectorInt

        std::vector<int> Anasazi::StatusTestResNorm< ScalarType, MV, OP
        >::whichVecs() const

        Get the indices for the vectors that passed the test. 
        """
        return _Anasazi.StatusTestResNormEpetra_whichVecs(self, *args)

    def howMany(self, *args):
        """
        howMany(self) -> int

        int
        Anasazi::StatusTestResNorm< ScalarType, MV, OP >::howMany() const

        Get the number of vectors that passed the test. 
        """
        return _Anasazi.StatusTestResNormEpetra_howMany(self, *args)

    def setQuorum(self, *args):
        """
        setQuorum(self, int quorum)

        void
        Anasazi::StatusTestResNorm< ScalarType, MV, OP >::setQuorum(int
        quorum)

        Set quorum.

        Setting quorum to -1 signifies that all residuals from the solver must
        meet the tolerance. This also resets the test status to Undefined. 
        """
        return _Anasazi.StatusTestResNormEpetra_setQuorum(self, *args)

    def getQuorum(self, *args):
        """
        getQuorum(self) -> int

        int
        Anasazi::StatusTestResNorm< ScalarType, MV, OP >::getQuorum() const

        Get quorum. 
        """
        return _Anasazi.StatusTestResNormEpetra_getQuorum(self, *args)

    def setTolerance(self, *args):
        """
        setTolerance(self, magnitudeType tol)

        void
        Anasazi::StatusTestResNorm< ScalarType, MV, OP
        >::setTolerance(typename Teuchos::ScalarTraits< ScalarType
        >::magnitudeType tol)

        Set tolerance. This also resets the test status to Undefined. 
        """
        return _Anasazi.StatusTestResNormEpetra_setTolerance(self, *args)

    def getTolerance(self, *args):
        """
        getTolerance(self) -> magnitudeType

        Teuchos::ScalarTraits<ScalarType>::magnitudeType
        Anasazi::StatusTestResNorm< ScalarType, MV, OP >::getTolerance()

        Get tolerance. 
        """
        return _Anasazi.StatusTestResNormEpetra_getTolerance(self, *args)

    def setWhichNorm(self, *args):
        """
        setWhichNorm(self, ResType whichNorm)

        void
        Anasazi::StatusTestResNorm< ScalarType, MV, OP >::setWhichNorm(ResType
        whichNorm)

        Set the residual norm to be used by the status test.

        This also resets the test status to Undefined. 
        """
        return _Anasazi.StatusTestResNormEpetra_setWhichNorm(self, *args)

    def getWhichNorm(self, *args):
        """
        getWhichNorm(self) -> ResType

        ResType Anasazi::StatusTestResNorm< ScalarType, MV, OP
        >::getWhichNorm()

        Return the residual norm used by the status test. 
        """
        return _Anasazi.StatusTestResNormEpetra_getWhichNorm(self, *args)

    def setScale(self, *args):
        """
        setScale(self, bool relscale)

        void
        Anasazi::StatusTestResNorm< ScalarType, MV, OP >::setScale(bool
        relscale)

        Instruct test to scale norms by eigenvalue estimates (relative scale).
        This also resets the test status to Undefined. 
        """
        return _Anasazi.StatusTestResNormEpetra_setScale(self, *args)

    def getScale(self, *args):
        """
        getScale(self) -> bool

        bool
        Anasazi::StatusTestResNorm< ScalarType, MV, OP >::getScale()

        Returns true if the test scales the norms by the eigenvalue estimates
        (relative scale). 
        """
        return _Anasazi.StatusTestResNormEpetra_getScale(self, *args)

    def reset(self, *args):
        """
        reset(self)

        void
        Anasazi::StatusTestResNorm< ScalarType, MV, OP >::reset()

        Informs the status test that it should reset its internal
        configuration to the uninitialized state.

        This is necessary for the case when the status test is being reused by
        another solver or for another eigenvalue problem. The status test may
        have information that pertains to a particular problem or solver
        state. The internal information will be reset back to the
        uninitialized state. The user specified information that the
        convergence test uses will remain. 
        """
        return _Anasazi.StatusTestResNormEpetra_reset(self, *args)

    def clearStatus(self, *args):
        """
        clearStatus(self)

        void
        Anasazi::StatusTestResNorm< ScalarType, MV, OP >::clearStatus()

        Clears the results of the last status test.

        This should be distinguished from the reset() method, as it only
        clears the cached result from the last status test, so that a call to
        getStatus() will return Undefined. This is necessary for the SEQOR and
        SEQAND tests in the StatusTestCombo class, which may short circuit and
        not evaluate all of the StatusTests contained in them. 
        """
        return _Anasazi.StatusTestResNormEpetra_clearStatus(self, *args)

StatusTestResNormEpetra_swigregister = _Anasazi.StatusTestResNormEpetra_swigregister
StatusTestResNormEpetra_swigregister(StatusTestResNormEpetra)

class OrthoManagerEpetra(_object):
    """
    Anasazi's templated virtual class for providing routines for
    orthogonalization and orthonormalization of multivectors.

    This class defines concepts of orthogonality through the definition of
    an inner product. It also provides computational routines for
    orthogonalization.

    A concrete implementation of this class is necessary. The user can
    create their own implementation if those supplied are not suitable for
    their needs.

    Chris Baker, Ulrich Hetmaniuk, Rich Lehoucq, and Heidi Thornquist

    C++ includes: AnasaziOrthoManager.hpp 
    """
    __swig_setmethods__ = {}
    __setattr__ = lambda self, name, value: _swig_setattr(self, OrthoManagerEpetra, name, value)
    __swig_getmethods__ = {}
    __getattr__ = lambda self, name: _swig_getattr(self, OrthoManagerEpetra, name)
    def __init__(self, *args, **kwargs): raise AttributeError("No constructor defined - class is abstract")
    __repr__ = _swig_repr
    __swig_destroy__ = _Anasazi.delete_OrthoManagerEpetra
    __del__ = lambda self : None;
    def innerProd(self, *args):
        """
        innerProd(self, Epetra_MultiVector X, Epetra_MultiVector Y, Teuchos::SerialDenseMatrix<(int,double)> Z)

        virtual void
        Anasazi::OrthoManager< ScalarType, MV >::innerProd(const MV &X, const
        MV &Y, Teuchos::SerialDenseMatrix< int, ScalarType > &Z) const =0

        Provides the inner product defining the orthogonality concepts.

        All concepts of orthogonality discussed in this class are defined with
        respect to this inner product.

        This is potentially different from MultiVecTraits::MvTransMv(). For
        example, it is customary in many eigensolvers to exploit a mass matrix
        M for the inner product: $x^HMx$.

        Parameters:
        -----------

        Z:  [out] Z(i,j) contains the inner product of X[i] and Y[i]: \\[
        Z(i,j) = \\langle X[i], Y[i] \\rangle \\] 
        """
        return _Anasazi.OrthoManagerEpetra_innerProd(self, *args)

    def norm(self, *args):
        """
        norm(self, Epetra_MultiVector X, std::vector<(Teuchos::ScalarTraits<(double)>::magnitudeType,std::allocator<(Teuchos::ScalarTraits<(double)>::magnitudeType)>)> normvec)

        virtual void
        Anasazi::OrthoManager< ScalarType, MV >::norm(const MV &X,
        std::vector< typename Teuchos::ScalarTraits< ScalarType
        >::magnitudeType > &normvec) const =0

        Provides the norm induced by innerProd().

        This computes the norm for each column of a multivector. This is the
        norm induced by innerProd(): \\[ \\|x\\| = \\sqrt{\\langle
        x, x \\rangle} \\]

        Parameters:
        -----------

        normvec:  [out] Vector of norms, whose i-th entry corresponds to the
        i-th column of X

        normvec.size() == GetNumberVecs(X) 
        """
        return _Anasazi.OrthoManagerEpetra_norm(self, *args)

    def normalize(self, *args):
        """
        normalize(self, Epetra_MultiVector X, Teuchos::RCP<(Teuchos::SerialDenseMatrix<(int,double)>)> B = Teuchos::null) -> int

        virtual int
        Anasazi::OrthoManager< ScalarType, MV >::normalize(MV &X,
        Teuchos::RCP< Teuchos::SerialDenseMatrix< int, ScalarType > >
        B=Teuchos::null) const =0

        This method takes a multivector X and attempts to compute a basis for
        $colspan(X)$. This basis is orthonormal with respect to innerProd().

        This routine returns an integer rank stating the rank of the computed
        basis. If X does not have full rank and the normalize() routine does
        not attempt to augment the subspace, then rank may be smaller than the
        number of columns in X. In this case, only the first rank columns of
        output X and first rank rows of B will be valid.

        Parameters:
        -----------

        X:  [in/out] The multivector to be modified.  On output, the first
        rank columns of X satisfy \\[ \\langle X[i], X[j] \\rangle =
        \\delta_{ij}\\ . \\] Also, \\[ X_{in}(1:m,1:n) =
        X_{out}(1:m,1:rank) B(1:rank,1:n)\\ , \\] where m is the number of
        rows in X and n is the number of columns in X.

        B:  [out] The coefficients of the original X with respect to the
        computed basis. If B is a non-null pointer and B matches the
        dimensions of B, then the coefficients computed during the
        orthogonalization routine will be stored in B, similar to calling If B
        points to a Teuchos::SerialDenseMatrix with size inconsistent with X,
        then a std::invalid_argument exception will be thrown.  Otherwise, if
        B is null, the caller will not have access to the computed
        coefficients.

        This matrix is not necessarily triangular (as in a QR factorization);
        see the documentation of specific orthogonalization managers.

        Rank of the basis computed by this method, less than or equal to the
        number of columns in X. This specifies how many columns in the
        returned X and rows in the returned B are valid. 
        """
        return _Anasazi.OrthoManagerEpetra_normalize(self, *args)

    def orthonormError(self, *args):
        """
        orthonormError(self, Epetra_MultiVector X) -> magnitudeType

        virtual
        Teuchos::ScalarTraits< ScalarType >::magnitudeType
        Anasazi::OrthoManager< ScalarType, MV >::orthonormError(const MV &X)
        const =0

        This method computes the error in orthonormality of a multivector.

        This method return some measure of $\\| \\langle X, X \\rangle -
        I \\| $.  See the documentation of specific orthogonalization
        managers. 
        """
        return _Anasazi.OrthoManagerEpetra_orthonormError(self, *args)

    def orthogError(self, *args):
        """
        orthogError(self, Epetra_MultiVector X1, Epetra_MultiVector X2) -> magnitudeType

        virtual
        Teuchos::ScalarTraits<ScalarType>::magnitudeType
        Anasazi::OrthoManager< ScalarType, MV >::orthogError(const MV &X1,
        const MV &X2) const =0

        This method computes the error in orthogonality of two multivectors.

        This method return some measure of $\\| \\langle X1, X2 \\rangle
        \\| $.  See the documentation of specific orthogonalization
        managers. 
        """
        return _Anasazi.OrthoManagerEpetra_orthogError(self, *args)

OrthoManagerEpetra_swigregister = _Anasazi.OrthoManagerEpetra_swigregister
OrthoManagerEpetra_swigregister(OrthoManagerEpetra)

class MatOrthoManagerEpetra(OrthoManagerEpetra):
    """
    Anasazi's templated virtual class for providing routines for
    orthogonalization and orthonormalization of multivectors using matrix-
    based inner products.

    This class extends Anasazi::OrthoManager by providing extra calling
    arguments to orthogonalization routines, to reduce the cost of
    applying the inner product in cases where the user already has the
    image of target multivectors under the inner product matrix.

    A concrete implementation of this class is necessary. The user can
    create their own implementation if those supplied are not suitable for
    their needs.

    Chris Baker, Ulrich Hetmaniuk, Rich Lehoucq, and Heidi Thornquist

    C++ includes: AnasaziMatOrthoManager.hpp 
    """
    __swig_setmethods__ = {}
    for _s in [OrthoManagerEpetra]: __swig_setmethods__.update(getattr(_s,'__swig_setmethods__',{}))
    __setattr__ = lambda self, name, value: _swig_setattr(self, MatOrthoManagerEpetra, name, value)
    __swig_getmethods__ = {}
    for _s in [OrthoManagerEpetra]: __swig_getmethods__.update(getattr(_s,'__swig_getmethods__',{}))
    __getattr__ = lambda self, name: _swig_getattr(self, MatOrthoManagerEpetra, name)
    def __init__(self, *args, **kwargs): raise AttributeError("No constructor defined - class is abstract")
    __repr__ = _swig_repr
    __swig_destroy__ = _Anasazi.delete_MatOrthoManagerEpetra
    __del__ = lambda self : None;
    def setOp(self, *args):
        """
        setOp(self, Teuchos::RCP<(q(const).Epetra_Operator)> Op)

        void
        Anasazi::MatOrthoManager< ScalarType, MV, OP >::setOp(Teuchos::RCP<
        const OP > Op)

        Set operator used for inner product. 
        """
        return _Anasazi.MatOrthoManagerEpetra_setOp(self, *args)

    def getOp(self, *args):
        """
        getOp(self) -> Teuchos::RCP<(q(const).Epetra_Operator)>

        Teuchos::RCP<
        const OP > Anasazi::MatOrthoManager< ScalarType, MV, OP >::getOp()
        const

        Get operator used for inner product. 
        """
        return _Anasazi.MatOrthoManagerEpetra_getOp(self, *args)

    def getOpCounter(self, *args):
        """
        getOpCounter(self) -> int

        int
        Anasazi::MatOrthoManager< ScalarType, MV, OP >::getOpCounter() const

        Retrieve operator counter.

        This counter returns the number of applications of the operator
        specifying the inner product. When the operator is applied to a
        multivector, the counter is incremented by the number of vectors in
        the multivector. If the operator is not specified, the counter is
        never incremented. 
        """
        return _Anasazi.MatOrthoManagerEpetra_getOpCounter(self, *args)

    def resetOpCounter(self, *args):
        """
        resetOpCounter(self)

        void
        Anasazi::MatOrthoManager< ScalarType, MV, OP >::resetOpCounter()

        Reset the operator counter to zero.

        See getOpCounter() for more details. 
        """
        return _Anasazi.MatOrthoManagerEpetra_resetOpCounter(self, *args)

    def innerProdMat(self, *args):
        """
        innerProdMat(self, Epetra_MultiVector X, Epetra_MultiVector Y, Teuchos::SerialDenseMatrix<(int,double)> Z, 
            Teuchos::RCP<(q(const).Epetra_MultiVector)> MX = Teuchos::null, 
            Teuchos::RCP<(q(const).Epetra_MultiVector)> MY = Teuchos::null)

        void
        Anasazi::MatOrthoManager< ScalarType, MV, OP >::innerProdMat(const MV
        &X, const MV &Y, Teuchos::SerialDenseMatrix< int, ScalarType > &Z,
        Teuchos::RCP< const MV > MX=Teuchos::null, Teuchos::RCP< const MV >
        MY=Teuchos::null) const

        Provides a matrix-based inner product.

        Provides the inner product \\[ \\langle x, y \\rangle = x^H M y
        \\] Optionally allows the provision of $M y$ and/or $M x$. See
        OrthoManager::innerProd() for more details. 
        """
        return _Anasazi.MatOrthoManagerEpetra_innerProdMat(self, *args)

    def normMat(self, *args):
        """
        normMat(self, Epetra_MultiVector X, std::vector<(Teuchos::ScalarTraits<(double)>::magnitudeType,std::allocator<(Teuchos::ScalarTraits<(double)>::magnitudeType)>)> normvec, 
            Teuchos::RCP<(q(const).Epetra_MultiVector)> MX = Teuchos::null)

        void
        Anasazi::MatOrthoManager< ScalarType, MV, OP >::normMat(const MV &X,
        std::vector< typename Teuchos::ScalarTraits< ScalarType
        >::magnitudeType > &normvec, Teuchos::RCP< const MV >
        MX=Teuchos::null) const

        Provides the norm induced by the matrix-based inner product.

        Provides the norm: \\[ \\|x\\|_M = \\sqrt{x^H M y} \\]
        Optionally allows the provision of $M x$. See OrthoManager::norm() for
        more details. 
        """
        return _Anasazi.MatOrthoManagerEpetra_normMat(self, *args)

    def normalizeMat(self, *args):
        """
        normalizeMat(self, Epetra_MultiVector X, Teuchos::RCP<(Teuchos::SerialDenseMatrix<(int,double)>)> B = Teuchos::null, 
            Teuchos::RCP<(Epetra_MultiVector)> MX = Teuchos::null) -> int

        virtual int Anasazi::MatOrthoManager< ScalarType, MV, OP
        >::normalizeMat(MV &X, Teuchos::RCP< Teuchos::SerialDenseMatrix< int,
        ScalarType > > B=Teuchos::null, Teuchos::RCP< MV > MX=Teuchos::null)
        const =0

        Provides matrix-based orthonormalization method.

        This method optionally allows the provision of $M X$. See
        orthoManager::normalize() for more details.

        Parameters:
        -----------

        X:  B:  [in/out] As in OrthoManager::normalize()

        MX:  [in/out] If specified by the user, on input MX is required to be
        the image of X under the operator getOp(). On output, MX will be
        updated to reflect the changes in X.

        Rank of the basis computed by this method, less than or equal to the
        number of columns in X. This specifies how many columns in the
        returned X and MX and rows in the returned B are valid. 
        """
        return _Anasazi.MatOrthoManagerEpetra_normalizeMat(self, *args)

    def orthonormErrorMat(self, *args):
        """
        orthonormErrorMat(self, Epetra_MultiVector X, Teuchos::RCP<(q(const).Epetra_MultiVector)> MX = Teuchos::null) -> magnitudeType

        virtual Teuchos::ScalarTraits<ScalarType>::magnitudeType
        Anasazi::MatOrthoManager< ScalarType, MV, OP
        >::orthonormErrorMat(const MV &X, Teuchos::RCP< const MV >
        MX=Teuchos::null) const =0

        This method computes the error in orthonormality of a multivector.

        This method optionally allows optionally exploits a caller-provided
        MX. 
        """
        return _Anasazi.MatOrthoManagerEpetra_orthonormErrorMat(self, *args)

    def orthogErrorMat(self, *args):
        """
        orthogErrorMat(self, Epetra_MultiVector X, Epetra_MultiVector Y, Teuchos::RCP<(q(const).Epetra_MultiVector)> MX = Teuchos::null, 
            Teuchos::RCP<(q(const).Epetra_MultiVector)> MY = Teuchos::null) -> magnitudeType

        virtual Teuchos::ScalarTraits<ScalarType>::magnitudeType
        Anasazi::MatOrthoManager< ScalarType, MV, OP >::orthogErrorMat(const
        MV &X, const MV &Y, Teuchos::RCP< const MV > MX=Teuchos::null,
        Teuchos::RCP< const MV > MY=Teuchos::null) const =0

        This method computes the error in orthogonality of two multivectors.

