/usr/share/pyshared/meliae/loader.py is in python-meliae 0.4.0-1build1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 | # Copyright (C) 2009, 2010 Canonical Ltd
#
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License version 3 as
# published by the Free Software Foundation.
#
# This program is distributed in the hope that it will be useful, but
# WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
# General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program. If not, see <http://www.gnu.org/licenses/>.
"""Take a given dump file, and bring the data back.
Currently requires simplejson to parse.
"""
import gc
import math
import os
import re
import sys
import time
try:
import simplejson
except ImportError:
simplejson = None
from meliae import (
files,
_intset,
_loader,
warn,
)
timer = time.time
if sys.platform == 'win32':
timer = time.clock
# This is the minimal regex that is guaranteed to match. In testing, it is
# faster than simplejson without extensions, though slower than simplejson w/
# extensions.
_object_re = re.compile(
r'\{"address": (?P<address>\d+)'
r', "type": "(?P<type>[^"]*)"'
r', "size": (?P<size>\d+)'
r'(, "name": "(?P<name>.*)")?'
r'(, "len": (?P<len>\d+))?'
r'(, "value": "?(?P<value>.*)"?)?'
r', "refs": \[(?P<refs>[^]]*)\]'
r'\}')
_refs_re = re.compile(
r'(?P<ref>\d+)'
)
def _from_json(cls, line, temp_cache=None):
val = simplejson.loads(line)
# simplejson likes to turn everything into unicode strings, but we know
# everything is just a plain 'str', and we can save some bytes if we
# cast it back
obj = cls(address=val['address'],
type_str=str(val['type']),
size=val['size'],
children=val['refs'],
length=val.get('len', None),
value=val.get('value', None),
name=val.get('name', None))
if (obj.type_str == 'str'):
if type(obj.value) is unicode:
obj.value = obj.value.encode('latin-1')
if temp_cache is not None:
obj._intern_from_cache(temp_cache)
return obj
def _from_line(cls, line, temp_cache=None):
m = _object_re.match(line)
if not m:
raise RuntimeError('Failed to parse line: %r' % (line,))
(address, type_str, size, name, length, value,
refs) = m.group('address', 'type', 'size', 'name', 'len',
'value', 'refs')
assert '\\' not in type_str
if name is not None:
assert '\\' not in name
if length is not None:
length = int(length)
refs = [int(val) for val in _refs_re.findall(refs)]
if value is not None:
try:
value = int(value)
except ValueError:
pass
obj = cls(address=int(address),
type_str=type_str,
size=int(size),
children=refs,
length=length,
value=value,
name=name)
if (obj.type_str == 'str'):
if type(obj.value) is unicode:
obj.value = obj.value.encode('latin-1')
if temp_cache is not None:
obj._intern_from_cache(temp_cache)
return obj
class _TypeSummary(object):
"""Information about a given type."""
def __init__(self, type_str):
self.type_str = type_str
self.count = 0
self.total_size = 0
self.sq_sum = 0 # used for stddev computation
self.max_size = 0
self.max_address = None
def __repr__(self):
if self.count == 0:
avg = 0
stddev = 0
else:
avg = self.total_size / float(self.count)
exp_x2 = self.sq_sum / float(self.count)
stddev = math.sqrt(exp_x2 - avg*avg)
return '%s: %d, %d bytes, %.3f avg bytes, %.3f std dev, %d max @ %d' % (
self.type_str, self.count, self.total_size, avg, stddev,
self.max_size, self.max_address)
def _add(self, memobj):
self.count += 1
self.total_size += memobj.size
self.sq_sum += (memobj.size * memobj.size)
if memobj.size > self.max_size:
self.max_size = memobj.size
self.max_address = memobj.address
class _ObjSummary(object):
"""Tracks the summary stats about objects listed."""