        This method optionally allows optionally exploits a caller-provided MX
        and/or MY. 
        """
        return _Anasazi.MatOrthoManagerEpetra_orthogErrorMat(self, *args)

    def innerProd(self, *args):
        """
        innerProd(self, Epetra_MultiVector X, Epetra_MultiVector Y, Teuchos::SerialDenseMatrix<(int,double)> Z)

        void
        Anasazi::MatOrthoManager< ScalarType, MV, OP >::innerProd(const MV &X,
        const MV &Y, Teuchos::SerialDenseMatrix< int, ScalarType > &Z) const

        Implements the interface OrthoManager::innerProd().

        This method calls 
        """
        return _Anasazi.MatOrthoManagerEpetra_innerProd(self, *args)

    def norm(self, *args):
        """
        norm(self, Epetra_MultiVector X, std::vector<(Teuchos::ScalarTraits<(double)>::magnitudeType,std::allocator<(Teuchos::ScalarTraits<(double)>::magnitudeType)>)> normvec)

        void
        Anasazi::MatOrthoManager< ScalarType, MV, OP >::norm(const MV &X,
        std::vector< typename Teuchos::ScalarTraits< ScalarType
        >::magnitudeType > &normvec) const

        Implements the interface OrthoManager::norm().

        This method calls 
        """
        return _Anasazi.MatOrthoManagerEpetra_norm(self, *args)

    def normalize(self, *args):
        """
        normalize(self, Epetra_MultiVector X, Teuchos::RCP<(Teuchos::SerialDenseMatrix<(int,double)>)> B = Teuchos::null) -> int

        int
        Anasazi::MatOrthoManager< ScalarType, MV, OP >::normalize(MV &X,
        Teuchos::RCP< Teuchos::SerialDenseMatrix< int, ScalarType > >
        B=Teuchos::null) const

        Implements the interface OrthoManager::normalize().

        This method calls 
        """
        return _Anasazi.MatOrthoManagerEpetra_normalize(self, *args)

    def orthonormError(self, *args):
        """
        orthonormError(self, Epetra_MultiVector X) -> magnitudeType

        Teuchos::ScalarTraits< ScalarType >::magnitudeType
        Anasazi::MatOrthoManager< ScalarType, MV, OP >::orthonormError(const
        MV &X) const

        Implements the interface OrthoManager::orthonormError().

        This method calls 
        """
        return _Anasazi.MatOrthoManagerEpetra_orthonormError(self, *args)

    def orthogError(self, *args):
        """
        orthogError(self, Epetra_MultiVector X1, Epetra_MultiVector X2) -> magnitudeType

        Teuchos::ScalarTraits< ScalarType >::magnitudeType
        Anasazi::MatOrthoManager< ScalarType, MV, OP >::orthogError(const MV
        &X1, const MV &X2) const

        Implements the interface OrthoManager::orthogError().

        This method calls 
        """
        return _Anasazi.MatOrthoManagerEpetra_orthogError(self, *args)

MatOrthoManagerEpetra_swigregister = _Anasazi.MatOrthoManagerEpetra_swigregister
MatOrthoManagerEpetra_swigregister(MatOrthoManagerEpetra)

class BasicOrthoManagerEpetra(MatOrthoManagerEpetra):
    """
    An implementation of the Anasazi::MatOrthoManager that performs
    orthogonalization using (potentially) multiple steps of classical
    Gram-Schmidt.

    Chris Baker, Ulrich Hetmaniuk, Rich Lehoucq, and Heidi Thornquist

    C++ includes: AnasaziBasicOrthoManager.hpp 
    """
    __swig_setmethods__ = {}
    for _s in [MatOrthoManagerEpetra]: __swig_setmethods__.update(getattr(_s,'__swig_setmethods__',{}))
    __setattr__ = lambda self, name, value: _swig_setattr(self, BasicOrthoManagerEpetra, name, value)
    __swig_getmethods__ = {}
    for _s in [MatOrthoManagerEpetra]: __swig_getmethods__.update(getattr(_s,'__swig_getmethods__',{}))
    __getattr__ = lambda self, name: _swig_getattr(self, BasicOrthoManagerEpetra, name)
    __repr__ = _swig_repr
    def __init__(self, *args): 
        """
        __init__(self, Teuchos::RCP<(q(const).Epetra_Operator)> Op = Teuchos::null, 
            magnitudeType kappa = 1.41421356, magnitudeType eps = 0.0, 
            magnitudeType tol = 0.20) -> BasicOrthoManagerEpetra

        Anasazi::BasicOrthoManager< ScalarType, MV, OP
        >::BasicOrthoManager(Teuchos::RCP< const OP > Op=Teuchos::null,
        typename Teuchos::ScalarTraits< ScalarType >::magnitudeType
        kappa=1.41421356, typename Teuchos::ScalarTraits< ScalarType
        >::magnitudeType eps=0.0, typename Teuchos::ScalarTraits< ScalarType
        >::magnitudeType tol=0.20)

        Constructor specifying re-orthogonalization tolerance. 
        """
        this = _Anasazi.new_BasicOrthoManagerEpetra(*args)
        try: self.this.append(this)
        except: self.this = this
    __swig_destroy__ = _Anasazi.delete_BasicOrthoManagerEpetra
    __del__ = lambda self : None;
    def orthonormErrorMat(self, *args):
        """
        orthonormErrorMat(self, Epetra_MultiVector X, Teuchos::RCP<(q(const).Epetra_MultiVector)> MX = Teuchos::null) -> magnitudeType

        Teuchos::ScalarTraits< ScalarType >::magnitudeType
        Anasazi::BasicOrthoManager< ScalarType, MV, OP
        >::orthonormErrorMat(const MV &X, Teuchos::RCP< const MV >
        MX=Teuchos::null) const

        This method computes the error in orthonormality of a multivector,
        measured as the Frobenius norm of the difference innerProd(X,Y) - I.
        The method has the option of exploiting a caller-provided MX. 
        """
        return _Anasazi.BasicOrthoManagerEpetra_orthonormErrorMat(self, *args)

    def orthogErrorMat(self, *args):
        """
        orthogErrorMat(self, Epetra_MultiVector X1, Epetra_MultiVector X2, Teuchos::RCP<(q(const).Epetra_MultiVector)> MX1, 
            Teuchos::RCP<(q(const).Epetra_MultiVector)> MX2) -> magnitudeType

        Teuchos::ScalarTraits< ScalarType >::magnitudeType
        Anasazi::BasicOrthoManager< ScalarType, MV, OP >::orthogErrorMat(const
        MV &X1, const MV &X2, Teuchos::RCP< const MV > MX1, Teuchos::RCP<
        const MV > MX2) const

        This method computes the error in orthogonality of two multivectors,
        measured as the Frobenius norm of innerProd(X,Y). The method has the
        option of exploiting a caller-provided MX. 
        """
        return _Anasazi.BasicOrthoManagerEpetra_orthogErrorMat(self, *args)

    def setKappa(self, *args):
        """
        setKappa(self, magnitudeType kappa)

        void
        Anasazi::BasicOrthoManager< ScalarType, MV, OP >::setKappa(typename
        Teuchos::ScalarTraits< ScalarType >::magnitudeType kappa)

        Set parameter for re-orthogonalization threshold. 
        """
        return _Anasazi.BasicOrthoManagerEpetra_setKappa(self, *args)

    def getKappa(self, *args):
        """
        getKappa(self) -> magnitudeType

        Teuchos::ScalarTraits<ScalarType>::magnitudeType
        Anasazi::BasicOrthoManager< ScalarType, MV, OP >::getKappa() const

        Return parameter for re-orthogonalization threshold. 
        """
        return _Anasazi.BasicOrthoManagerEpetra_getKappa(self, *args)

BasicOrthoManagerEpetra_swigregister = _Anasazi.BasicOrthoManagerEpetra_swigregister
BasicOrthoManagerEpetra_swigregister(BasicOrthoManagerEpetra)

class SVQBOrthoManagerEpetra(MatOrthoManagerEpetra):
    """
    An implementation of the Anasazi::MatOrthoManager that performs
    orthogonalization using the SVQB iterative orthogonalization technique
    described by Stathapoulos and Wu. This orthogonalization routine,
    while not returning the upper triangular factors of the popular Gram-
    Schmidt method, has a communication cost (measured in number of
    communication calls) that is independent of the number of columns in
    the basis.

    Chris Baker, Ulrich Hetmaniuk, Rich Lehoucq, and Heidi Thornquist

    C++ includes: AnasaziSVQBOrthoManager.hpp 
    """
    __swig_setmethods__ = {}
    for _s in [MatOrthoManagerEpetra]: __swig_setmethods__.update(getattr(_s,'__swig_setmethods__',{}))
    __setattr__ = lambda self, name, value: _swig_setattr(self, SVQBOrthoManagerEpetra, name, value)
    __swig_getmethods__ = {}
    for _s in [MatOrthoManagerEpetra]: __swig_getmethods__.update(getattr(_s,'__swig_getmethods__',{}))
    __getattr__ = lambda self, name: _swig_getattr(self, SVQBOrthoManagerEpetra, name)
    __repr__ = _swig_repr
    def __init__(self, *args): 
        """
        __init__(self, Teuchos::RCP<(q(const).Epetra_Operator)> Op = Teuchos::null, 
            bool debug = False) -> SVQBOrthoManagerEpetra

        Anasazi::SVQBOrthoManager< ScalarType, MV, OP
        >::SVQBOrthoManager(Teuchos::RCP< const OP > Op=Teuchos::null, bool
        debug=false)

        Constructor specifying re-orthogonalization tolerance. 
        """
        this = _Anasazi.new_SVQBOrthoManagerEpetra(*args)
        try: self.this.append(this)
        except: self.this = this
    __swig_destroy__ = _Anasazi.delete_SVQBOrthoManagerEpetra
    __del__ = lambda self : None;
    def orthonormErrorMat(self, *args):
        """
        orthonormErrorMat(self, Epetra_MultiVector X, Teuchos::RCP<(q(const).Epetra_MultiVector)> MX = Teuchos::null) -> magnitudeType

        Teuchos::ScalarTraits< ScalarType >::magnitudeType
        Anasazi::SVQBOrthoManager< ScalarType, MV, OP
        >::orthonormErrorMat(const MV &X, Teuchos::RCP< const MV >
        MX=Teuchos::null) const

        This method computes the error in orthonormality of a multivector,
        measured as the Frobenius norm of the difference innerProd(X,Y) - I.
        The method has the option of exploiting a caller-provided MX. 
        """
        return _Anasazi.SVQBOrthoManagerEpetra_orthonormErrorMat(self, *args)

    def orthogErrorMat(self, *args):
        """
        orthogErrorMat(self, Epetra_MultiVector X, Epetra_MultiVector Y, Teuchos::RCP<(q(const).Epetra_MultiVector)> MX = Teuchos::null, 
            Teuchos::RCP<(q(const).Epetra_MultiVector)> MY = Teuchos::null) -> magnitudeType

        Teuchos::ScalarTraits< ScalarType >::magnitudeType
        Anasazi::SVQBOrthoManager< ScalarType, MV, OP >::orthogErrorMat(const
        MV &X, const MV &Y, Teuchos::RCP< const MV > MX=Teuchos::null,
        Teuchos::RCP< const MV > MY=Teuchos::null) const

        This method computes the error in orthogonality of two multivectors,
        measured as the Frobenius norm of innerProd(X,Y). The method has the
        option of exploiting a caller-provided MX. 
        """
        return _Anasazi.SVQBOrthoManagerEpetra_orthogErrorMat(self, *args)

SVQBOrthoManagerEpetra_swigregister = _Anasazi.SVQBOrthoManagerEpetra_swigregister
SVQBOrthoManagerEpetra_swigregister(SVQBOrthoManagerEpetra)

class EigensolverEpetra(_object):
    """
    The Eigensolver is a templated virtual base class that defines the
    basic interface that any eigensolver will support.

    This interface is mainly concerned with providing a set of eigensolver
    status method that can be requested from any eigensolver by an
    StatusTest object.

    C++ includes: AnasaziEigensolverDecl.hpp 
    """
    __swig_setmethods__ = {}
    __setattr__ = lambda self, name, value: _swig_setattr(self, EigensolverEpetra, name, value)
    __swig_getmethods__ = {}
    __getattr__ = lambda self, name: _swig_getattr(self, EigensolverEpetra, name)
    def __init__(self, *args, **kwargs): raise AttributeError("No constructor defined - class is abstract")
    __repr__ = _swig_repr
    __swig_destroy__ = _Anasazi.delete_EigensolverEpetra
    __del__ = lambda self : None;
    def iterate(self, *args):
        """
        iterate(self)

        virtual void
        Anasazi::Eigensolver< ScalarType, MV, OP >::iterate()=0

        This method performs eigensolvers iterations until the status test
        indicates the need to stop or an error occurs (in which case, an
        exception is thrown). 
        """
        return _Anasazi.EigensolverEpetra_iterate(self, *args)

    def initialize(self, *args):
        """
        initialize(self)

        virtual void
        Anasazi::Eigensolver< ScalarType, MV, OP >::initialize()=0

        Initialize the solver with the initial vectors from the eigenproblem
        or random data. 
        """
        return _Anasazi.EigensolverEpetra_initialize(self, *args)

    def getNumIters(self, *args):
        """
        getNumIters(self) -> int

        virtual int
        Anasazi::Eigensolver< ScalarType, MV, OP >::getNumIters() const =0

        Get the current iteration count. 
        """
        return _Anasazi.EigensolverEpetra_getNumIters(self, *args)

    def resetNumIters(self, *args):
        """
        resetNumIters(self)

        virtual
        void Anasazi::Eigensolver< ScalarType, MV, OP >::resetNumIters()=0

        Reset the iteration count. 
        """
        return _Anasazi.EigensolverEpetra_resetNumIters(self, *args)

    def getRitzVectors(self, *args):
        """
        getRitzVectors(self) -> Teuchos::RCP<(q(const).Epetra_MultiVector)>

        virtual
        Teuchos::RCP<const MV> Anasazi::Eigensolver< ScalarType, MV, OP
        >::getRitzVectors()=0

        Get the Ritz vectors from the previous iteration. These are indexed
        using getRitzIndex().

        For a description of the indexing scheme, see getRitzIndex(). 
        """
        return _Anasazi.EigensolverEpetra_getRitzVectors(self, *args)

    def getRitzValues(self, *args):
        """
        getRitzValues(self) -> VectorValueDouble

        virtual
        std::vector<Value<ScalarType> > Anasazi::Eigensolver< ScalarType, MV,
        OP >::getRitzValues()=0

        Get the Ritz values from the previous iteration. 
        """
        return _Anasazi.EigensolverEpetra_getRitzValues(self, *args)

    def getRitzIndex(self, *args):
        """
        getRitzIndex(self) -> VectorInt

        virtual
        std::vector<int> Anasazi::Eigensolver< ScalarType, MV, OP
        >::getRitzIndex()=0

        Get the index used for indexing the compressed storage used for Ritz
        vectors for real, non-Hermitian problems.

        index has length numVecs, where each entry is 0, +1, or -1. These have
        the following interpretation: index[i] == 0: signifies that the
        corresponding eigenvector is stored as the i column of Evecs. This
        will usually be the case when ScalarType is complex, an eigenproblem
        is Hermitian, or a real, non- Hermitian eigenproblem has a real
        eigenvector.

        index[i] == +1: signifies that the corresponding eigenvector is stored
        in two vectors: the real part in the i column of Evecs and the
        positive imaginary part in the i+1 column of Evecs.

        index[i] == -1: signifies that the corresponding eigenvector is stored
        in two vectors: the real part in the i-1 column of Evecs and the
        negative imaginary part in the i column of Evecs 
        """
        return _Anasazi.EigensolverEpetra_getRitzIndex(self, *args)

    def getResNorms(self, *args):
        """
        getResNorms(self) -> std::vector<(Teuchos::ScalarTraits<(double)>::magnitudeType,std::allocator<(Teuchos::ScalarTraits<(double)>::magnitudeType)>)>

        virtual
        std::vector<typename Teuchos::ScalarTraits<ScalarType>::magnitudeType>
        Anasazi::Eigensolver< ScalarType, MV, OP >::getResNorms()=0

        Get the current residual norms.

        A vector of length blockSize containing the norms of the residuals,
        according to the orthogonalization manager norm() method. 
        """
        return _Anasazi.EigensolverEpetra_getResNorms(self, *args)

    def getRes2Norms(self, *args):
        """
        getRes2Norms(self) -> std::vector<(Teuchos::ScalarTraits<(double)>::magnitudeType,std::allocator<(Teuchos::ScalarTraits<(double)>::magnitudeType)>)>

        virtual
        std::vector<typename Teuchos::ScalarTraits<ScalarType>::magnitudeType>
        Anasazi::Eigensolver< ScalarType, MV, OP >::getRes2Norms()=0

        Get the current residual 2-norms A vector of length blockSize
        containing the 2-norms of the residuals. 
        """
        return _Anasazi.EigensolverEpetra_getRes2Norms(self, *args)

    def getRitzRes2Norms(self, *args):
        """
        getRitzRes2Norms(self) -> std::vector<(Teuchos::ScalarTraits<(double)>::magnitudeType,std::allocator<(Teuchos::ScalarTraits<(double)>::magnitudeType)>)>

        virtual std::vector<typename
        Teuchos::ScalarTraits<ScalarType>::magnitudeType>
        Anasazi::Eigensolver< ScalarType, MV, OP >::getRitzRes2Norms()=0

        Get the 2-norms of the Ritz residuals. A vector of length blockSize
        containing the 2-norms of the Ritz residuals. 
        """
        return _Anasazi.EigensolverEpetra_getRitzRes2Norms(self, *args)

    def getCurSubspaceDim(self, *args):
        """
        getCurSubspaceDim(self) -> int

        virtual int Anasazi::Eigensolver< ScalarType, MV, OP
        >::getCurSubspaceDim() const =0

        Get the dimension of the search subspace used to generate the current
        eigenvectors and eigenvalues. 
        """
        return _Anasazi.EigensolverEpetra_getCurSubspaceDim(self, *args)

    def getMaxSubspaceDim(self, *args):
        """
        getMaxSubspaceDim(self) -> int

        virtual int Anasazi::Eigensolver< ScalarType, MV, OP
        >::getMaxSubspaceDim() const =0

        Get the maximum dimension allocated for the search subspace. 
        """
        return _Anasazi.EigensolverEpetra_getMaxSubspaceDim(self, *args)

    def setStatusTest(self, *args):
        """
        setStatusTest(self, Teuchos::RCP<(Anasazi::StatusTest<(double,Epetra_MultiVector,Epetra_Operator)>)> test)

        virtual
        void Anasazi::Eigensolver< ScalarType, MV, OP
        >::setStatusTest(Teuchos::RCP< StatusTest< ScalarType, MV, OP > >
        test)=0

        Set a new StatusTest for the solver. 
        """
        return _Anasazi.EigensolverEpetra_setStatusTest(self, *args)

    def getStatusTest(self, *args):
        """
        getStatusTest(self) -> Teuchos::RCP<(Anasazi::StatusTest<(double,Epetra_MultiVector,Epetra_Operator)>)>

        virtual
        Teuchos::RCP<StatusTest<ScalarType,MV,OP> > Anasazi::Eigensolver<
        ScalarType, MV, OP >::getStatusTest() const =0