def __init__(self):
self.type_summaries = {}
self.total_count = 0
self.total_size = 0
self.summaries = None
def _add(self, memobj):
try:
type_summary = self.type_summaries[memobj.type_str]
except KeyError:
type_summary = _TypeSummary(memobj.type_str)
self.type_summaries[memobj.type_str] = type_summary
type_summary._add(memobj)
self.total_count += 1
self.total_size += memobj.size
def __repr__(self):
if self.summaries is None:
self.by_size()
out = [
'Total %d objects, %d types, Total size = %.1fMiB (%d bytes)'
% (self.total_count, len(self.summaries), self.total_size / 1024. / 1024,
self.total_size),
' Index Count % Size % Cum Max Kind'
]
cumulative = 0
for i in xrange(min(20, len(self.summaries))):
summary = self.summaries[i]
cumulative += summary.total_size
out.append(
'%6d%8d%4d%10d%4d%4d%8d %s'
% (i, summary.count, summary.count * 100.0 / self.total_count,
summary.total_size,
summary.total_size * 100.0 / self.total_size,
cumulative * 100.0 / self.total_size, summary.max_size,
summary.type_str))
return '\n'.join(out)
def by_size(self):
summaries = sorted(self.type_summaries.itervalues(),
key=lambda x: (x.total_size, x.count),
reverse=True)
self.summaries = summaries
def by_count(self):
summaries = sorted(self.type_summaries.itervalues(),
key=lambda x: (x.count, x.total_size),
reverse=True)
self.summaries = summaries
class ObjManager(object):
"""Manage the collection of MemObjects.
This is the interface for doing queries, etc.
"""
def __init__(self, objs, show_progress=True, max_parents=None):
"""Create a new ObjManager
:param show_progress: If True, as content is loading, write progress
information to stderr.
:param max_parents: When running compute_parents(), cap the maximum
parents tracked to a fixed number, since knowing there are 50k
references is only informative, you won't actually track into them.
If 0 we will not compute parents, if < 0 we will show all parents.
"""
self.objs = objs
self.show_progress = show_progress
self.max_parents = max_parents
if self.max_parents is None:
self.max_parents = 100
def __getitem__(self, address):
return self.objs[address]
def compute_referrers(self):
"""Deprecated, use compute_parents instead."""
warn.deprecated('.compute_referrers is deprecated.'
' Use .compute_parents instead.')
return self.compute_parents()
def compute_parents(self):
"""For each object, figure out who is referencing it."""
if self.max_parents == 0:
return
parents = {}
get_refs = parents.get
total = len(self.objs)
tlast = timer()-20
enabled = gc.isenabled()
if enabled:
# We create a *lot* of temporary objects here, which are all
# cleaned up perfectly by refcounting, so disable gc for this loop.
gc.disable()
try:
for idx, obj in enumerate(self.objs.itervalues()):
if self.show_progress and idx & 0x3f == 0:
tnow = timer()
if tnow - tlast > 0.1:
tlast = tnow
sys.stderr.write('compute parents %8d / %8d \r'
% (idx, total))
address = obj.address
for ref in obj.children:
refs = get_refs(ref, None)
# This is ugly, so it should be explained.
# To save memory pressure, parents will point to one of 4
# types.
# 1) A simple integer, representing a single referrer
# this saves the allocation of a separate structure
# entirely
# 2) A tuple, slightly more efficient than a list, but
# requires creating a new tuple to 'add' an entry.
# 3) A list, as before, for things with lots of
# parents, we use a regular list to let it grow.
# 4) None, no references from this object
t = type(refs)
if refs is None:
refs = address
elif t in (int, long):
refs = (refs, address)
elif t is tuple:
if len(refs) >= 5:
refs = list(refs)
refs.append(address)
else:
refs = refs + (address,)
elif t is list:
# if we are close to the maximum number of entries, put
# it through a set() to make sure we get all the
# duplicates
if (self.max_parents > 0):
if (len(refs) >= self.max_parents):
# Our list has been filled, all done
continue
elif (len(refs) == self.max_parents - 1):
# We are one step away from being full. We put
# the content into a set() so that we are sure
# any duplicates will get filtered out, leaving
# space for the new ref.
refs.append(address)
refs[:] = set(refs)
continue
refs.append(address)
# We don't need to set it, because we modify-in-place
continue
else:
raise TypeError('unknown refs type: %s\n' % (t,))
parents[ref] = refs
if self.show_progress:
sys.stderr.write('compute parents %8d / %8d \r'
% (idx, total))
for idx, obj in enumerate(self.objs.itervalues()):
if self.show_progress and idx & 0x3f == 0:
tnow = timer()
if tnow - tlast > 0.1:
tlast = tnow
sys.stderr.write('set parents %8d / %8d \r'
% (idx, total))
try:
refs = parents.pop(obj.address)
except KeyError:
obj.parents = ()
else:
if refs is None:
obj.parents = ()
elif type(refs) in (int, long):
obj.parents = (refs,)
else:
# We use a set() to remove duplicate parents
obj.parents = set(refs)
finally:
if enabled:
gc.enable()
if self.show_progress:
sys.stderr.write('set parents %8d / %8d \n'
% (idx, total))
def remove_expensive_references(self):
"""Filter out references that are mere houskeeping links.
module.__dict__ tends to reference lots of other modules, which in turn
brings in the global reference cycle. Going further
function.__globals__ references module.__dict__, so it *too* ends up in
the global cycle. Generally these references aren't interesting, simply
because they end up referring to *everything*.
We filter out any reference to modules, frames, types, function globals
pointers & LRU sideways references.
"""
source = lambda:self.objs.itervalues()
total_objs = len(self.objs)
# Add the 'null' object
self.objs.add(0, '<ex-reference>', 0, [])
for changed, obj in remove_expensive_references(source, total_objs,
self.show_progress):
continue
def compute_total_size(self, obj):
"""Sum the size of all referenced objects (recursively)."""
obj.total_size = sum(c.size for c in obj.iter_recursive_refs())
return obj
def summarize(self, obj=None, excluding=None):
"""Summarize the objects referenced from this one.
:param obj: Given obj as the root object, aggregate the count and size
of the types of each referenced object.
If not supplied, we will walk all objects.
:param excluding: A list of addresses to exclude from the aggregate
:return: An _ObjSummary() of this subset of the graph
"""
summary = _ObjSummary()
if obj is None:
objs = self.objs.itervalues()
else:
objs = obj.iter_recursive_refs(excluding=excluding)
for obj in objs:
summary._add(obj)
return summary
def get_all(self, type_str):
"""Return all objects that match a given type."""
all = [o for o in self.objs.itervalues() if o.type_str == type_str]
all.sort(key=lambda x:(x.size, len(x), x.num_parents),
reverse=True)
return all
def collapse_instance_dicts(self):
"""Hide the __dict__ member of instances.
When a class does not have __slots__ defined, all instances get a
separate '__dict__' attribute that actually holds their contents. This
adds a level of indirection that can make it harder than it needs to
be, to actually find what instance holds what objects.
So we collapse those references back into the object, and grow its
'size' at the same time.
:return: True if some data was collapsed
"""
# The instances I'm focusing on have a custom type name, and every
# instance has 2 pointers. The first is to __dict__, and the second is
# to the 'type' object whose name matches the type of the instance.
# Also __dict__ has only 1 referrer, and that is *this* object
# TODO: Handle old style classes. They seem to have type 'instanceobj',
# and reference a 'classobj' with the actual type name
collapsed = 0
total = len(self.objs)
tlast = timer()-20
to_be_removed = set()
for item_idx, obj in enumerate(self.objs.itervalues()):
if obj.type_str in ('str', 'dict', 'tuple', 'list', 'type',
'function', 'wrapper_descriptor',
'code', 'classobj', 'int',
'weakref'):
continue
if self.show_progress and item_idx & 0x3f:
tnow = timer()
if tnow - tlast > 0.1:
tlast = tnow
sys.stderr.write('checked %8d / %8d collapsed %8d \r'
% (item_idx, total, collapsed))
if obj.type_str == 'module' and len(obj) == 1:
(dict_obj,) = obj
if dict_obj.type_str != 'dict':
continue
extra_refs = []
else:
if len(obj) != 2:
continue
obj_1, obj_2 = obj
if obj_1.type_str == 'dict' and obj_2.type_str == 'type':
# This is a new-style class
dict_obj = obj_1
type_obj = obj_2
elif (obj.type_str == 'instance'
and obj_1.type_str == 'classobj'
and obj_2.type_str == 'dict'):
# This is an old-style class
type_obj = obj_1
dict_obj = obj_2
else:
continue
extra_refs = [type_obj.address]
collapsed += 1
# We found an instance \o/
new_refs = list(dict_obj.children)
new_refs.extend(extra_refs)
obj.children = new_refs
obj.size = obj.size + dict_obj.size
obj.total_size = 0
if obj.type_str == 'instance':
obj.type_str = type_obj.value
# Now that all the data has been moved into the instance, we
# will want to remove the dict from the collection. We'll do the
# actual deletion later, since we are using iteritems for this
# loop.
to_be_removed.add(dict_obj.address)
# Now we can do the actual deletion.
for address in to_be_removed:
del self.objs[address]
if self.show_progress:
sys.stderr.write('checked %8d / %8d collapsed %8d \n'
% (item_idx, total, collapsed))
if collapsed:
self.compute_parents()
return collapsed
def refs_as_dict(self, obj):
"""Expand the ref list considering it to be a 'dict' structure.