        Get the current StatusTest used by the solver. 
        """
        return _Anasazi.EigensolverEpetra_getStatusTest(self, *args)

    def getProblem(self, *args):
        """
        getProblem(self) -> EigenproblemEpetra

        virtual
        const Eigenproblem<ScalarType,MV,OP>& Anasazi::Eigensolver<
        ScalarType, MV, OP >::getProblem() const =0

        Get a constant reference to the eigenvalue problem. 
        """
        return _Anasazi.EigensolverEpetra_getProblem(self, *args)

    def getBlockSize(self, *args):
        """
        getBlockSize(self) -> int

        virtual
        int Anasazi::Eigensolver< ScalarType, MV, OP >::getBlockSize() const
        =0

        Get the blocksize to be used by the iterative solver in solving this
        eigenproblem. 
        """
        return _Anasazi.EigensolverEpetra_getBlockSize(self, *args)

    def setBlockSize(self, *args):
        """
        setBlockSize(self, int blockSize)

        virtual
        void Anasazi::Eigensolver< ScalarType, MV, OP >::setBlockSize(int
        blockSize)=0

        Set the blocksize to be used by the iterative solver in solving this
        eigenproblem. 
        """
        return _Anasazi.EigensolverEpetra_setBlockSize(self, *args)

    def setAuxVecs(self, *args):
        """
        setAuxVecs(self, Teuchos::Array<(Teuchos::RCP<(q(const).Epetra_MultiVector)>)> auxvecs)

        virtual void
        Anasazi::Eigensolver< ScalarType, MV, OP >::setAuxVecs(const
        Teuchos::Array< Teuchos::RCP< const MV > > &auxvecs)=0

        Set the auxiliary vectors for the solver. 
        """
        return _Anasazi.EigensolverEpetra_setAuxVecs(self, *args)

    def getAuxVecs(self, *args):
        """
        getAuxVecs(self) -> Teuchos::Array<(Teuchos::RCP<(q(const).Epetra_MultiVector)>)>

        virtual
        Teuchos::Array<Teuchos::RCP<const MV> > Anasazi::Eigensolver<
        ScalarType, MV, OP >::getAuxVecs() const =0

        Get the auxiliary vectors for the solver. 
        """
        return _Anasazi.EigensolverEpetra_getAuxVecs(self, *args)

    def isInitialized(self, *args):
        """
        isInitialized(self) -> bool

        virtual
        bool Anasazi::Eigensolver< ScalarType, MV, OP >::isInitialized() const
        =0

        States whether the solver has been initialized or not. 
        """
        return _Anasazi.EigensolverEpetra_isInitialized(self, *args)

    def currentStatus(self, *args):
        """
        currentStatus(self,  os)

        virtual
        void Anasazi::Eigensolver< ScalarType, MV, OP
        >::currentStatus(std::ostream &os)=0

        This method requests that the solver print out its current status to
        screen. 
        """
        return _Anasazi.EigensolverEpetra_currentStatus(self, *args)

EigensolverEpetra_swigregister = _Anasazi.EigensolverEpetra_swigregister
EigensolverEpetra_swigregister(EigensolverEpetra)

class SolverManagerEpetra(_object):
    """
    The Anasazi::SolverManager is a templated virtual base class that
    defines the basic interface that any solver manager will support.

    C++ includes: AnasaziSolverManager.hpp 
    """
    __swig_setmethods__ = {}
    __setattr__ = lambda self, name, value: _swig_setattr(self, SolverManagerEpetra, name, value)
    __swig_getmethods__ = {}
    __getattr__ = lambda self, name: _swig_getattr(self, SolverManagerEpetra, name)
    def __init__(self, *args, **kwargs): raise AttributeError("No constructor defined - class is abstract")
    __repr__ = _swig_repr
    __swig_destroy__ = _Anasazi.delete_SolverManagerEpetra
    __del__ = lambda self : None;
    def getProblem(self, *args):
        """
        getProblem(self) -> EigenproblemEpetra

        virtual
        const Eigenproblem<ScalarType,MV,OP>& Anasazi::SolverManager<
        ScalarType, MV, OP >::getProblem() const =0

        Return the eigenvalue problem. 
        """
        return _Anasazi.SolverManagerEpetra_getProblem(self, *args)

    def getNumIters(self, *args):
        """
        getNumIters(self) -> int

        virtual
        int Anasazi::SolverManager< ScalarType, MV, OP >::getNumIters() const
        =0

        Get the iteration count for the most recent call to  solve(). 
        """
        return _Anasazi.SolverManagerEpetra_getNumIters(self, *args)

    def solve(self, *args):
        """
        solve(self) -> ReturnType

        virtual
        ReturnType Anasazi::SolverManager< ScalarType, MV, OP >::solve()=0

        This method performs possibly repeated calls to the underlying
        eigensolver's iterate() routine until the problem has been solved (as
        decided by the solver manager) or the solver manager decides to quit.

        ReturnType specifying: Converged: the eigenproblem was solved to the
        specification required by the solver manager.

        Unconverged: the eigenproblem was not solved to the specification
        desired by the solver manager 
        """
        return _Anasazi.SolverManagerEpetra_solve(self, *args)

SolverManagerEpetra_swigregister = _Anasazi.SolverManagerEpetra_swigregister
SolverManagerEpetra_swigregister(SolverManagerEpetra)

class BlockDavidsonEpetra(EigensolverEpetra):
    """
    This class implements a Block Davidson iteration, a preconditioned
    iteration for solving linear Hermitian eigenproblems.

    This method is described in A Comparison of Eigensolvers for Large-
    scale 3D Modal Analysis Using AMG-Preconditioned Iterative Methods, P.
    Arbenz, U. L. Hetmaniuk, R. B. Lehoucq, R. S. Tuminaro, Internat. J.
    for Numer. Methods Engrg., 64, pp. 204-236 (2005)

    Chris Baker, Ulrich Hetmaniuk, Rich Lehoucq, Heidi Thornquist

    C++ includes: AnasaziBlockDavidson.hpp 
    """
    __swig_setmethods__ = {}
    for _s in [EigensolverEpetra]: __swig_setmethods__.update(getattr(_s,'__swig_setmethods__',{}))
    __setattr__ = lambda self, name, value: _swig_setattr(self, BlockDavidsonEpetra, name, value)
    __swig_getmethods__ = {}
    for _s in [EigensolverEpetra]: __swig_getmethods__.update(getattr(_s,'__swig_getmethods__',{}))
    __getattr__ = lambda self, name: _swig_getattr(self, BlockDavidsonEpetra, name)
    __repr__ = _swig_repr
    def __init__(self, *args): 
        """
        __init__(self, Teuchos::RCP<(Anasazi::Eigenproblem<(double,Epetra_MultiVector,Epetra_Operator)>)> problem, 
            Teuchos::RCP<(Anasazi::SortManager<(Teuchos::ScalarTraits<(double)>::magnitudeType)>)> sorter, 
            Teuchos::RCP<(Anasazi::OutputManager<(double)>)> printer, 
            Teuchos::RCP<(Anasazi::StatusTest<(double,Epetra_MultiVector,Epetra_Operator)>)> tester, 
            Teuchos::RCP<(Anasazi::MatOrthoManager<(double,Epetra_MultiVector,Epetra_Operator)>)> ortho, 
            ParameterList params) -> BlockDavidsonEpetra

        Anasazi::BlockDavidson< ScalarType, MV, OP >::BlockDavidson(const
        Teuchos::RCP< Eigenproblem< ScalarType, MV, OP > > &problem, const
        Teuchos::RCP< SortManager< typename Teuchos::ScalarTraits< ScalarType
        >::magnitudeType > > &sorter, const Teuchos::RCP< OutputManager<
        ScalarType > > &printer, const Teuchos::RCP< StatusTest< ScalarType,
        MV, OP > > &tester, const Teuchos::RCP< MatOrthoManager< ScalarType,
        MV, OP > > &ortho, Teuchos::ParameterList &params)

        BlockDavidson constructor with eigenproblem, solver utilities, and
        parameter list of solver options.

        This constructor takes pointers required by the eigensolver, in
        addition to a parameter list of options for the eigensolver. These
        options include the following: "Block Size" - an int specifying the
        block size used by the algorithm. This can also be specified using the
        setBlockSize() method.

        "Num Blocks" - an int specifying the maximum number of blocks
        allocated for the solver basis. 
        """
        this = _Anasazi.new_BlockDavidsonEpetra(*args)
        try: self.this.append(this)
        except: self.this = this
    __swig_destroy__ = _Anasazi.delete_BlockDavidsonEpetra
    __del__ = lambda self : None;
    def iterate(self, *args):
        """
        iterate(self)

        void
        Anasazi::BlockDavidson< ScalarType, MV, OP >::iterate()

        This method performs BlockDavidson iterations until the status test
        indicates the need to stop or an error occurs (in which case, an
        appropriate exception is thrown).

        iterate() will first determine whether the solver is uninitialized; if
        not, it will call initialize(). After initialization, the solver
        performs block Davidson iterations until the status test evaluates as
        Passed, at which point the method returns to the caller.

        The block Davidson iteration proceeds as follows: The current residual
        (R) is preconditioned to form H

        H is orthogonalized against the auxiliary vectors and the previous
        basis vectors, and made orthonormal.

        The current basis is expanded with H and used to project the problem
        matrix.

        The projected eigenproblem is solved, and the desired eigenvectors and
        eigenvalues are selected.

        These are used to form the new eigenvector estimates (X).

        The new residual (R) is formed.

        The status test is queried at the beginning of the iteration.

        Possible exceptions thrown include std::invalid_argument or one of the
        BlockDavidson-specific exceptions. 
        """
        return _Anasazi.BlockDavidsonEpetra_iterate(self, *args)

    def initialize(self, *args):
        """
        initialize(self, Anasazi::BlockDavidsonState<(double,Epetra_MultiVector)> newstate)
        initialize(self)

        void
        Anasazi::BlockDavidson< ScalarType, MV, OP >::initialize()

        Initialize the solver with the initial vectors from the eigenproblem
        or random data. 
        """
        return _Anasazi.BlockDavidsonEpetra_initialize(self, *args)

    def isInitialized(self, *args):
        """
        isInitialized(self) -> bool

        bool
        Anasazi::BlockDavidson< ScalarType, MV, OP >::isInitialized() const

        Indicates whether the solver has been initialized or not.

        bool indicating the state of the solver.

        If isInitialized() == true:  getCurSubspaceDim() > 0 and is a multiple
        of getBlockSize()

        the first getCurSubspaceDim() vectors of V are orthogonal to auxiliary
        vectors and have orthonormal columns

        the principal submatrix of order getCurSubspaceDim() of KK contains
        the project eigenproblem matrix

        X contains the Ritz vectors with respect to the current Krylov basis

        T contains the Ritz values with respect to the current Krylov basis

        KX == Op*X

        MX == M*X if M != Teuchos::null  Otherwise, MX == Teuchos::null

        R contains the residual vectors with respect to X 
        """
        return _Anasazi.BlockDavidsonEpetra_isInitialized(self, *args)

    def getState(self, *args):
        """
        getState(self) -> Anasazi::BlockDavidsonState<(double,Epetra_MultiVector)>

        BlockDavidsonState< ScalarType, MV > Anasazi::BlockDavidson<
        ScalarType, MV, OP >::getState() const

        Get access to the current state of the eigensolver.

        The data is only valid if isInitialized() == true.

        The data for the preconditioned residual is only meaningful in the
        scenario that the solver throws a BlockDavidsonRitzFailure exception
        during iterate().

        A BlockDavidsonState object containing const pointers to the current
        solver state. Note, these are direct pointers to the multivectors;
        they are not pointers to views of the multivectors. 
        """
        return _Anasazi.BlockDavidsonEpetra_getState(self, *args)

    def getNumIters(self, *args):
        """
        getNumIters(self) -> int

        int
        Anasazi::BlockDavidson< ScalarType, MV, OP >::getNumIters() const

        Get the current iteration count. 
        """
        return _Anasazi.BlockDavidsonEpetra_getNumIters(self, *args)

    def resetNumIters(self, *args):
        """
        resetNumIters(self)

        void
        Anasazi::BlockDavidson< ScalarType, MV, OP >::resetNumIters()

        Reset the iteration count. 
        """
        return _Anasazi.BlockDavidsonEpetra_resetNumIters(self, *args)

    def getRitzVectors(self, *args):
        """
        getRitzVectors(self) -> Teuchos::RCP<(q(const).Epetra_MultiVector)>

        Teuchos::RCP< const MV > Anasazi::BlockDavidson< ScalarType, MV, OP
        >::getRitzVectors()

        Get access to the current Ritz vectors.

        A multivector with getBlockSize() vectors containing the sorted Ritz
        vectors corresponding to the most significant Ritz values. The i-th
        vector of the return corresponds to the i-th Ritz vector; there is no
        need to use getRitzIndex(). 
        """
        return _Anasazi.BlockDavidsonEpetra_getRitzVectors(self, *args)

    def getRitzValues(self, *args):
        """
        getRitzValues(self) -> VectorValueDouble

        std::vector< Value< ScalarType > > Anasazi::BlockDavidson< ScalarType,
        MV, OP >::getRitzValues()

        Get the Ritz values for the previous iteration.

        A vector of length getCurSubspaceDim() containing the Ritz values from
        the previous projected eigensolve. 
        """
        return _Anasazi.BlockDavidsonEpetra_getRitzValues(self, *args)

    def getRitzIndex(self, *args):
        """
        getRitzIndex(self) -> VectorInt

        std::vector< int > Anasazi::BlockDavidson< ScalarType, MV, OP
        >::getRitzIndex()

        Get the index used for extracting individual Ritz vectors from
        getRitzVectors().

        Because BlockDavidson is a Hermitian solver, all Ritz values are real
        and all Ritz vectors can be represented in a single column of a
        multivector. Therefore, getRitzIndex() is not needed when using the
        output from getRitzVectors().

        An int vector of size getCurSubspaceDim() composed of zeros. 
        """
        return _Anasazi.BlockDavidsonEpetra_getRitzIndex(self, *args)

    def getResNorms(self, *args):
        """
        getResNorms(self) -> std::vector<(Teuchos::ScalarTraits<(double)>::magnitudeType,std::allocator<(Teuchos::ScalarTraits<(double)>::magnitudeType)>)>

        std::vector< typename Teuchos::ScalarTraits< ScalarType
        >::magnitudeType > Anasazi::BlockDavidson< ScalarType, MV, OP
        >::getResNorms()

        Get the current residual norms, computing the norms if they are not
        up-to-date with the current residual vectors.

        A vector of length getCurSubspaceDim() containing the norms of the
        residuals, with respect to the orthogonalization manager's norm()
        method. 
        """
        return _Anasazi.BlockDavidsonEpetra_getResNorms(self, *args)

    def getRes2Norms(self, *args):
        """
        getRes2Norms(self) -> std::vector<(Teuchos::ScalarTraits<(double)>::magnitudeType,std::allocator<(Teuchos::ScalarTraits<(double)>::magnitudeType)>)>

        std::vector< typename Teuchos::ScalarTraits< ScalarType
        >::magnitudeType > Anasazi::BlockDavidson< ScalarType, MV, OP
        >::getRes2Norms()

        Get the current residual 2-norms, computing the norms if they are not
        up-to-date with the current residual vectors.

        A vector of length getCurSubspaceDim() containing the 2-norms of the
        current residuals. 
        """
        return _Anasazi.BlockDavidsonEpetra_getRes2Norms(self, *args)

    def getRitzRes2Norms(self, *args):
        """
        getRitzRes2Norms(self) -> std::vector<(Teuchos::ScalarTraits<(double)>::magnitudeType,std::allocator<(Teuchos::ScalarTraits<(double)>::magnitudeType)>)>

        std::vector< typename Teuchos::ScalarTraits< ScalarType
        >::magnitudeType > Anasazi::BlockDavidson< ScalarType, MV, OP
        >::getRitzRes2Norms()

        Get the 2-norms of the residuals.

        The Ritz residuals are not defined for the LOBPCG iteration. Hence,
        this method returns the 2-norms of the direct residuals, and is
        equivalent to calling getRes2Norms().

        A vector of length getBlockSize() containing the 2-norms of the direct
        residuals. 
        """
        return _Anasazi.BlockDavidsonEpetra_getRitzRes2Norms(self, *args)

    def getCurSubspaceDim(self, *args):
        """
        getCurSubspaceDim(self) -> int

        int
        Anasazi::BlockDavidson< ScalarType, MV, OP >::getCurSubspaceDim()
        const

        Get the dimension of the search subspace used to generate the current
        eigenvectors and eigenvalues.

        An integer specifying the rank of the Krylov subspace currently in use
        by the eigensolver. If isInitialized() == false, the return is 0.
        Otherwise, it will be some strictly positive multiple of
        getBlockSize(). 
        """
        return _Anasazi.BlockDavidsonEpetra_getCurSubspaceDim(self, *args)

    def getMaxSubspaceDim(self, *args):
        """
        getMaxSubspaceDim(self) -> int

        int
        Anasazi::BlockDavidson< ScalarType, MV, OP >::getMaxSubspaceDim()
        const

        Get the maximum dimension allocated for the search subspace. For
        BlockDavidson, this always returns numBlocks*blockSize. 
        """
        return _Anasazi.BlockDavidsonEpetra_getMaxSubspaceDim(self, *args)

    def setStatusTest(self, *args):
        """
        setStatusTest(self, Teuchos::RCP<(Anasazi::StatusTest<(double,Epetra_MultiVector,Epetra_Operator)>)> test)

        void
        Anasazi::BlockDavidson< ScalarType, MV, OP
        >::setStatusTest(Teuchos::RCP< StatusTest< ScalarType, MV, OP > >
        test)

        Set a new StatusTest for the solver. 
        """
        return _Anasazi.BlockDavidsonEpetra_setStatusTest(self, *args)

    def getStatusTest(self, *args):
        """
        getStatusTest(self) -> Teuchos::RCP<(Anasazi::StatusTest<(double,Epetra_MultiVector,Epetra_Operator)>)>

        Teuchos::RCP< StatusTest< ScalarType, MV, OP > >
        Anasazi::BlockDavidson< ScalarType, MV, OP >::getStatusTest() const

        Get the current StatusTest used by the solver. 
        """
        return _Anasazi.BlockDavidsonEpetra_getStatusTest(self, *args)

    def getProblem(self, *args):
        """
        getProblem(self) -> EigenproblemEpetra

        const
        Eigenproblem< ScalarType, MV, OP > & Anasazi::BlockDavidson<
        ScalarType, MV, OP >::getProblem() const

        Get a constant reference to the eigenvalue problem. 
        """
        return _Anasazi.BlockDavidsonEpetra_getProblem(self, *args)

    def setBlockSize(self, *args):
        """
        setBlockSize(self, int blockSize)

        void
        Anasazi::BlockDavidson< ScalarType, MV, OP >::setBlockSize(int
        blockSize)

        Set the blocksize.

        This method is required to support the interface provided by
        Eigensolver. However, the preferred method of setting the allocated
        size for the BlockDavidson eigensolver is setSize(). In fact,
        setBlockSize() simply calls setSize(), maintaining the current number
        of blocks.

        The block size determines the number of Ritz vectors and values that
        are computed on each iteration, thereby determining the increase in
        the Krylov subspace at each iteration. 
        """
        return _Anasazi.BlockDavidsonEpetra_setBlockSize(self, *args)

    def getBlockSize(self, *args):
        """
        getBlockSize(self) -> int

        int
        Anasazi::BlockDavidson< ScalarType, MV, OP >::getBlockSize() const

        Get the blocksize used by the iterative solver. 
        """
        return _Anasazi.BlockDavidsonEpetra_getBlockSize(self, *args)

    def setAuxVecs(self, *args):
        """
        setAuxVecs(self, Teuchos::Array<(Teuchos::RCP<(q(const).Epetra_MultiVector)>)> auxvecs)

        void
        Anasazi::BlockDavidson< ScalarType, MV, OP >::setAuxVecs(const
        Teuchos::Array< Teuchos::RCP< const MV > > &auxvecs)

        Set the auxiliary vectors for the solver.

        Because the current basis V cannot be assumed orthogonal to the new
        auxiliary vectors, a call to setAuxVecs() will reset the solver to the
        uninitialized state. This happens only in the case where the new
        auxiliary vectors have a combined dimension of greater than zero.

        In order to preserve the current state, the user will need to extract
        it from the solver using getState(), orthogonalize it against the new
        auxiliary vectors, and reinitialize using initialize(). 
        """
        return _Anasazi.BlockDavidsonEpetra_setAuxVecs(self, *args)

    def getAuxVecs(self, *args):
        """
        getAuxVecs(self) -> Teuchos::Array<(Teuchos::RCP<(q(const).Epetra_MultiVector)>)>

        Teuchos::Array< Teuchos::RCP< const MV > > Anasazi::BlockDavidson<
        ScalarType, MV, OP >::getAuxVecs() const

        Get the auxiliary vectors for the solver. 
        """
        return _Anasazi.BlockDavidsonEpetra_getAuxVecs(self, *args)

    def setSize(self, *args):
        """
        setSize(self, int blockSize, int numBlocks)

        void
        Anasazi::BlockDavidson< ScalarType, MV, OP >::setSize(int blockSize,
        int numBlocks)

        Set the blocksize and number of blocks to be used by the iterative
        solver in solving this eigenproblem.

        Changing either the block size or the number of blocks will reset the
        solver to an uninitialized state.

        The requested block size must be strictly positive; the number of
        blocks must be greater than one. Invalid arguments will result in a
        std::invalid_argument exception. 
        """
        return _Anasazi.BlockDavidsonEpetra_setSize(self, *args)

    def currentStatus(self, *args):
        """
        currentStatus(self,  os)

        void
        Anasazi::BlockDavidson< ScalarType, MV, OP
        >::currentStatus(std::ostream &os)

        This method requests that the solver print out its current status to
        the given output stream. 
        """
        return _Anasazi.BlockDavidsonEpetra_currentStatus(self, *args)

BlockDavidsonEpetra_swigregister = _Anasazi.BlockDavidsonEpetra_swigregister
BlockDavidsonEpetra_swigregister(BlockDavidsonEpetra)

class BlockDavidsonSolMgrEpetra(SolverManagerEpetra):
    """
    The BlockDavidsonSolMgr provides a powerful solver manager over the
    BlockDavidson eigensolver.

    This solver manager implements a hard-locking mechanism, whereby
    eigenpairs designated to be locked are moved from the eigensolver and
    placed in auxilliary storage. The eigensolver is then restarted and
    continues to iterate, orthogonal to the locked eigenvectors.

    The solver manager provides to the solver a StatusTestCombo object
    constructed as follows: combo = globaltest OR lockingtest OR debugtest
    where  globaltest terminates computation when global convergence has
    been detected.  It is encapsulated in a StatusTestWithOrdering object,
    to ensure that computation is terminated only after the most
    significant eigenvalues/eigenvectors have met the convergence
    criteria.  If not specified via setGlobalStatusTest(), globaltest is a
    StatusTestResNorm object which tests the M-norms of the direct
    residuals relative to the Ritz values.

    lockingtest halts BlockDavidson::iterate() in order to deflate
    converged eigenpairs for locking.  It will query the underlying
    BlockDavidson eigensolver to determine when eigenvectors should be
    locked.  If not specified via setLockingStatusTest(), lockingtest is a
    StatusTestResNorm object.

    debugtest allows a user to specify additional monitoring of the
    iteration, encapsulated in a StatusTest object  If not specified via
    setDebugStatusTest(), debugtest is ignored.  In most cases, it should
    return Failed; if it returns Passed, solve() will throw an
    AnasaziError exception.

    Additionally, the solver manager will terminate solve() after a
    specified number of restarts.

    Much of this behavior is controlled via parameters and options passed
    to the solver manager. For more information, see
    BlockDavidsonSolMgr().

    Chris Baker, Ulrich Hetmaniuk, Rich Lehoucq, Heidi Thornquist

    C++ includes: AnasaziBlockDavidsonSolMgr.hpp 
    """
    __swig_setmethods__ = {}
    for _s in [SolverManagerEpetra]: __swig_setmethods__.update(getattr(_s,'__swig_setmethods__',{}))
    __setattr__ = lambda self, name, value: _swig_setattr(self, BlockDavidsonSolMgrEpetra, name, value)
    __swig_getmethods__ = {}
    for _s in [SolverManagerEpetra]: __swig_getmethods__.update(getattr(_s,'__swig_getmethods__',{}))
    __getattr__ = lambda self, name: _swig_getattr(self, BlockDavidsonSolMgrEpetra, name)
    __repr__ = _swig_repr
    def __init__(self, *args): 
        """
        __init__(self, Teuchos::RCP<(Anasazi::Eigenproblem<(double,Epetra_MultiVector,Epetra_Operator)>)> problem, 
            ParameterList pl) -> BlockDavidsonSolMgrEpetra

        Anasazi::BlockDavidsonSolMgr< ScalarType, MV, OP
        >::BlockDavidsonSolMgr(const Teuchos::RCP< Eigenproblem< ScalarType,
        MV, OP > > &problem, Teuchos::ParameterList &pl)

        Basic constructor for BlockDavidsonSolMgr.

        This constructor accepts the Eigenproblem to be solved in addition to
        a parameter list of options for the solver manager. These options
        include the following: Solver parameters  "Which" - a string
        specifying the desired eigenvalues: SM, LM, SR or LR. Default: "SR"

        "Block Size" - a int specifying the block size to be used by the
        underlying block Davidson solver. Default: problem->getNEV()

        "Num Blocks" - a int specifying the number of blocks allocated for
        the Krylov basis. Default: 2

        "Maximum Restarts" - a int specifying the maximum number of restarts
        the underlying solver is allowed to perform. Default: 20

        "Verbosity" - a sum of MsgType specifying the verbosity. Default:
        Errors

        Convergence parameters (if using default convergence test; see
        setGlobalStatusTest())  "Convergence Tolerance" - a MagnitudeType
        specifying the level that residual norms must reach to decide
        convergence. Default: machine precision.

        "Relative Convergence Tolerance" - a bool specifying whether
        residuals norms should be scaled by their eigenvalues for the
        purposing of deciding convergence. Default: true

        "Convergence Norm" - a string specifying the norm for convergence
        testing: "2" or "M"

        Locking parameters (if using default locking test; see
        setLockingStatusTest())  "Use Locking" - a bool specifying whether
        the algorithm should employ locking of converged eigenpairs. Default:
        false

        "Max Locked" - a int specifying the maximum number of eigenpairs to
        be locked. Default: problem->getNEV()

        "Locking Quorum" - a int specifying the number of eigenpairs that
        must meet the locking criteria before locking actually occurs.
        Default: 1

        "Locking Tolerance" - a MagnitudeType specifying the level that
        residual norms must reach to decide locking. Default: 0.1*convergence
        tolerance

        "Relative Locking Tolerance" - a bool specifying whether residuals
        norms should be scaled by their eigenvalues for the purposing of
        deciding locking. Default: true

        "Locking Norm" - a string specifying the norm for locking testing:
        "2" or "M" 
        """
        this = _Anasazi.new_BlockDavidsonSolMgrEpetra(*args)
        try: self.this.append(this)
        except: self.this = this
    __swig_destroy__ = _Anasazi.delete_BlockDavidsonSolMgrEpetra
    __del__ = lambda self : None;
    def getProblem(self, *args):
        """
        getProblem(self) -> EigenproblemEpetra

        const Eigenproblem<ScalarType,MV,OP>& Anasazi::BlockDavidsonSolMgr<
        ScalarType, MV, OP >::getProblem() const

        Return the eigenvalue problem. 
        """
        return _Anasazi.BlockDavidsonSolMgrEpetra_getProblem(self, *args)

    def getNumIters(self, *args):
        """
        getNumIters(self) -> int

        int
        Anasazi::BlockDavidsonSolMgr< ScalarType, MV, OP >::getNumIters()
        const

        Get the iteration count for the most recent call to  solve(). 
        """
        return _Anasazi.BlockDavidsonSolMgrEpetra_getNumIters(self, *args)

    def getTimers(self, *args):
        """
        getTimers(self) -> Teuchos::Array<(Teuchos::RCP<(Teuchos::Time)>)>

        Teuchos::Array<Teuchos::RCP<Teuchos::Time> >
        Anasazi::BlockDavidsonSolMgr< ScalarType, MV, OP >::getTimers() const

        Return the timers for this object.

        The timers are ordered as follows: time spent in solve() routine

        time spent restarting

        time spent locking converged eigenvectors 
        """
        return _Anasazi.BlockDavidsonSolMgrEpetra_getTimers(self, *args)

    def solve(self, *args):
        """
        solve(self) -> ReturnType

        ReturnType Anasazi::BlockDavidsonSolMgr< ScalarType, MV, OP >::solve()

        This method performs possibly repeated calls to the underlying
        eigensolver's iterate() routine until the problem has been solved (as
        decided by the solver manager) or the solver manager decides to quit.

        This method calls BlockDavidson::iterate(), which will return either
        because a specially constructed status test evaluates to Passed or an
        exception is thrown.

        A return from BlockDavidson::iterate() signifies one of the following
        scenarios: the maximum number of restarts has been exceeded. In this
        scenario, the solver manager will place  all converged eigenpairs into
        the eigenproblem and return Unconverged.

        the locking conditions have been met. In this scenario, some of the
        current eigenpairs will be removed  from the eigensolver and placed
        into auxiliary storage. The eigensolver will be restarted with the
        remaining part of the Krylov subspace  and some random information to
        replace the removed subspace.

        global convergence has been met. In this case, the most significant
        NEV eigenpairs in the solver and locked storage  have met the
        convergence criterion. (Here, NEV refers to the number of eigenpairs
        requested by the Eigenproblem.)  In this scenario, the solver manager
        will return Converged.

        ReturnType specifying: Converged: the eigenproblem was solved to the
        specification required by the solver manager.

        Unconverged: the eigenproblem was not solved to the specification
        desired by the solver manager. 
        """
        return _Anasazi.BlockDavidsonSolMgrEpetra_solve(self, *args)

    def setGlobalStatusTest(self, *args):
        """
        setGlobalStatusTest(self, Teuchos::RCP<(Anasazi::StatusTest<(double,Epetra_MultiVector,Epetra_Operator)>)> _global)

        void
        Anasazi::BlockDavidsonSolMgr< ScalarType, MV, OP
        >::setGlobalStatusTest(const Teuchos::RCP< StatusTest< ScalarType, MV,
        OP > > &global)

        Set the status test defining global convergence. 
        """
        return _Anasazi.BlockDavidsonSolMgrEpetra_setGlobalStatusTest(self, *args)

    def getGlobalStatusTest(self, *args):
        """
        getGlobalStatusTest(self) -> Teuchos::RCP<(Anasazi::StatusTest<(double,Epetra_MultiVector,Epetra_Operator)>)>

        const
        Teuchos::RCP< StatusTest< ScalarType, MV, OP > > &
        Anasazi::BlockDavidsonSolMgr< ScalarType, MV, OP
        >::getGlobalStatusTest() const

        Get the status test defining global convergence. 
        """
        return _Anasazi.BlockDavidsonSolMgrEpetra_getGlobalStatusTest(self, *args)

    def setLockingStatusTest(self, *args):
        """
        setLockingStatusTest(self, Teuchos::RCP<(Anasazi::StatusTest<(double,Epetra_MultiVector,Epetra_Operator)>)> locking)

        void
        Anasazi::BlockDavidsonSolMgr< ScalarType, MV, OP
        >::setLockingStatusTest(const Teuchos::RCP< StatusTest< ScalarType,
        MV, OP > > &locking)

        Set the status test defining locking. 
        """
        return _Anasazi.BlockDavidsonSolMgrEpetra_setLockingStatusTest(self, *args)

    def getLockingStatusTest(self, *args):
        """
        getLockingStatusTest(self) -> Teuchos::RCP<(Anasazi::StatusTest<(double,Epetra_MultiVector,Epetra_Operator)>)>

        const
        Teuchos::RCP< StatusTest< ScalarType, MV, OP > > &
        Anasazi::BlockDavidsonSolMgr< ScalarType, MV, OP
        >::getLockingStatusTest() const

        Get the status test defining locking. 
        """
        return _Anasazi.BlockDavidsonSolMgrEpetra_getLockingStatusTest(self, *args)

    def setDebugStatusTest(self, *args):
        """
        setDebugStatusTest(self, Teuchos::RCP<(Anasazi::StatusTest<(double,Epetra_MultiVector,Epetra_Operator)>)> debug)

        void
        Anasazi::BlockDavidsonSolMgr< ScalarType, MV, OP
        >::setDebugStatusTest(const Teuchos::RCP< StatusTest< ScalarType, MV,
        OP > > &debug)

        Set the status test for debugging. 
        """
        return _Anasazi.BlockDavidsonSolMgrEpetra_setDebugStatusTest(self, *args)

    def getDebugStatusTest(self, *args):
        """
        getDebugStatusTest(self) -> Teuchos::RCP<(Anasazi::StatusTest<(double,Epetra_MultiVector,Epetra_Operator)>)>

        const Teuchos::RCP<
        StatusTest< ScalarType, MV, OP > > & Anasazi::BlockDavidsonSolMgr<
        ScalarType, MV, OP >::getDebugStatusTest() const

        Get the status test for debugging. 
        """
        return _Anasazi.BlockDavidsonSolMgrEpetra_getDebugStatusTest(self, *args)

BlockDavidsonSolMgrEpetra_swigregister = _Anasazi.BlockDavidsonSolMgrEpetra_swigregister
BlockDavidsonSolMgrEpetra_swigregister(BlockDavidsonSolMgrEpetra)

class BlockKrylovSchurEpetra(EigensolverEpetra):
    """
    This class implements the block Krylov-Schur iteration, for solving
    linear eigenvalue problems.

    This method is a block version of the iteration presented by G.W.
    Stewart in "A Krylov-Schur Algorithm for Large Eigenproblems", SIAM
    J. Matrix Anal. Appl., Vol 23(2001), No. 3, pp. 601-614.

    Chris Baker, Ulrich Hetmaniuk, Rich Lehoucq, Heidi Thornquist

    C++ includes: AnasaziBlockKrylovSchur.hpp 
    """
    __swig_setmethods__ = {}
    for _s in [EigensolverEpetra]: __swig_setmethods__.update(getattr(_s,'__swig_setmethods__',{}))
    __setattr__ = lambda self, name, value: _swig_setattr(self, BlockKrylovSchurEpetra, name, value)
    __swig_getmethods__ = {}
    for _s in [EigensolverEpetra]: __swig_getmethods__.update(getattr(_s,'__swig_getmethods__',{}))
    __getattr__ = lambda self, name: _swig_getattr(self, BlockKrylovSchurEpetra, name)
    __repr__ = _swig_repr
    def __init__(self, *args): 
        """
        __init__(self, Teuchos::RCP<(Anasazi::Eigenproblem<(double,Epetra_MultiVector,Epetra_Operator)>)> problem, 
            Teuchos::RCP<(Anasazi::SortManager<(Teuchos::ScalarTraits<(double)>::magnitudeType)>)> sorter, 
            Teuchos::RCP<(Anasazi::OutputManager<(double)>)> printer, 
            Teuchos::RCP<(Anasazi::StatusTest<(double,Epetra_MultiVector,Epetra_Operator)>)> tester, 
            Teuchos::RCP<(Anasazi::OrthoManager<(double,Epetra_MultiVector)>)> ortho, 
            ParameterList params) -> BlockKrylovSchurEpetra

        Anasazi::BlockKrylovSchur< ScalarType, MV, OP
        >::BlockKrylovSchur(const Teuchos::RCP< Eigenproblem< ScalarType, MV,
        OP > > &problem, const Teuchos::RCP< SortManager< typename
        Teuchos::ScalarTraits< ScalarType >::magnitudeType > > &sorter, const
        Teuchos::RCP< OutputManager< ScalarType > > &printer, const
        Teuchos::RCP< StatusTest< ScalarType, MV, OP > > &tester, const
        Teuchos::RCP< OrthoManager< ScalarType, MV > > &ortho,
        Teuchos::ParameterList &params)

        BlockKrylovSchur constructor with eigenproblem, solver utilities, and
        parameter list of solver options.

        This constructor takes pointers required by the eigensolver, in
        addition to a parameter list of options for the eigensolver. These
        options include the following: "Block Size" - an int specifying the
        block size used by the algorithm. This can also be specified using the
        setBlockSize() method. Default: 1

        "Num Blocks" - an int specifying the maximum number of blocks
        allocated for the solver basis. Default: 3*problem->getNEV()

        "Step Size" - an int specifying how many iterations are performed
        between computations of eigenvalues and eigenvectors.  Note: This
        parameter is mandatory.

        "Number of Ritz Vectors" - an int specifying how many Ritz vectors
        are computed on calls to getRitzVectors(). Default: 0

        "Print Number of Ritz Values" - an int specifying how many Ritz
        values are printed on calls to currentStatus(). Default: "Block
        Size" 
        """
        this = _Anasazi.new_BlockKrylovSchurEpetra(*args)
        try: self.this.append(this)
        except: self.this = this
    __swig_destroy__ = _Anasazi.delete_BlockKrylovSchurEpetra
    __del__ = lambda self : None;
    def iterate(self, *args):
        """
        iterate(self)

        void
        Anasazi::BlockKrylovSchur< ScalarType, MV, OP >::iterate()

        This method performs Block Krylov-Schur iterations until the status
        test indicates the need to stop or an error occurs (in which case, an
        exception is thrown).

        iterate() will first determine whether the solver is inintialized; if
        not, it will call initialize() using default arguments. After
        initialization, the solver performs Block Krylov-Schur iterations
        until the status test evaluates as Passed, at which point the method
        returns to the caller.