Often we have dicts that point to simple strings and ints, etc. This
tries to expand that as much as possible.
:param obj: Should be a MemObject representing an instance (that has
been collapsed) or a dict.
"""
return obj.refs_as_dict()
def refs_as_list(self, obj):
"""Expand the ref list, considering it to be a list structure."""
as_list = []
children = obj.children
for addr in children:
val = self.objs[addr]
if val.type_str == 'bool':
val = (val.value == 'True')
elif val.value is not None:
val = val.value
elif val.type_str == 'NoneType':
val = None
as_list.append(val)
return as_list
def guess_intern_dict(self):
"""Try to find the string intern dict.
This is a dict that only contains strings that point to themselves.
"""
for o in self.objs.itervalues():
o_len = len(o)
if o.type_str != 'dict' or o_len == 0 or o.num_parents > 0:
# Must be a non-empty dict
continue
# We avoid calling o.children so that we don't have to create
# proxies for all objects
for i in xrange(0, o_len, 2):
# Technically, o[i].address == o[i+1].address, but the proxy
# objects are smart enough to get reused...
c_i = o[i]
c_i1 = o[i+1]
if c_i is not c_i1 or c_i.type_str != 'str':
break
else:
return o
def load(source, using_json=None, show_prog=True, collapse=True,
max_parents=None):
"""Load objects from the given source.
:param source: If this is a string, we will open it as a file and read all
objects. For any other type, we will simply iterate and parse objects
out, so the object should be an iterator of json lines.
:param using_json: Use simplejson rather than the regex. This allows
arbitrary ordered json dicts to be parsed but still requires per-line
layout. Set to 'False' to indicate you want to use the regex, set to
'True' to force using simplejson. None will probe to see if simplejson
is available, and use it if it is. (With _speedups built, simplejson
parses faster and more accurately than the regex.)
:param show_prog: If True, display the progress as we read in data
:param collapse: If True, run collapse_instance_dicts() after loading.
:param max_parents: See ObjManager.__init__(max_parents)
"""
cleanup = None
if isinstance(source, str):
source, cleanup = files.open_file(source)
if isinstance(source, file):
input_size = os.fstat(source.fileno()).st_size
else:
input_size = 0
elif isinstance(source, (list, tuple)):
input_size = sum(map(len, source))
else:
input_size = 0
if using_json is None:
using_json = (simplejson is not None)
try:
manager = _load(source, using_json, show_prog, input_size,
max_parents=max_parents)
finally:
if cleanup is not None:
cleanup()
if collapse:
tstart = time.time()
if not manager.collapse_instance_dicts():
manager.compute_parents()
if show_prog:
tend = time.time()
sys.stderr.write('collapsed in %.1fs\n'
% (tend - tstart,))
return manager
def iter_objs(source, using_json=False, show_prog=False, input_size=0,
objs=None, factory=None):
"""Iterate MemObjects from json.
:param source: A line iterator.
:param using_json: Use simplejson. See load().
:param show_prog: Show progress.
:param input_size: The size of the input if known (in bytes) or 0.
:param objs: Either None or a dict containing objects by address. If not
None, then duplicate objects will not be parsed or output.
:param factory: Use this to create new instances, if None, use
_loader._MemObjectProxy.from_args
:return: A generator of memory objects.
"""
# TODO: cStringIO?
tstart = timer()
input_mb = input_size / 1024. / 1024.