        The Block Krylov-Schur iteration proceeds as follows: The operator
        problem->getOperator() is applied to the newest blockSize vectors in
        the Krylov basis.

        The resulting vectors are orthogonalized against the auxiliary vectors
        and the previous basis vectors, and made orthonormal.

        The Hessenberg matrix is updated.

        If we have performed stepSize iterations since the last update, update
        the Ritz values and Ritz residuals.

        The status test is queried at the beginning of the iteration.

        Possible exceptions thrown include the BlockKrylovSchurOrthoFailure.

        """
        return _Anasazi.BlockKrylovSchurEpetra_iterate(self, *args)

    def initialize(self, *args):
        """
        initialize(self, Anasazi::BlockKrylovSchurState<(double,Epetra_MultiVector)> state)
        initialize(self)

        void
        Anasazi::BlockKrylovSchur< ScalarType, MV, OP >::initialize()

        Initialize the solver with the initial vectors from the eigenproblem
        or random data. 
        """
        return _Anasazi.BlockKrylovSchurEpetra_initialize(self, *args)

    def isInitialized(self, *args):
        """
        isInitialized(self) -> bool

        bool
        Anasazi::BlockKrylovSchur< ScalarType, MV, OP >::isInitialized() const

        Indicates whether the solver has been initialized or not.

        bool indicating the state of the solver.

        If isInitialized() == true: the first getCurSubspaceDim() vectors of V
        are orthogonal to auxiliary vectors and have orthonormal columns

        the principal Hessenberg submatrix of of H contains the Hessenberg
        matrix associated with V 
        """
        return _Anasazi.BlockKrylovSchurEpetra_isInitialized(self, *args)

    def getState(self, *args):
        """
        getState(self) -> Anasazi::BlockKrylovSchurState<(double,Epetra_MultiVector)>

        BlockKrylovSchurState<ScalarType,MV> Anasazi::BlockKrylovSchur<
        ScalarType, MV, OP >::getState() const

        Get the current state of the eigensolver.

        The data is only valid if isInitialized() == true.

        A BlockKrylovSchurState object containing const pointers to the
        current solver state. 
        """
        return _Anasazi.BlockKrylovSchurEpetra_getState(self, *args)

    def getNumIters(self, *args):
        """
        getNumIters(self) -> int

        int
        Anasazi::BlockKrylovSchur< ScalarType, MV, OP >::getNumIters() const

        Get the current iteration count. 
        """
        return _Anasazi.BlockKrylovSchurEpetra_getNumIters(self, *args)

    def resetNumIters(self, *args):
        """
        resetNumIters(self)

        void
        Anasazi::BlockKrylovSchur< ScalarType, MV, OP >::resetNumIters()

        Reset the iteration count. 
        """
        return _Anasazi.BlockKrylovSchurEpetra_resetNumIters(self, *args)

    def getRitzVectors(self, *args):
        """
        getRitzVectors(self) -> Teuchos::RCP<(q(const).Epetra_MultiVector)>

        Teuchos::RCP<const MV> Anasazi::BlockKrylovSchur< ScalarType, MV, OP
        >::getRitzVectors()

        Get the Ritz vectors.

        A multivector of columns not exceeding the maximum dimension of the
        subspace containing the Ritz vectors from the most recent call to
        computeRitzVectors().

        To see if the returned Ritz vectors are current, call
        isRitzVecsCurrent(). 
        """
        return _Anasazi.BlockKrylovSchurEpetra_getRitzVectors(self, *args)

    def getRitzValues(self, *args):
        """
        getRitzValues(self) -> VectorValueDouble

        std::vector<Value<ScalarType> > Anasazi::BlockKrylovSchur< ScalarType,
        MV, OP >::getRitzValues()

        Get the Ritz values.

        A vector of length not exceeding the maximum dimension of the subspace
        containing the Ritz values from the most recent Schur form update.

        To see if the returned Ritz values are current, call
        isRitzValsCurrent(). 
        """
        return _Anasazi.BlockKrylovSchurEpetra_getRitzValues(self, *args)

    def getRitzIndex(self, *args):
        """
        getRitzIndex(self) -> VectorInt

        std::vector<int> Anasazi::BlockKrylovSchur< ScalarType, MV, OP
        >::getRitzIndex()

        Get the Ritz index vector.

        A vector of length not exceeding the maximum dimension of the subspace
        containing the index vector for the Ritz values and Ritz vectors, if
        they are computed. 
        """
        return _Anasazi.BlockKrylovSchurEpetra_getRitzIndex(self, *args)

    def getResNorms(self, *args):
        """
        getResNorms(self) -> std::vector<(Teuchos::ScalarTraits<(double)>::magnitudeType,std::allocator<(Teuchos::ScalarTraits<(double)>::magnitudeType)>)>

        std::vector<typename Teuchos::ScalarTraits<ScalarType>::magnitudeType>
        Anasazi::BlockKrylovSchur< ScalarType, MV, OP >::getResNorms()

        Get the current residual norms.

        Block Krylov-Schur cannot provide this so a zero length vector will be
        returned. 
        """
        return _Anasazi.BlockKrylovSchurEpetra_getResNorms(self, *args)

    def getRes2Norms(self, *args):
        """
        getRes2Norms(self) -> std::vector<(Teuchos::ScalarTraits<(double)>::magnitudeType,std::allocator<(Teuchos::ScalarTraits<(double)>::magnitudeType)>)>

        std::vector<typename Teuchos::ScalarTraits<ScalarType>::magnitudeType>
        Anasazi::BlockKrylovSchur< ScalarType, MV, OP >::getRes2Norms()

        Get the current residual 2-norms.

        Block Krylov-Schur cannot provide this so a zero length vector will be
        returned. 
        """
        return _Anasazi.BlockKrylovSchurEpetra_getRes2Norms(self, *args)

    def getRitzRes2Norms(self, *args):
        """
        getRitzRes2Norms(self) -> std::vector<(Teuchos::ScalarTraits<(double)>::magnitudeType,std::allocator<(Teuchos::ScalarTraits<(double)>::magnitudeType)>)>

        std::vector<typename Teuchos::ScalarTraits<ScalarType>::magnitudeType>
        Anasazi::BlockKrylovSchur< ScalarType, MV, OP >::getRitzRes2Norms()

        Get the current Ritz residual 2-norms.

        A vector of length blockSize containing the 2-norms of the Ritz
        residuals. 
        """
        return _Anasazi.BlockKrylovSchurEpetra_getRitzRes2Norms(self, *args)

    def setStatusTest(self, *args):
        """
        setStatusTest(self, Teuchos::RCP<(Anasazi::StatusTest<(double,Epetra_MultiVector,Epetra_Operator)>)> test)

        void
        Anasazi::BlockKrylovSchur< ScalarType, MV, OP
        >::setStatusTest(Teuchos::RCP< StatusTest< ScalarType, MV, OP > >
        test)

        Set a new StatusTest for the solver. 
        """
        return _Anasazi.BlockKrylovSchurEpetra_setStatusTest(self, *args)

    def getStatusTest(self, *args):
        """
        getStatusTest(self) -> Teuchos::RCP<(Anasazi::StatusTest<(double,Epetra_MultiVector,Epetra_Operator)>)>

        Teuchos::RCP< StatusTest< ScalarType, MV, OP > >
        Anasazi::BlockKrylovSchur< ScalarType, MV, OP >::getStatusTest() const

        Get the current StatusTest used by the solver. 
        """
        return _Anasazi.BlockKrylovSchurEpetra_getStatusTest(self, *args)

    def getProblem(self, *args):
        """
        getProblem(self) -> EigenproblemEpetra

        const
        Eigenproblem<ScalarType,MV,OP>& Anasazi::BlockKrylovSchur< ScalarType,
        MV, OP >::getProblem() const

        Get a constant reference to the eigenvalue problem. 
        """
        return _Anasazi.BlockKrylovSchurEpetra_getProblem(self, *args)

    def setSize(self, *args):
        """
        setSize(self, int blockSize, int numBlocks)

        void
        Anasazi::BlockKrylovSchur< ScalarType, MV, OP >::setSize(int
        blockSize, int numBlocks)

        Set the blocksize and number of blocks to be used by the iterative
        solver in solving this eigenproblem.

        Changing either the block size or the number of blocks will reset the
        solver to an uninitialized state. 
        """
        return _Anasazi.BlockKrylovSchurEpetra_setSize(self, *args)

    def setBlockSize(self, *args):
        """
        setBlockSize(self, int blockSize)

        void
        Anasazi::BlockKrylovSchur< ScalarType, MV, OP >::setBlockSize(int
        blockSize)

        Set the blocksize. 
        """
        return _Anasazi.BlockKrylovSchurEpetra_setBlockSize(self, *args)

    def setStepSize(self, *args):
        """
        setStepSize(self, int stepSize)

        void
        Anasazi::BlockKrylovSchur< ScalarType, MV, OP >::setStepSize(int
        stepSize)

        Set the step size. 
        """
        return _Anasazi.BlockKrylovSchurEpetra_setStepSize(self, *args)

    def setNumRitzVectors(self, *args):
        """
        setNumRitzVectors(self, int numRitzVecs)

        void Anasazi::BlockKrylovSchur< ScalarType, MV, OP
        >::setNumRitzVectors(int numRitzVecs)

        Set the number of Ritz vectors to compute. 
        """
        return _Anasazi.BlockKrylovSchurEpetra_setNumRitzVectors(self, *args)

    def getStepSize(self, *args):
        """
        getStepSize(self) -> int

        int
        Anasazi::BlockKrylovSchur< ScalarType, MV, OP >::getStepSize() const

        Get the step size. 
        """
        return _Anasazi.BlockKrylovSchurEpetra_getStepSize(self, *args)

    def getBlockSize(self, *args):
        """
        getBlockSize(self) -> int

        int
        Anasazi::BlockKrylovSchur< ScalarType, MV, OP >::getBlockSize() const

        Get the blocksize to be used by the iterative solver in solving this
        eigenproblem. 
        """
        return _Anasazi.BlockKrylovSchurEpetra_getBlockSize(self, *args)

    def getNumRitzVectors(self, *args):
        """
        getNumRitzVectors(self) -> int

        int Anasazi::BlockKrylovSchur< ScalarType, MV, OP
        >::getNumRitzVectors() const

        Get the number of Ritz vectors to compute. 
        """
        return _Anasazi.BlockKrylovSchurEpetra_getNumRitzVectors(self, *args)

    def getCurSubspaceDim(self, *args):
        """
        getCurSubspaceDim(self) -> int

        int Anasazi::BlockKrylovSchur< ScalarType, MV, OP
        >::getCurSubspaceDim() const

        Get the dimension of the search subspace used to generate the current
        eigenvectors and eigenvalues.

        An integer specifying the rank of the Krylov subspace currently in use
        by the eigensolver. If isInitialized() == false, the return is 0. 
        """
        return _Anasazi.BlockKrylovSchurEpetra_getCurSubspaceDim(self, *args)

    def getMaxSubspaceDim(self, *args):
        """
        getMaxSubspaceDim(self) -> int

        int Anasazi::BlockKrylovSchur< ScalarType, MV, OP
        >::getMaxSubspaceDim() const

        Get the maximum dimension allocated for the search subspace. 
        """
        return _Anasazi.BlockKrylovSchurEpetra_getMaxSubspaceDim(self, *args)

    def setAuxVecs(self, *args):
        """
        setAuxVecs(self, Teuchos::Array<(Teuchos::RCP<(q(const).Epetra_MultiVector)>)> auxvecs)

        void
        Anasazi::BlockKrylovSchur< ScalarType, MV, OP >::setAuxVecs(const
        Teuchos::Array< Teuchos::RCP< const MV > > &auxvecs)

        Set the auxiliary vectors for the solver.

        Because the current Krylov subspace cannot be assumed orthogonal to
        the new auxiliary vectors, a call to setAuxVecs() will reset the
        solver to the uninitialized state. This happens only in the case where
        the new auxiliary vectors have a combined dimension of greater than
        zero.

        In order to preserve the current state, the user will need to extract
        it from the solver using getState(), orthogonalize it against the new
        auxiliary vectors, and reinitialize using initialize(). 
        """
        return _Anasazi.BlockKrylovSchurEpetra_setAuxVecs(self, *args)

    def getAuxVecs(self, *args):
        """
        getAuxVecs(self) -> Teuchos::Array<(Teuchos::RCP<(q(const).Epetra_MultiVector)>)>

        Teuchos::Array<Teuchos::RCP<const MV> > Anasazi::BlockKrylovSchur<
        ScalarType, MV, OP >::getAuxVecs() const

        Get the auxiliary vectors for the solver. 
        """
        return _Anasazi.BlockKrylovSchurEpetra_getAuxVecs(self, *args)

    def currentStatus(self, *args):
        """
        currentStatus(self,  os)

        void
        Anasazi::BlockKrylovSchur< ScalarType, MV, OP
        >::currentStatus(std::ostream &os)

        This method requests that the solver print out its current status to
        screen. 
        """
        return _Anasazi.BlockKrylovSchurEpetra_currentStatus(self, *args)

    def isRitzVecsCurrent(self, *args):
        """
        isRitzVecsCurrent(self) -> bool

        bool Anasazi::BlockKrylovSchur< ScalarType, MV, OP
        >::isRitzVecsCurrent() const

        Get the status of the Ritz vectors currently stored in the
        eigensolver. 
        """
        return _Anasazi.BlockKrylovSchurEpetra_isRitzVecsCurrent(self, *args)

    def isRitzValsCurrent(self, *args):
        """
        isRitzValsCurrent(self) -> bool

        bool Anasazi::BlockKrylovSchur< ScalarType, MV, OP
        >::isRitzValsCurrent() const

        Get the status of the Ritz values currently stored in the eigensolver.

        """
        return _Anasazi.BlockKrylovSchurEpetra_isRitzValsCurrent(self, *args)

    def isSchurCurrent(self, *args):
        """
        isSchurCurrent(self) -> bool

        bool Anasazi::BlockKrylovSchur< ScalarType, MV, OP >::isSchurCurrent()
        const

        Get the status of the Schur form currently stored in the eigensolver.

        """
        return _Anasazi.BlockKrylovSchurEpetra_isSchurCurrent(self, *args)

    def computeRitzVectors(self, *args):
        """
        computeRitzVectors(self)

        void Anasazi::BlockKrylovSchur< ScalarType, MV, OP
        >::computeRitzVectors()

        Compute the Ritz vectors using the current Krylov factorization. 
        """
        return _Anasazi.BlockKrylovSchurEpetra_computeRitzVectors(self, *args)

    def computeRitzValues(self, *args):
        """
        computeRitzValues(self)

        void Anasazi::BlockKrylovSchur< ScalarType, MV, OP
        >::computeRitzValues()

        Compute the Ritz values using the current Krylov factorization. 
        """
        return _Anasazi.BlockKrylovSchurEpetra_computeRitzValues(self, *args)

    def computeSchurForm(self, *args):
        """
        computeSchurForm(self, bool sort = True)

        void Anasazi::BlockKrylovSchur< ScalarType, MV, OP
        >::computeSchurForm(const bool sort=true)

        Compute the Schur form of the projected eigenproblem from the current
        Krylov factorization. 
        """
        return _Anasazi.BlockKrylovSchurEpetra_computeSchurForm(self, *args)

BlockKrylovSchurEpetra_swigregister = _Anasazi.BlockKrylovSchurEpetra_swigregister
BlockKrylovSchurEpetra_swigregister(BlockKrylovSchurEpetra)

class BlockKrylovSchurSolMgrEpetra(SolverManagerEpetra):
    """
    The Anasazi::BlockKrylovSchurSolMgr provides a flexible solver manager
    over the BlockKrylovSchur eigensolver.

    The solver manager provides to the solver a StatusTestCombo object
    constructed as follows: combo = globaltest OR debugtest  where
    globaltest terminates computation when global convergence has been
    detected.  It is encapsulated in a StatusTestWithOrdering object, to
    ensure that computation is terminated only after the most significant
    eigenvalues/eigenvectors have met the convergence criteria.  If not
    specified via setGlobalStatusTest(), this test is a StatusTestResNorm
    object which tests the 2-norms of the Ritz residuals relative to the
    Ritz values.

    debugtest allows a user to specify additional monitoring of the
    iteration, encapsulated in a StatusTest object  If not specified via
    setDebugStatusTest(), debugtest is ignored.  In most cases, it should
    return Failed; if it returns Passed, solve() will throw an
    AnasaziError exception.

    Additionally, the solver manager will terminate solve() after a
    specified number of restarts.

    Much of this behavior is controlled via parameters and options passed
    to the solver manager. For more information, see
    BlockKrylovSchurSolMgr().

    Chris Baker, Ulrich Hetmaniuk, Rich Lehoucq, Heidi Thornquist

    C++ includes: AnasaziBlockKrylovSchurSolMgr.hpp 
    """
    __swig_setmethods__ = {}
    for _s in [SolverManagerEpetra]: __swig_setmethods__.update(getattr(_s,'__swig_setmethods__',{}))
    __setattr__ = lambda self, name, value: _swig_setattr(self, BlockKrylovSchurSolMgrEpetra, name, value)
    __swig_getmethods__ = {}
    for _s in [SolverManagerEpetra]: __swig_getmethods__.update(getattr(_s,'__swig_getmethods__',{}))
    __getattr__ = lambda self, name: _swig_getattr(self, BlockKrylovSchurSolMgrEpetra, name)
    __repr__ = _swig_repr
    def __init__(self, *args): 
        """
        __init__(self, Teuchos::RCP<(Anasazi::Eigenproblem<(double,Epetra_MultiVector,Epetra_Operator)>)> problem, 
            ParameterList pl) -> BlockKrylovSchurSolMgrEpetra

        Anasazi::BlockKrylovSchurSolMgr< ScalarType, MV, OP
        >::BlockKrylovSchurSolMgr(const Teuchos::RCP< Eigenproblem<
        ScalarType, MV, OP > > &problem, Teuchos::ParameterList &pl)

        Basic constructor for BlockKrylovSchurSolMgr.

        This constructor accepts the Eigenproblem to be solved in addition to
        a parameter list of options for the solver manager. These options
        include the following: Solver parameters  "Which" - a string
        specifying the desired eigenvalues: SM, LM, SR or LR. Default: "LM"

        "Block Size" - a int specifying the block size to be used by the
        underlying block Krylov- Schur solver. Default: 1

        "Num Blocks" - a int specifying the number of blocks allocated for
        the Krylov basis. Default: 3*nev

        "Extra NEV Blocks" - a int specifying the number of extra blocks the
        solver should keep in addition to those required to compute the number
        of eigenvalues requested. Default: 0

        "Maximum Restarts" - a int specifying the maximum number of restarts
        the underlying solver is allowed to perform. Default: 20

        "Orthogonalization" - a string specifying the desired
        orthogonalization: DGKS and SVQB. Default: "SVQB"

        "Verbosity" - a sum of MsgType specifying the verbosity. Default:
        Anasazi::Errors

        Convergence parameters  "Convergence Tolerance" - a MagnitudeType
        specifying the level that residual norms must reach to decide
        convergence. Default: machine precision.

        "Relative Convergence Tolerance" - a bool specifying whether
        residuals norms should be scaled by their eigenvalues for the
        purposing of deciding convergence. Default: true 
        """
        this = _Anasazi.new_BlockKrylovSchurSolMgrEpetra(*args)
        try: self.this.append(this)
        except: self.this = this
    __swig_destroy__ = _Anasazi.delete_BlockKrylovSchurSolMgrEpetra
    __del__ = lambda self : None;
    def getProblem(self, *args):
        """
        getProblem(self) -> EigenproblemEpetra

        const Eigenproblem<ScalarType,MV,OP>& Anasazi::BlockKrylovSchurSolMgr<
        ScalarType, MV, OP >::getProblem() const

        Return the eigenvalue problem. 
        """
        return _Anasazi.BlockKrylovSchurSolMgrEpetra_getProblem(self, *args)

    def getNumIters(self, *args):
        """
        getNumIters(self) -> int

        int Anasazi::BlockKrylovSchurSolMgr< ScalarType, MV, OP
        >::getNumIters() const

        Get the iteration count for the most recent call to  solve(). 
        """
        return _Anasazi.BlockKrylovSchurSolMgrEpetra_getNumIters(self, *args)

    def getRitzValues(self, *args):
        """
        getRitzValues(self) -> VectorValueDouble

        std::vector<Value<ScalarType> > Anasazi::BlockKrylovSchurSolMgr<
        ScalarType, MV, OP >::getRitzValues() const

        Return the Ritz values from the most recent solve. 
        """
        return _Anasazi.BlockKrylovSchurSolMgrEpetra_getRitzValues(self, *args)

    def getTimers(self, *args):
        """
        getTimers(self) -> Teuchos::Array<(Teuchos::RCP<(Teuchos::Time)>)>

        Teuchos::Array<Teuchos::RCP<Teuchos::Time> >
        Anasazi::BlockKrylovSchurSolMgr< ScalarType, MV, OP >::getTimers()
        const

        Return the timers for this object.

        The timers are ordered as follows: time spent in solve() routine

        time spent restarting 
        """
        return _Anasazi.BlockKrylovSchurSolMgrEpetra_getTimers(self, *args)

    def solve(self, *args):
        """
        solve(self) -> ReturnType

        ReturnType Anasazi::BlockKrylovSchurSolMgr< ScalarType, MV, OP
        >::solve()

        This method performs possibly repeated calls to the underlying
        eigensolver's iterate() routine until the problem has been solved (as
        decided by the solver manager) or the solver manager decides to quit.

        This method calls BlockKrylovSchur::iterate(), which will return
        either because a specially constructed status test evaluates to Passed
        or an exception is thrown.

        A return from BlockKrylovSchur::iterate() signifies one of the
        following scenarios: the maximum number of restarts has been exceeded.
        In this scenario, the solver manager will place  all converged
        eigenpairs into the eigenproblem and return Unconverged.

        global convergence has been met. In this case, the most significant
        NEV eigenpairs in the solver and locked storage  have met the
        convergence criterion. (Here, NEV refers to the number of eigenpairs
        requested by the Eigenproblem.)  In this scenario, the solver manager
        will return Converged.

        ReturnType specifying: Converged: the eigenproblem was solved to the
        specification required by the solver manager.

        Unconverged: the eigenproblem was not solved to the specification
        desired by the solver manager. 
        """
        return _Anasazi.BlockKrylovSchurSolMgrEpetra_solve(self, *args)

    def setGlobalStatusTest(self, *args):
        """
        setGlobalStatusTest(self, Teuchos::RCP<(Anasazi::StatusTest<(double,Epetra_MultiVector,Epetra_Operator)>)> _global)

        void
        Anasazi::BlockKrylovSchurSolMgr< ScalarType, MV, OP
        >::setGlobalStatusTest(const Teuchos::RCP< StatusTest< ScalarType, MV,
        OP > > &global)

        Set the status test defining global convergence. 
        """
        return _Anasazi.BlockKrylovSchurSolMgrEpetra_setGlobalStatusTest(self, *args)

    def getGlobalStatusTest(self, *args):
        """
        getGlobalStatusTest(self) -> Teuchos::RCP<(Anasazi::StatusTest<(double,Epetra_MultiVector,Epetra_Operator)>)>

        const
        Teuchos::RCP< StatusTest< ScalarType, MV, OP > > &
        Anasazi::BlockKrylovSchurSolMgr< ScalarType, MV, OP
        >::getGlobalStatusTest() const

        Get the status test defining global convergence. 
        """
        return _Anasazi.BlockKrylovSchurSolMgrEpetra_getGlobalStatusTest(self, *args)

    def setDebugStatusTest(self, *args):
        """
        setDebugStatusTest(self, Teuchos::RCP<(Anasazi::StatusTest<(double,Epetra_MultiVector,Epetra_Operator)>)> debug)

        void
        Anasazi::BlockKrylovSchurSolMgr< ScalarType, MV, OP
        >::setDebugStatusTest(const Teuchos::RCP< StatusTest< ScalarType, MV,
        OP > > &debug)

        Set the status test for debugging. 
        """
        return _Anasazi.BlockKrylovSchurSolMgrEpetra_setDebugStatusTest(self, *args)

    def getDebugStatusTest(self, *args):
        """
        getDebugStatusTest(self) -> Teuchos::RCP<(Anasazi::StatusTest<(double,Epetra_MultiVector,Epetra_Operator)>)>

        const
        Teuchos::RCP< StatusTest< ScalarType, MV, OP > > &
        Anasazi::BlockKrylovSchurSolMgr< ScalarType, MV, OP
        >::getDebugStatusTest() const

        Get the status test for debugging. 
        """
        return _Anasazi.BlockKrylovSchurSolMgrEpetra_getDebugStatusTest(self, *args)

BlockKrylovSchurSolMgrEpetra_swigregister = _Anasazi.BlockKrylovSchurSolMgrEpetra_swigregister
BlockKrylovSchurSolMgrEpetra_swigregister(BlockKrylovSchurSolMgrEpetra)

class LOBPCGEpetra(EigensolverEpetra):
    """
    This class provides the Locally Optimal Block Preconditioned Conjugate
    Gradient (LOBPCG) iteration, a preconditioned iteration for solving
    linear Hermitian eigenproblems.

    This implementation is a modification of the one found in A. Knyazev,
    "Toward the optimal preconditioned eigensolver: Locally optimal block
    preconditioner conjugate gradient method", SIAM J. Sci. Comput., vol
    23, n 2, pp. 517-541.

    The modification consists of the orthogonalization steps recommended
    in U. Hetmaniuk and R. Lehoucq, "Basis Selection in LOBPCG", Journal
    of Computational Physics.

    These modifcation are referred to as full orthogonalization, and
    consist of also conducting the local optimization using an orthonormal
    basis.

    Chris Baker, Ulrich Hetmaniuk, Rich Lehoucq, Heidi Thornquist

    C++ includes: AnasaziLOBPCG.hpp 
    """
    __swig_setmethods__ = {}
    for _s in [EigensolverEpetra]: __swig_setmethods__.update(getattr(_s,'__swig_setmethods__',{}))
    __setattr__ = lambda self, name, value: _swig_setattr(self, LOBPCGEpetra, name, value)
    __swig_getmethods__ = {}
    for _s in [EigensolverEpetra]: __swig_getmethods__.update(getattr(_s,'__swig_getmethods__',{}))
    __getattr__ = lambda self, name: _swig_getattr(self, LOBPCGEpetra, name)
    __repr__ = _swig_repr
    def __init__(self, *args): 
        """
        __init__(self, Teuchos::RCP<(Anasazi::Eigenproblem<(double,Epetra_MultiVector,Epetra_Operator)>)> problem, 
            Teuchos::RCP<(Anasazi::SortManager<(Teuchos::ScalarTraits<(double)>::magnitudeType)>)> sorter, 
            Teuchos::RCP<(Anasazi::OutputManager<(double)>)> printer, 
            Teuchos::RCP<(Anasazi::StatusTest<(double,Epetra_MultiVector,Epetra_Operator)>)> tester, 
            Teuchos::RCP<(Anasazi::MatOrthoManager<(double,Epetra_MultiVector,Epetra_Operator)>)> ortho, 
            ParameterList params) -> LOBPCGEpetra

        Anasazi::LOBPCG<
        ScalarType, MV, OP >::LOBPCG(const Teuchos::RCP< Eigenproblem<
        ScalarType, MV, OP > > &problem, const Teuchos::RCP< SortManager<
        typename Teuchos::ScalarTraits< ScalarType >::magnitudeType > >
        &sorter, const Teuchos::RCP< OutputManager< ScalarType > > &printer,
        const Teuchos::RCP< StatusTest< ScalarType, MV, OP > > &tester, const
        Teuchos::RCP< MatOrthoManager< ScalarType, MV, OP > > &ortho,
        Teuchos::ParameterList &params)

        LOBPCG constructor with eigenproblem, solver utilities, and parameter
        list of solver options.

        This constructor takes pointers required by the eigensolver, in
        addition to a parameter list of options for the eigensolver. These
        options include the following: "Block Size" - an int specifying the
        block size used by the algorithm. This can also be specified using the
        setBlockSize() method.

        "Full Ortho" - a bool specifying whether the solver should employ a
        full orthogonalization technique. This can also be specified using the
        setFullOrtho() method. 
        """
        this = _Anasazi.new_LOBPCGEpetra(*args)
        try: self.this.append(this)
        except: self.this = this
    __swig_destroy__ = _Anasazi.delete_LOBPCGEpetra
    __del__ = lambda self : None;
    def iterate(self, *args):
        """
        iterate(self)

        void
        Anasazi::LOBPCG< ScalarType, MV, OP >::iterate()

        This method performs LOBPCG iterations until the status test indicates
        the need to stop or an error occurs (in which case, an exception is
        thrown).

        iterate() will first determine whether the solver is initialized; if
        not, it will call initialize() using default arguments. After
        initialization, the solver performs LOBPCG iterations until the status
        test evaluates as Passed, at which point the method returns to the
        caller.

        The LOBPCG iteration proceeds as follows: The current residual (R) is
        preconditioned to form H

        H is orthogonalized against the auxiliary vectors and, if full
        orthogonalization  is enabled, against X and P.

        The basis [X H P] is used to project the problem matrices.

        The projected eigenproblem is solved, and the desired eigenvectors and
        eigenvalues are selected.

        These are used to form the new eigenvector estimates (X) and the
        search directions (P).  If full orthogonalization is enabled, these
        are generated to be mutually orthogonal and with orthonormal columns.

        The new residual (R) is formed.

        The status test is queried at the beginning of the iteration.

        Possible exceptions thrown include std::logic_error,
        std::invalid_argument or one of the LOBPCG-specific exceptions. 
        """
        return _Anasazi.LOBPCGEpetra_iterate(self, *args)

    def initialize(self, *args):
        """
        initialize(self, Anasazi::LOBPCGState<(double,Epetra_MultiVector)> newstate)
        initialize(self)

        void
        Anasazi::LOBPCG< ScalarType, MV, OP >::initialize()

        Initialize the solver with the initial vectors from the eigenproblem
        or random data. 
        """
        return _Anasazi.LOBPCGEpetra_initialize(self, *args)

    def isInitialized(self, *args):
        """
        isInitialized(self) -> bool

        bool
        Anasazi::LOBPCG< ScalarType, MV, OP >::isInitialized() const

        Indicates whether the solver has been initialized or not.

        bool indicating the state of the solver.

        If isInitialized() == true: X is orthogonal to auxiliary vectors and
        has orthonormal columns

        KX == Op*X

        MX == M*X if M != Teuchos::null  Otherwise, MX == Teuchos::null

        getRitzValues() returns the sorted Ritz values with respect to X

        getResNorms(), getRes2Norms(), getRitzResNorms() are correct

        If hasP() == true, P orthogonal to auxiliary vectors

        If getFullOrtho() == true, P is orthogonal to X and has orthonormal
        columns

        KP == Op*P

        MP == M*P if M != Teuchos::null  Otherwise, MP == Teuchos::null 
        """
        return _Anasazi.LOBPCGEpetra_isInitialized(self, *args)

    def getState(self, *args):
        """
        getState(self) -> Anasazi::LOBPCGState<(double,Epetra_MultiVector)>

        LOBPCGState<
        ScalarType, MV > Anasazi::LOBPCG< ScalarType, MV, OP >::getState()
        const

        Get the current state of the eigensolver.

        The data is only valid if isInitialized() == true. The data for the
        search directions P is only meaningful if hasP() == true. Finally, the
        data for the preconditioned residual (H) is only meaningful in the
        situation where the solver throws an LOBPCGRitzFailure exception
        during iterate().

        An LOBPCGState object containing const views to the current solver
        state. 
        """
        return _Anasazi.LOBPCGEpetra_getState(self, *args)

    def getNumIters(self, *args):
        """
        getNumIters(self) -> int

        int
        Anasazi::LOBPCG< ScalarType, MV, OP >::getNumIters() const

        Get the current iteration count. 
        """
        return _Anasazi.LOBPCGEpetra_getNumIters(self, *args)

    def resetNumIters(self, *args):
        """
        resetNumIters(self)

        void
        Anasazi::LOBPCG< ScalarType, MV, OP >::resetNumIters()

        Reset the iteration count. 
        """
        return _Anasazi.LOBPCGEpetra_resetNumIters(self, *args)

    def getRitzVectors(self, *args):
        """
        getRitzVectors(self) -> Teuchos::RCP<(q(const).Epetra_MultiVector)>

        Teuchos::RCP<
        const MV > Anasazi::LOBPCG< ScalarType, MV, OP >::getRitzVectors()

        Get the Ritz vectors from the previous iteration.

        A multivector with getBlockSize() vectors containing the sorted Ritz
        vectors corresponding to the most significant Ritz values. The i-th
        vector of the return corresponds to the i-th Ritz vector; there is no
        need to use getRitzIndex(). 
        """
        return _Anasazi.LOBPCGEpetra_getRitzVectors(self, *args)

    def getRitzValues(self, *args):
        """
        getRitzValues(self) -> VectorValueDouble

        std::vector<
        Value< ScalarType > > Anasazi::LOBPCG< ScalarType, MV, OP
        >::getRitzValues()

        Get the Ritz values from the previous iteration.

        A vector of length getCurSubspaceDim() containing the Ritz values from
        the previous projected eigensolve. 
        """
        return _Anasazi.LOBPCGEpetra_getRitzValues(self, *args)

    def getRitzIndex(self, *args):
        """
        getRitzIndex(self) -> VectorInt

        std::vector<
        int > Anasazi::LOBPCG< ScalarType, MV, OP >::getRitzIndex()

        Get the index used for extracting Ritz vectors from getRitzVectors().

        Because BlockDavidson is a Hermitian solver, all Ritz values are real
        and all Ritz vectors can be represented in a single column of a
        multivector. Therefore, getRitzIndex() is not needed when using the
        output from getRitzVectors().

        An int vector of size getCurSubspaceDim() composed of zeros. 
        """
        return _Anasazi.LOBPCGEpetra_getRitzIndex(self, *args)

    def getResNorms(self, *args):
        """
        getResNorms(self) -> std::vector<(Teuchos::ScalarTraits<(double)>::magnitudeType,std::allocator<(Teuchos::ScalarTraits<(double)>::magnitudeType)>)>

        std::vector<
        typename Teuchos::ScalarTraits< ScalarType >::magnitudeType >
        Anasazi::LOBPCG< ScalarType, MV, OP >::getResNorms()

        Get the current residual norms.

        A vector of length getBlockSize() containing the norms of the
        residuals, with respect to the orthogonalization manager norm()
        method. 
        """
        return _Anasazi.LOBPCGEpetra_getResNorms(self, *args)

    def getRes2Norms(self, *args):
        """
        getRes2Norms(self) -> std::vector<(Teuchos::ScalarTraits<(double)>::magnitudeType,std::allocator<(Teuchos::ScalarTraits<(double)>::magnitudeType)>)>

        std::vector<
        typename Teuchos::ScalarTraits< ScalarType >::magnitudeType >
        Anasazi::LOBPCG< ScalarType, MV, OP >::getRes2Norms()

        Get the current residual 2-norms.

        A vector of length getBlockSize() containing the 2-norms of the
        residuals. 
        """
        return _Anasazi.LOBPCGEpetra_getRes2Norms(self, *args)

    def getRitzRes2Norms(self, *args):
        """
        getRitzRes2Norms(self) -> std::vector<(Teuchos::ScalarTraits<(double)>::magnitudeType,std::allocator<(Teuchos::ScalarTraits<(double)>::magnitudeType)>)>

        std::vector< typename Teuchos::ScalarTraits< ScalarType
        >::magnitudeType > Anasazi::LOBPCG< ScalarType, MV, OP
        >::getRitzRes2Norms()

        Get the 2-norms of the residuals.

        The Ritz residuals are not defined for the LOBPCG iteration. Hence,
        this method returns the 2-norms of the direct residuals, and is
        equivalent to calling getRes2Norms().

        A vector of length getBlockSize() containing the 2-norms of the direct
        residuals. 
        """
        return _Anasazi.LOBPCGEpetra_getRitzRes2Norms(self, *args)

    def getCurSubspaceDim(self, *args):
        """
        getCurSubspaceDim(self) -> int

        int
        Anasazi::LOBPCG< ScalarType, MV, OP >::getCurSubspaceDim() const

        Get the dimension of the search subspace used to generate the current
        eigenvectors and eigenvalues.

        LOBPCG employs a sequential subspace iteration, maintaining a fixed-
        rank basis, as opposed to an expanding subspace mechanism employed by
        Krylov-subspace solvers like BlockKrylovSchur and BlockDavidson.