temp_cache = {}
address_re = re.compile(
r'{"address": (?P<address>\d+)'
)
bytes_read = count = 0
last = 0
mb_read = 0
if using_json:
decoder = _from_json
else:
decoder = _from_line
if factory is None:
factory = _loader._MemObjectProxy_from_args
for line_num, line in enumerate(source):
bytes_read += len(line)
if line in ("[\n", "]\n"):
continue
if line.endswith(',\n'):
line = line[:-2]
if objs:
# Skip duplicate objects
m = address_re.match(line)
if not m:
continue
address = int(m.group('address'))
if address in objs:
continue
yield decoder(factory, line, temp_cache=temp_cache)
if show_prog and (line_num - last > 5000):
last = line_num
mb_read = bytes_read / 1024. / 1024
tdelta = timer() - tstart
sys.stderr.write(
'loading... line %d, %d objs, %5.1f / %5.1f MiB read in %.1fs\r'
% (line_num, len(objs), mb_read, input_mb, tdelta))
del temp_cache
if show_prog:
mb_read = bytes_read / 1024. / 1024
tdelta = timer() - tstart
sys.stderr.write(
'loaded line %d, %d objs, %5.1f / %5.1f MiB read in %.1fs \n'
% (line_num, len(objs), mb_read, input_mb, tdelta))
def _load(source, using_json, show_prog, input_size, max_parents=None):
objs = _loader.MemObjectCollection()
for memobj in iter_objs(source, using_json, show_prog, input_size, objs,
factory=objs.add):
# objs.add automatically adds the object as it is created
pass
return ObjManager(objs, show_progress=show_prog, max_parents=max_parents)
def remove_expensive_references(source, total_objs=0, show_progress=False):
"""Filter out references that are mere houskeeping links.
module.__dict__ tends to reference lots of other modules, which in turn
brings in the global reference cycle. Going further
function.__globals__ references module.__dict__, so it *too* ends up in
the global cycle. Generally these references aren't interesting, simply
because they end up referring to *everything*.
We filter out any reference to modules, frames, types, function globals
pointers & LRU sideways references.
:param source: A callable that returns an iterator of MemObjects. This
will be called twice.
:param total_objs: The total objects to be filtered, if known. If
show_progress is False or the count of objects is unknown, 0.
:return: An iterator of (changed, MemObject) objects with expensive
references removed.
"""
# First pass, find objects we don't want to reference any more
noref_objs = _intset.IDSet()
lru_objs = _intset.IDSet()
total_steps = total_objs * 2
seen_zero = False
for idx, obj in enumerate(source()):
# 'module's have a single __dict__, which tends to refer to other
# modules. As you start tracking into that, you end up getting into
# reference cycles, etc, which generally ends up referencing every
# object in memory.
# 'frame' also tends to be self referential, and a single frame
# ends up referencing the entire current state
# 'type' generally is self referential through several attributes.
# __bases__ means we recurse all the way up to object, and object
# has __subclasses__, which means we recurse down into all types.
# In general, not helpful for debugging memory consumption
if show_progress and idx & 0x1ff == 0:
sys.stderr.write('finding expensive refs... %8d / %8d \r'
% (idx, total_steps))
if obj.type_str in ('module', 'frame', 'type'):
noref_objs.add(obj.address)
if obj.type_str == '_LRUNode':
lru_objs.add(obj.address)
if obj.address == 0:
seen_zero = True
# Second pass, any object which refers to something in noref_objs will
# have that reference removed, and replaced with the null_memobj
num_expensive = len(noref_objs)
null_memobj = _loader._MemObjectProxy_from_args(0, '<ex-reference>', 0, [])
if not seen_zero:
yield (True, null_memobj)
if show_progress and total_objs == 0:
total_objs = idx
total_steps = total_objs * 2
for idx, obj in enumerate(source()):
if show_progress and idx & 0x1ff == 0:
sys.stderr.write('removing %d expensive refs... %8d / %8d \r'
% (num_expensive, idx + total_objs,
total_steps))
if obj.type_str == 'function':
# Functions have a reference to 'globals' which is not very
# helpful for having a clear understanding of what is going on
# especially since the function itself is in its own globals
# XXX: This is probably not a guaranteed order, but currently
# func_traverse returns:
# func_code, func_globals, func_module, func_defaults,
# func_doc, func_name, func_dict, func_closure
# We want to remove the reference to globals and module
refs = list(obj.children)
obj.children = refs[:1] + refs[3:] + [0]
yield (True, obj)
continue
elif obj.type_str == '_LRUNode':
# We remove the 'sideways' references
obj.children = [ref for ref in obj.children
if ref not in lru_objs]
yield (True, obj)
continue
for ref in obj.children:
if ref in noref_objs:
break
else:
# No bad references, keep going
yield (False, obj)
continue
new_ref_list = [ref for ref in obj.children
if ref not in noref_objs]
new_ref_list.append(0)
obj.children = new_ref_list
yield (True, obj)
if show_progress:
sys.stderr.write('removed %d expensive refs from %d objs%s\n'
% (num_expensive, total_objs, ' '*20))
|