        An integer specifying the rank of the subspace generated by the
        eigensolver. If isInitialized() == false, the return is 0. Otherwise,
        the return will be 2*getBlockSize() or 3*getBlockSize(). 
        """
        return _Anasazi.LOBPCGEpetra_getCurSubspaceDim(self, *args)

    def getMaxSubspaceDim(self, *args):
        """
        getMaxSubspaceDim(self) -> int

        int
        Anasazi::LOBPCG< ScalarType, MV, OP >::getMaxSubspaceDim() const

        Get the maximum dimension allocated for the search subspace. For
        LOBPCG, this always returns 3*getBlockSize(), the dimension of the
        subspace colspan([X H P]). 
        """
        return _Anasazi.LOBPCGEpetra_getMaxSubspaceDim(self, *args)

    def setStatusTest(self, *args):
        """
        setStatusTest(self, Teuchos::RCP<(Anasazi::StatusTest<(double,Epetra_MultiVector,Epetra_Operator)>)> test)

        void
        Anasazi::LOBPCG< ScalarType, MV, OP >::setStatusTest(Teuchos::RCP<
        StatusTest< ScalarType, MV, OP > > test)

        Set a new StatusTest for the solver. 
        """
        return _Anasazi.LOBPCGEpetra_setStatusTest(self, *args)

    def getStatusTest(self, *args):
        """
        getStatusTest(self) -> Teuchos::RCP<(Anasazi::StatusTest<(double,Epetra_MultiVector,Epetra_Operator)>)>

        Teuchos::RCP<
        StatusTest< ScalarType, MV, OP > > Anasazi::LOBPCG< ScalarType, MV, OP
        >::getStatusTest() const

        Get the current StatusTest used by the solver. 
        """
        return _Anasazi.LOBPCGEpetra_getStatusTest(self, *args)

    def getProblem(self, *args):
        """
        getProblem(self) -> EigenproblemEpetra

        const
        Eigenproblem< ScalarType, MV, OP > & Anasazi::LOBPCG< ScalarType, MV,
        OP >::getProblem() const

        Get a constant reference to the eigenvalue problem. 
        """
        return _Anasazi.LOBPCGEpetra_getProblem(self, *args)

    def setBlockSize(self, *args):
        """
        setBlockSize(self, int blockSize)

        void
        Anasazi::LOBPCG< ScalarType, MV, OP >::setBlockSize(int blockSize)

        Set the blocksize to be used by the iterative solver in solving this
        eigenproblem.

        If the block size is reduced, then the new iterate (and residual and
        search direction) are chosen as the subset of the current iterate
        preferred by the sort manager. Otherwise, the solver state is set to
        uninitialized. 
        """
        return _Anasazi.LOBPCGEpetra_setBlockSize(self, *args)

    def getBlockSize(self, *args):
        """
        getBlockSize(self) -> int

        int
        Anasazi::LOBPCG< ScalarType, MV, OP >::getBlockSize() const

        Get the blocksize to be used by the iterative solver in solving this
        eigenproblem. 
        """
        return _Anasazi.LOBPCGEpetra_getBlockSize(self, *args)

    def setAuxVecs(self, *args):
        """
        setAuxVecs(self, Teuchos::Array<(Teuchos::RCP<(q(const).Epetra_MultiVector)>)> auxvecs)

        void
        Anasazi::LOBPCG< ScalarType, MV, OP >::setAuxVecs(const
        Teuchos::Array< Teuchos::RCP< const MV > > &auxvecs)

        Set the auxiliary vectors for the solver.

        Because the current iterate X and search direction P cannot be assumed
        orthogonal to the new auxiliary vectors, a call to setAuxVecs() with a
        non-empty argument will reset the solver to the uninitialized state.

        In order to preserve the current state, the user will need to extract
        it from the solver using getState(), orthogonalize it against the new
        auxiliary vectors, and manually reinitialize the solver using
        initialize(). 
        """
        return _Anasazi.LOBPCGEpetra_setAuxVecs(self, *args)

    def getAuxVecs(self, *args):
        """
        getAuxVecs(self) -> Teuchos::Array<(Teuchos::RCP<(q(const).Epetra_MultiVector)>)>

        Teuchos::Array<
        Teuchos::RCP< const MV > > Anasazi::LOBPCG< ScalarType, MV, OP
        >::getAuxVecs() const

        Get the current auxiliary vectors. 
        """
        return _Anasazi.LOBPCGEpetra_getAuxVecs(self, *args)

    def setFullOrtho(self, *args):
        """
        setFullOrtho(self, bool fullOrtho)

        void
        Anasazi::LOBPCG< ScalarType, MV, OP >::setFullOrtho(bool fullOrtho)

        Instruct the LOBPCG iteration to use full orthogonality.

        If the getFullOrtho() == false and isInitialized() == true and hasP()
        == true, then P will be invalidated by setting full orthogonalization
        to true. 
        """
        return _Anasazi.LOBPCGEpetra_setFullOrtho(self, *args)

    def getFullOrtho(self, *args):
        """
        getFullOrtho(self) -> bool

        bool
        Anasazi::LOBPCG< ScalarType, MV, OP >::getFullOrtho() const

        Determine if the LOBPCG iteration is using full orthogonality. 
        """
        return _Anasazi.LOBPCGEpetra_getFullOrtho(self, *args)

    def hasP(self, *args):
        """
        hasP(self) -> bool

        bool Anasazi::LOBPCG<
        ScalarType, MV, OP >::hasP()

        Indicates whether the search direction given by getState() is valid.

        """
        return _Anasazi.LOBPCGEpetra_hasP(self, *args)

    def currentStatus(self, *args):
        """
        currentStatus(self,  os)

        void
        Anasazi::LOBPCG< ScalarType, MV, OP >::currentStatus(std::ostream &os)

        This method requests that the solver print out its current status to
        screen. 
        """
        return _Anasazi.LOBPCGEpetra_currentStatus(self, *args)

LOBPCGEpetra_swigregister = _Anasazi.LOBPCGEpetra_swigregister
LOBPCGEpetra_swigregister(LOBPCGEpetra)

class LOBPCGSolMgrEpetra(SolverManagerEpetra):
    """
    The LOBPCGSolMgr provides a powerful solver manager over the LOBPCG
    eigensolver.

    This solver manager exists to provide a flexible manager over the
    LOBPCG eigensolver intended for general use. Features provided by this
    solver manager include: locking of converged eigenpairs

    global convergence on only the significant eigenpairs (instead of any
    eigenpairs with low residual)

    recovery from LOBPCGRitzFailure when full orthogonalization is
    disabled

    The solver manager provides to the solver a StatusTestCombo object
    constructed as follows: combo = maxiterstest OR globaltest OR
    lockingtest OR debugtest  where  maxiters terminates computation when
    a maximum number of iterations have been performed maxiters is a
    StatusTestMaxIters object

    globaltest terminates computation when global convergence has been
    detected.  It is encapsulated in a StatusTestWithOrdering object, to
    ensure that computation is terminated only after the most significant
    eigenvalues/eigenvectors have met the convergence criteria.  If not
    specified via setGlobalStatusTest(), globaltest is a StatusTestResNorm
    object which tests the M-norms of the direct residuals relative to the
    Ritz values.

    lockingtest halts LOBPCG::iterate() in order to deflate converged
    eigenpairs for locking.  It will query the underlying LOBPCG
    eigensolver to determine when eigenvectors should be locked.  If not
    specified via setLockingStatusTest(), lockingtest is a
    StatusTestResNorm object.

    debugtest allows a user to specify additional monitoring of the
    iteration, encapsulated in a StatusTest object  If not specified via
    setDebugStatusTest(), debugtest is ignored.  In most cases, it should
    return Failed; if it returns Passed, solve() will throw an
    AnasaziError exception.

    Much of this behavior is controlled via parameters and options passed
    to the solver manager. For more information, see LOBPCGSolMgr().

    Chris Baker, Ulrich Hetmaniuk, Rich Lehoucq, Heidi Thornquist

    C++ includes: AnasaziLOBPCGSolMgr.hpp 
    """
    __swig_setmethods__ = {}
    for _s in [SolverManagerEpetra]: __swig_setmethods__.update(getattr(_s,'__swig_setmethods__',{}))
    __setattr__ = lambda self, name, value: _swig_setattr(self, LOBPCGSolMgrEpetra, name, value)
    __swig_getmethods__ = {}
    for _s in [SolverManagerEpetra]: __swig_getmethods__.update(getattr(_s,'__swig_getmethods__',{}))
    __getattr__ = lambda self, name: _swig_getattr(self, LOBPCGSolMgrEpetra, name)
    __repr__ = _swig_repr
    def __init__(self, *args): 
        """
        __init__(self, Teuchos::RCP<(Anasazi::Eigenproblem<(double,Epetra_MultiVector,Epetra_Operator)>)> problem, 
            ParameterList pl) -> LOBPCGSolMgrEpetra

        Anasazi::LOBPCGSolMgr< ScalarType, MV, OP >::LOBPCGSolMgr(const
        Teuchos::RCP< Eigenproblem< ScalarType, MV, OP > > &problem,
        Teuchos::ParameterList &pl)

        Basic constructor for LOBPCGSolMgr.

        This constructor accepts the Eigenproblem to be solved in addition to
        a parameter list of options for the solver manager. These options
        include the following: Solver parameters  "Which" - a string
        specifying the desired eigenvalues: SM, LM, SR or LR. Default: "SR"

        "Block Size" - a int specifying the block size to be used by the
        underlying LOBPCG solver. Default: problem->getNEV()

        "Full Ortho" - a bool specifying whether the underlying solver
        should employ the full orthogonalization scheme. Default: true

        "Recover" - a bool specifying whether the solver manager should
        attempt to recover in the case of a LOBPCGRitzFailure when full
        orthogonalization is disabled. Default: true

        "Verbosity" - a sum of MsgType specifying the verbosity. Default:
        Errors

        "Init" - a LOBPCGState<ScalarType,MV> struct used to initialize the
        LOBPCG eigensolver.

        Convergence parameters (if using default convergence test; see
        setGlobalStatusTest())  "Maximum Iterations" - a int specifying the
        maximum number of iterations the underlying solver is allowed to
        perform. Default: 100

        "Convergence Tolerance" - a MagnitudeType specifying the level that
        residual norms must reach to decide convergence. Default: machine
        precision.

        "Relative Convergence Tolerance" - a bool specifying whether
        residuals norms should be scaled by their eigenvalues for the
        purposing of deciding convergence. Default: true

        "Convergence Norm" - a string specifying the norm for convergence
        testing: "2" or "M"

        Locking parameters (if using default locking test; see
        setLockingStatusTest())  "Use Locking" - a bool specifying whether
        the algorithm should employ locking of converged eigenpairs. Default:
        false

        "Max Locked" - a int specifying the maximum number of eigenpairs to
        be locked. Default: problem->getNEV()

        "Locking Quorum" - a int specifying the number of eigenpairs that
        must meet the locking criteria before locking actually occurs.
        Default: 1

        "Locking Tolerance" - a MagnitudeType specifying the level that
        residual norms must reach to decide locking. Default: 0.1*convergence
        tolerance

        "Relative Locking Tolerance" - a bool specifying whether residuals
        norms should be scaled by their eigenvalues for the purposing of
        deciding locking. Default: true

        "Locking Norm" - a string specifying the norm for locking testing:
        "2" or "M" 
        """
        this = _Anasazi.new_LOBPCGSolMgrEpetra(*args)
        try: self.this.append(this)
        except: self.this = this
    __swig_destroy__ = _Anasazi.delete_LOBPCGSolMgrEpetra
    __del__ = lambda self : None;
    def getProblem(self, *args):
        """
        getProblem(self) -> EigenproblemEpetra

        const
        Eigenproblem<ScalarType,MV,OP>& Anasazi::LOBPCGSolMgr< ScalarType, MV,
        OP >::getProblem() const

        Return the eigenvalue problem. 
        """
        return _Anasazi.LOBPCGSolMgrEpetra_getProblem(self, *args)

    def getNumIters(self, *args):
        """
        getNumIters(self) -> int

        int
        Anasazi::LOBPCGSolMgr< ScalarType, MV, OP >::getNumIters() const

        Get the iteration count for the most recent call to  solve(). 
        """
        return _Anasazi.LOBPCGSolMgrEpetra_getNumIters(self, *args)

    def getTimers(self, *args):
        """
        getTimers(self) -> Teuchos::Array<(Teuchos::RCP<(Teuchos::Time)>)>

        Teuchos::Array<Teuchos::RCP<Teuchos::Time> > Anasazi::LOBPCGSolMgr<
        ScalarType, MV, OP >::getTimers() const

        Return the timers for this object.

        The timers are ordered as follows: time spent in solve() routine

        time spent locking converged eigenvectors 
        """
        return _Anasazi.LOBPCGSolMgrEpetra_getTimers(self, *args)

    def solve(self, *args):
        """
        solve(self) -> ReturnType

        ReturnType
        Anasazi::LOBPCGSolMgr< ScalarType, MV, OP >::solve()

        This method performs possibly repeated calls to the underlying
        eigensolver's iterate() routine until the problem has been solved (as
        decided by the solver manager) or the solver manager decides to quit.

        This method calls LOBPCG::iterate(), which will return either because
        a specially constructed status test evaluates to Passed or an
        exception is thrown.

        A return from LOBPCG::iterate() signifies one of the following
        scenarios: the maximum number of iterations has been exceeded. In this
        scenario, the solver manager will place  all converged eigenpairs into
        the eigenproblem and return Unconverged.

        the locking conditions have been met. In this scenario, some of the
        current eigenpairs will be removed  from the eigensolver and placed
        into auxiliary storage. The eigensolver will be restarted with the
        remaining  eigenpairs and some random information to replace the
        removed eigenpairs.

        global convergence has been met. In this case, the most significant
        NEV eigenpairs in the solver and locked storage  have met the
        convergence criterion. (Here, NEV refers to the number of eigenpairs
        requested by the Eigenproblem.)  In this scenario, the solver manager
        will return Converged.

        an LOBPCGRitzFailure exception has been thrown. If full
        orthogonalization is enabled and recovery from this exception  is
        requested, the solver manager will attempt to recover from this
        exception by gathering the current eigenvectors,  preconditioned
        residual, and search directions from the eigensolver,
        orthogonormalizing the basis composed of these  three, projecting the
        eigenproblem, and restarting the eigensolver with the solution of the
        project eigenproblem. Any  additional failure that occurs during this
        recovery effort will result in the eigensolver returning Unconverged.

        ReturnType specifying: Converged: the eigenproblem was solved to the
        specification required by the solver manager.

        Unconverged: the eigenproblem was not solved to the specification
        desired by the solver manager 
        """
        return _Anasazi.LOBPCGSolMgrEpetra_solve(self, *args)

    def setGlobalStatusTest(self, *args):
        """
        setGlobalStatusTest(self, Teuchos::RCP<(Anasazi::StatusTest<(double,Epetra_MultiVector,Epetra_Operator)>)> _global)

        void Anasazi::LOBPCGSolMgr< ScalarType, MV, OP
        >::setGlobalStatusTest(const Teuchos::RCP< StatusTest< ScalarType, MV,
        OP > > &global)

        Set the status test defining global convergence. 
        """
        return _Anasazi.LOBPCGSolMgrEpetra_setGlobalStatusTest(self, *args)

    def getGlobalStatusTest(self, *args):
        """
        getGlobalStatusTest(self) -> Teuchos::RCP<(Anasazi::StatusTest<(double,Epetra_MultiVector,Epetra_Operator)>)>

        const Teuchos::RCP< StatusTest< ScalarType, MV, OP > > &
        Anasazi::LOBPCGSolMgr< ScalarType, MV, OP >::getGlobalStatusTest()
        const

        Get the status test defining global convergence. 
        """
        return _Anasazi.LOBPCGSolMgrEpetra_getGlobalStatusTest(self, *args)

    def setLockingStatusTest(self, *args):
        """
        setLockingStatusTest(self, Teuchos::RCP<(Anasazi::StatusTest<(double,Epetra_MultiVector,Epetra_Operator)>)> locking)

        void Anasazi::LOBPCGSolMgr< ScalarType, MV, OP
        >::setLockingStatusTest(const Teuchos::RCP< StatusTest< ScalarType,
        MV, OP > > &locking)

        Set the status test defining locking. 
        """
        return _Anasazi.LOBPCGSolMgrEpetra_setLockingStatusTest(self, *args)

    def getLockingStatusTest(self, *args):
        """
        getLockingStatusTest(self) -> Teuchos::RCP<(Anasazi::StatusTest<(double,Epetra_MultiVector,Epetra_Operator)>)>

        const Teuchos::RCP< StatusTest< ScalarType, MV, OP > > &
        Anasazi::LOBPCGSolMgr< ScalarType, MV, OP >::getLockingStatusTest()
        const

        Get the status test defining locking. 
        """
        return _Anasazi.LOBPCGSolMgrEpetra_getLockingStatusTest(self, *args)

    def setDebugStatusTest(self, *args):
        """
        setDebugStatusTest(self, Teuchos::RCP<(Anasazi::StatusTest<(double,Epetra_MultiVector,Epetra_Operator)>)> debug)

        void Anasazi::LOBPCGSolMgr< ScalarType, MV, OP
        >::setDebugStatusTest(const Teuchos::RCP< StatusTest< ScalarType, MV,
        OP > > &debug)

        Set the status test for debugging. 
        """
        return _Anasazi.LOBPCGSolMgrEpetra_setDebugStatusTest(self, *args)

    def getDebugStatusTest(self, *args):
        """
        getDebugStatusTest(self) -> Teuchos::RCP<(Anasazi::StatusTest<(double,Epetra_MultiVector,Epetra_Operator)>)>

        const Teuchos::RCP< StatusTest< ScalarType, MV, OP > > &
        Anasazi::LOBPCGSolMgr< ScalarType, MV, OP >::getDebugStatusTest()
        const

        Get the status test for debugging. 
        """
        return _Anasazi.LOBPCGSolMgrEpetra_getDebugStatusTest(self, *args)

LOBPCGSolMgrEpetra_swigregister = _Anasazi.LOBPCGSolMgrEpetra_swigregister
LOBPCGSolMgrEpetra_swigregister(LOBPCGSolMgrEpetra)

class EigensolutionEpetra(_object):
    """
    Struct for storing an eigenproblem solution.

    C++ includes: AnasaziTypes.hpp 
    """
    __swig_setmethods__ = {}
    __setattr__ = lambda self, name, value: _swig_setattr(self, EigensolutionEpetra, name, value)
    __swig_getmethods__ = {}
    __getattr__ = lambda self, name: _swig_getattr(self, EigensolutionEpetra, name)
    __repr__ = _swig_repr
    __swig_setmethods__["index"] = _Anasazi.EigensolutionEpetra_index_set
    __swig_getmethods__["index"] = _Anasazi.EigensolutionEpetra_index_get
    if _newclass:index = _swig_property(_Anasazi.EigensolutionEpetra_index_get, _Anasazi.EigensolutionEpetra_index_set)
    __swig_setmethods__["numVecs"] = _Anasazi.EigensolutionEpetra_numVecs_set
    __swig_getmethods__["numVecs"] = _Anasazi.EigensolutionEpetra_numVecs_get
    if _newclass:numVecs = _swig_property(_Anasazi.EigensolutionEpetra_numVecs_get, _Anasazi.EigensolutionEpetra_numVecs_set)
    def __init__(self, *args): 
        """
        __init__(self) -> EigensolutionEpetra

        Anasazi::Eigensolution< ScalarType, MV >::Eigensolution() 
        """
        this = _Anasazi.new_EigensolutionEpetra(*args)
        try: self.this.append(this)
        except: self.this = this
    def Evals(self, *args):
        """Evals(self) -> VectorValueDouble"""
        return _Anasazi.EigensolutionEpetra_Evals(self, *args)

    def Evecs(self, *args):
        """Evecs(self) -> Epetra_MultiVector"""
        return _Anasazi.EigensolutionEpetra_Evecs(self, *args)

    def Espace(self, *args):
        """Espace(self) -> Epetra_MultiVector"""
        return _Anasazi.EigensolutionEpetra_Espace(self, *args)

    __swig_destroy__ = _Anasazi.delete_EigensolutionEpetra
    __del__ = lambda self : None;
EigensolutionEpetra_swigregister = _Anasazi.EigensolutionEpetra_swigregister
EigensolutionEpetra_swigregister(EigensolutionEpetra)

class VectorValueDouble(_object):
    """Proxy of C++ std::vector<(Anasazi::Value<(double)>)> class"""
    __swig_setmethods__ = {}
    __setattr__ = lambda self, name, value: _swig_setattr(self, VectorValueDouble, name, value)
    __swig_getmethods__ = {}
    __getattr__ = lambda self, name: _swig_getattr(self, VectorValueDouble, name)
    __repr__ = _swig_repr
    def iterator(self, *args):
        """iterator(self) -> SwigPyIterator"""
        return _Anasazi.VectorValueDouble_iterator(self, *args)

    def __iter__(self): return self.iterator()
    def __nonzero__(self, *args):
        """__nonzero__(self) -> bool"""
        return _Anasazi.VectorValueDouble___nonzero__(self, *args)

    def __bool__(self, *args):
        """__bool__(self) -> bool"""
        return _Anasazi.VectorValueDouble___bool__(self, *args)

    def __len__(self, *args):
        """__len__(self) -> size_type"""
        return _Anasazi.VectorValueDouble___len__(self, *args)

    def pop(self, *args):
        """pop(self) -> value_type"""
        return _Anasazi.VectorValueDouble_pop(self, *args)

    def __getslice__(self, *args):
        """__getslice__(self, difference_type i, difference_type j) -> VectorValueDouble"""
        return _Anasazi.VectorValueDouble___getslice__(self, *args)

    def __setslice__(self, *args):
        """
        __setslice__(self, difference_type i, difference_type j, VectorValueDouble v = std::vector< Anasazi::Value< double >,std::allocator< Anasazi::Value< double > > >())
        __setslice__(self, difference_type i, difference_type j)
        """
        return _Anasazi.VectorValueDouble___setslice__(self, *args)

    def __delslice__(self, *args):
        """__delslice__(self, difference_type i, difference_type j)"""
        return _Anasazi.VectorValueDouble___delslice__(self, *args)

    def __delitem__(self, *args):
        """
        __delitem__(self, difference_type i)
        __delitem__(self, PySliceObject slice)
        """
        return _Anasazi.VectorValueDouble___delitem__(self, *args)

    def __getitem__(self, *args):
        """
        __getitem__(self, PySliceObject slice) -> VectorValueDouble
        __getitem__(self, difference_type i) -> value_type
        """
        return _Anasazi.VectorValueDouble___getitem__(self, *args)

    def __setitem__(self, *args):
        """
        __setitem__(self, PySliceObject slice, VectorValueDouble v)
        __setitem__(self, PySliceObject slice)
        __setitem__(self, difference_type i, value_type x)
        """
        return _Anasazi.VectorValueDouble___setitem__(self, *args)

    def append(self, *args):
        """append(self, value_type x)"""
        return _Anasazi.VectorValueDouble_append(self, *args)

    def empty(self, *args):
        """empty(self) -> bool"""
        return _Anasazi.VectorValueDouble_empty(self, *args)

    def size(self, *args):
        """size(self) -> size_type"""
        return _Anasazi.VectorValueDouble_size(self, *args)

    def clear(self, *args):
        """clear(self)"""
        return _Anasazi.VectorValueDouble_clear(self, *args)

    def swap(self, *args):
        """swap(self, VectorValueDouble v)"""
        return _Anasazi.VectorValueDouble_swap(self, *args)

    def get_allocator(self, *args):
        """get_allocator(self) -> allocator_type"""
        return _Anasazi.VectorValueDouble_get_allocator(self, *args)

    def begin(self, *args):
        """begin(self) -> iterator"""
        return _Anasazi.VectorValueDouble_begin(self, *args)

    def end(self, *args):
        """end(self) -> iterator"""
        return _Anasazi.VectorValueDouble_end(self, *args)

    def rbegin(self, *args):
        """rbegin(self) -> reverse_iterator"""
        return _Anasazi.VectorValueDouble_rbegin(self, *args)

    def rend(self, *args):
        """rend(self) -> reverse_iterator"""
        return _Anasazi.VectorValueDouble_rend(self, *args)

    def pop_back(self, *args):
        """pop_back(self)"""
        return _Anasazi.VectorValueDouble_pop_back(self, *args)

    def erase(self, *args):
        """
        erase(self, iterator pos) -> iterator
        erase(self, iterator first, iterator last) -> iterator
        """
        return _Anasazi.VectorValueDouble_erase(self, *args)

    def __init__(self, *args): 
        """
        __init__(self) -> VectorValueDouble
        __init__(self, VectorValueDouble arg0) -> VectorValueDouble
        __init__(self, size_type size) -> VectorValueDouble
        __init__(self, size_type size, value_type value) -> VectorValueDouble
        """
        this = _Anasazi.new_VectorValueDouble(*args)
        try: self.this.append(this)
        except: self.this = this
    def push_back(self, *args):
        """push_back(self, value_type x)"""
        return _Anasazi.VectorValueDouble_push_back(self, *args)

    def front(self, *args):
        """front(self) -> value_type"""
        return _Anasazi.VectorValueDouble_front(self, *args)

    def back(self, *args):
        """back(self) -> value_type"""
        return _Anasazi.VectorValueDouble_back(self, *args)

    def assign(self, *args):
        """assign(self, size_type n, value_type x)"""
        return _Anasazi.VectorValueDouble_assign(self, *args)

    def resize(self, *args):
        """
        resize(self, size_type new_size)
        resize(self, size_type new_size, value_type x)
        """
        return _Anasazi.VectorValueDouble_resize(self, *args)

    def insert(self, *args):
        """
        insert(self, iterator pos, value_type x) -> iterator
        insert(self, iterator pos, size_type n, value_type x)
        """
        return _Anasazi.VectorValueDouble_insert(self, *args)

    def reserve(self, *args):
        """reserve(self, size_type n)"""
        return _Anasazi.VectorValueDouble_reserve(self, *args)

    def capacity(self, *args):
        """capacity(self) -> size_type"""
        return _Anasazi.VectorValueDouble_capacity(self, *args)

    __swig_destroy__ = _Anasazi.delete_VectorValueDouble
    __del__ = lambda self : None;
VectorValueDouble_swigregister = _Anasazi.VectorValueDouble_swigregister
VectorValueDouble_swigregister(VectorValueDouble)

class VectorInt(_object):
    """Proxy of C++ std::vector<(int)> class"""
    __swig_setmethods__ = {}
    __setattr__ = lambda self, name, value: _swig_setattr(self, VectorInt, name, value)
    __swig_getmethods__ = {}
    __getattr__ = lambda self, name: _swig_getattr(self, VectorInt, name)
    __repr__ = _swig_repr
    def iterator(self, *args):
        """iterator(self) -> SwigPyIterator"""
        return _Anasazi.VectorInt_iterator(self, *args)

    def __iter__(self): return self.iterator()
    def __nonzero__(self, *args):
        """__nonzero__(self) -> bool"""
        return _Anasazi.VectorInt___nonzero__(self, *args)

    def __bool__(self, *args):
        """__bool__(self) -> bool"""
        return _Anasazi.VectorInt___bool__(self, *args)

    def __len__(self, *args):
        """__len__(self) -> size_type"""
        return _Anasazi.VectorInt___len__(self, *args)

    def pop(self, *args):
        """pop(self) -> value_type"""
        return _Anasazi.VectorInt_pop(self, *args)

    def __getslice__(self, *args):
        """__getslice__(self, difference_type i, difference_type j) -> VectorInt"""
        return _Anasazi.VectorInt___getslice__(self, *args)

    def __setslice__(self, *args):
        """
        __setslice__(self, difference_type i, difference_type j, VectorInt v = std::vector< int,std::allocator< int > >())
        __setslice__(self, difference_type i, difference_type j)
        """
        return _Anasazi.VectorInt___setslice__(self, *args)

    def __delslice__(self, *args):
        """__delslice__(self, difference_type i, difference_type j)"""
        return _Anasazi.VectorInt___delslice__(self, *args)

    def __delitem__(self, *args):
        """
        __delitem__(self, difference_type i)
        __delitem__(self, PySliceObject slice)
        """
        return _Anasazi.VectorInt___delitem__(self, *args)

    def __getitem__(self, *args):
        """
        __getitem__(self, PySliceObject slice) -> VectorInt
        __getitem__(self, difference_type i) -> value_type
        """
        return _Anasazi.VectorInt___getitem__(self, *args)

    def __setitem__(self, *args):
        """
        __setitem__(self, PySliceObject slice, VectorInt v)
        __setitem__(self, PySliceObject slice)
        __setitem__(self, difference_type i, value_type x)
        """
        return _Anasazi.VectorInt___setitem__(self, *args)

    def append(self, *args):
        """append(self, value_type x)"""
        return _Anasazi.VectorInt_append(self, *args)

    def empty(self, *args):
        """empty(self) -> bool"""
        return _Anasazi.VectorInt_empty(self, *args)

    def size(self, *args):
        """size(self) -> size_type"""
        return _Anasazi.VectorInt_size(self, *args)

    def clear(self, *args):
        """clear(self)"""
        return _Anasazi.VectorInt_clear(self, *args)

    def swap(self, *args):
        """swap(self, VectorInt v)"""
        return _Anasazi.VectorInt_swap(self, *args)

    def get_allocator(self, *args):
        """get_allocator(self) -> allocator_type"""
        return _Anasazi.VectorInt_get_allocator(self, *args)

    def begin(self, *args):
        """begin(self) -> iterator"""
        return _Anasazi.VectorInt_begin(self, *args)

    def end(self, *args):
        """end(self) -> iterator"""
        return _Anasazi.VectorInt_end(self, *args)

    def rbegin(self, *args):
        """rbegin(self) -> reverse_iterator"""
        return _Anasazi.VectorInt_rbegin(self, *args)

    def rend(self, *args):
        """rend(self) -> reverse_iterator"""
        return _Anasazi.VectorInt_rend(self, *args)

    def pop_back(self, *args):
        """pop_back(self)"""
        return _Anasazi.VectorInt_pop_back(self, *args)

    def erase(self, *args):
        """
        erase(self, iterator pos) -> iterator
        erase(self, iterator first, iterator last) -> iterator
        """
        return _Anasazi.VectorInt_erase(self, *args)

    def __init__(self, *args): 
        """
        __init__(self) -> VectorInt
        __init__(self, VectorInt arg0) -> VectorInt
        __init__(self, size_type size) -> VectorInt
        __init__(self, size_type size, value_type value) -> VectorInt
        """
        this = _Anasazi.new_VectorInt(*args)
        try: self.this.append(this)
        except: self.this = this
    def push_back(self, *args):
        """push_back(self, value_type x)"""
        return _Anasazi.VectorInt_push_back(self, *args)

    def front(self, *args):
        """front(self) -> value_type"""
        return _Anasazi.VectorInt_front(self, *args)

    def back(self, *args):
        """back(self) -> value_type"""
        return _Anasazi.VectorInt_back(self, *args)

    def assign(self, *args):
        """assign(self, size_type n, value_type x)"""
        return _Anasazi.VectorInt_assign(self, *args)

    def resize(self, *args):
        """
        resize(self, size_type new_size)
        resize(self, size_type new_size, value_type x)
        """
        return _Anasazi.VectorInt_resize(self, *args)

    def insert(self, *args):
        """
        insert(self, iterator pos, value_type x) -> iterator
        insert(self, iterator pos, size_type n, value_type x)
        """
        return _Anasazi.VectorInt_insert(self, *args)

    def reserve(self, *args):
        """reserve(self, size_type n)"""
        return _Anasazi.VectorInt_reserve(self, *args)

    def capacity(self, *args):
        """capacity(self) -> size_type"""
        return _Anasazi.VectorInt_capacity(self, *args)

    __swig_destroy__ = _Anasazi.delete_VectorInt
    __del__ = lambda self : None;
VectorInt_swigregister = _Anasazi.VectorInt_swigregister
VectorInt_swigregister(VectorInt)

def Value(*args):
    """
    Factory function for class Value.  Currently, this returns a python
    wrapper around class Value<double>.
    """
    return ValueDouble(*args)

def OutputManager(*args):
    """
    Factory function for class OutputManager.  Currently, this returns a python
    wrapper around class OutputManager<double>.
    """
    return OutputManagerDouble(*args)

def BasicOutputManager(*args):
    """
    Factory function for class BasicOutputManager.  Currently, this returns a python
    wrapper around class BasicOutputManager<double>.
    """
    return BasicOutputManagerDouble(*args)

def MultiVec(*args):
    """
    Factory function for class MultiVec.  Currently, this returns a python
    wrapper around class MultiVec<double>.
    """
    return MultiVecDouble(*args)

def Operator(*args):
    """
    Factory function for class Operator.  Currently, this returns a python
    wrapper around class Operator<double>.
    """
    return OperatorDouble(*args)

def SortManager(*args):
    """
    Factory function for class SortManager.  Currently, this returns a python
    wrapper around class SortManager<double,Epetra_MultiVector,Epetra_Operator>.
    """
    return SortManagerEpetra(*args)

def BasicSort(*args):
    """
    Factory function for class BasicSort.  Currently, this returns a python
    wrapper around class BasicSort<double,Epetra_MultiVector,Epetra_Operator>.
    """
    return BasicSortEpetra(*args)

def MultiVecTraits(*args):
    """
    Factory function for class MultiVecTraits.  Currently, this returns a python
    wrapper around class MultiVecTraits<double,Epetra_MultiVector,Epetra_Operator>.
    """
    return MultiVecTraitsEpetra(*args)

def OperatorTraits(*args):
    """
    Factory function for class OperatorTraits.  Currently, this returns a python
    wrapper around class OperatorTraits<double,Epetra_MultiVector,Epetra_Operator>.
    """
    return OperatorTraitsEpetra(*args)

def Eigenproblem(*args):
    """
    Factory function for class Eigenproblem.  Currently, this returns a python
    wrapper around class Eigenproblem<double,Epetra_MultiVector,Epetra_Operator>.
    """
    return EigenproblemEpetra(*args)

def BasicEigenproblem(*args):
    """
    Factory function for class BasicEigenproblem.  Currently, this returns a python
    wrapper around class BasicEigenproblem<double,Epetra_MultiVector,Epetra_Operator>.
    """
    return BasicEigenproblemEpetra(*args)

def StatusTest(*args):
    """
    Factory function for class StatusTest.  Currently, this returns a python
    wrapper around class StatusTest<double,Epetra_MultiVector,Epetra_Operator>.
    """
    return StatusTestEpetra(*args)

def StatusTestCombo(*args):
    """
    Factory function for class StatusTestCombo.  Currently, this returns a python
    wrapper around class StatusTestCombo<double,Epetra_MultiVector,Epetra_Operator>.
    """
    return StatusTestComboEpetra(*args)

def StatusTestMaxIters(*args):
    """
    Factory function for class StatusTestMaxIters.  Currently, this returns a python
    wrapper around class StatusTestMaxIters<double,Epetra_MultiVector,Epetra_Operator>.
    """
    return StatusTestMaxItersEpetra(*args)

def StatusTestOutput(*args):
    """
    Factory function for class StatusTestOutput.  Currently, this returns a python
    wrapper around class StatusTestOutput<double,Epetra_MultiVector,Epetra_Operator>.
    """
    return StatusTestOutputEpetra(*args)

def StatusTestResNorm(*args):
    """
    Factory function for class StatusTestResNorm.  Currently, this returns a python
    wrapper around class StatusTestResNorm<double,Epetra_MultiVector,Epetra_Operator>.
    """
    return StatusTestResNormEpetra(*args)

def OrthoManager(*args):
    """
    Factory function for class OrthoManager.  Currently, this returns a python
    wrapper around class OrthoManager<double,Epetra_MultiVector,Epetra_Operator>.
    """
    return OrthoManagerEpetra(*args)

def MatOrthoManager(*args):
    """
    Factory function for class MatOrthoManager.  Currently, this returns a python
    wrapper around class MatOrthoManager<double,Epetra_MultiVector,Epetra_Operator>.
    """
    return MatOrthoManagerEpetra(*args)

def SVQBOrthoManager(*args):
    """
    Factory function for class SVQBOrthoManager.  Currently, this returns a python
    wrapper around class SVQBOrthoManager<double,Epetra_MultiVector,Epetra_Operator>.
    """
    return SVQBOrthoManagerEpetra(*args)

def Eigensolver(*args):
    """
    Factory function for class Eigensolver.  Currently, this returns a python
    wrapper around class Eigensolver<double,Epetra_MultiVector,Epetra_Operator>.
    """
    return EigensolverEpetra(*args)

def SolverManager(*args):
    """
    Factory function for class SolverManager.  Currently, this returns a python
    wrapper around class SolverManager<double,Epetra_MultiVector,Epetra_Operator>.
    """
    return SolverManagerEpetra(*args)

def BlockDavidson(*args):
    """
    Factory function for class BlockDavidson.  Currently, this returns a python
    wrapper around class BlockDavidson<double,Epetra_MultiVector,Epetra_Operator>.
    """
    return BlockDavidsonEpetra(*args)

def BlockDavidsonSolMgr(*args):
    """
    Factory function for class BlockDavidsonSolMgr.  Currently, this returns a python
    wrapper around class BlockDavidsonSolMgr<double,Epetra_MultiVector,Epetra_Operator>.
    """
    return BlockDavidsonSolMgrEpetra(*args)

def BlockKrylovSchur(*args):
    """
    Factory function for class BlockKrylovSchur.  Currently, this returns a python
    wrapper around class BlockKrylovSchur<double,Epetra_MultiVector,Epetra_Operator>.
    """
    return BlockKrylovSchurEpetra(*args)

def BlockKrylovSchurSolMgr(*args):
    """
    Factory function for class BlockKrylovSchurSolMgr.  Currently, this returns a python
    wrapper around class BlockKrylovSchurSolMgr<double,Epetra_MultiVector,Epetra_Operator>.
    """
    return BlockKrylovSchurSolMgrEpetra(*args)

def LOBPCG(*args):
    """
    Factory function for class LOBPCG.  Currently, this returns a python
    wrapper around class LOBPCG<double,Epetra_MultiVector,Epetra_Operator>.
    """
    return LOBPCGEpetra(*args)

def LOBPCGSolMgr(*args):
    """
    Factory function for class LOBPCGSolMgr.  Currently, this returns a python
    wrapper around class LOBPCGSolMgr<double,Epetra_MultiVector,Epetra_Operator>.
    """
    return LOBPCGSolMgrEpetra(*args)

def Eigensolution(*args):
    """
    Factory function for class Eigensolution.  Currently, this returns a python
    wrapper around class Eigensolution<double,Epetra_MultiVector,Epetra_Operator>.
    """
    return EigensolutionEpetra(*args)

# This file is compatible with both classic and new-style classes.