This file is indexed.

/usr/share/pyshared/libavg/grabbable.py is in python-libavg 1.7.1-0ubuntu1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
# libavg - Media Playback Engine.
# Copyright (C) 2003-2011 Ulrich von Zadow
#
# This library is free software; you can redistribute it and/or
# modify it under the terms of the GNU Lesser General Public
# License as published by the Free Software Foundation; either
# version 2 of the License, or (at your option) any later version.
#
# This library is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
# Lesser General Public License for more details.
#
# You should have received a copy of the GNU Lesser General Public
# License along with this library; if not, write to the Free Software
# Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
#
# Current versions can be found at www.libavg.de
#
# Original author of this file is Martin Heistermann <mh at sponc dot de>
#

import math

from libavg import avg, Point2D
from clusteredEventList import ClusteredEventList
from mathutil import solveEquationMatrix, EquationSingular, EquationNotSolvable
from mathutil import getAngle, getDistance, getScaledDim, getOffsetForMovedPivot


NUM_SPEEDS = 5

g_Player = avg.Player.get()

def getRelPos(pos, nodePos, angle, pivot):
    return (pos - nodePos).getRotated(-angle, pivot)

def getAbsPos(pos, nodePos, angle, pivot):
    return Point2D(pos).getRotated(angle, Point2D(pivot)) + Point2D(nodePos)


class Grabbable:
    """Helper for multitouch object movement.
    Grabbable will add the well-known multitouch gestures
    to a node, i.e. moving with one finger, rotating,
    resizing and moving with 2 fingers.
    It also works with many more cursors/fingers, clustering
    them.
    """
    def __init__(self,
            node,
            source = avg.TOUCH | avg.MOUSE,
            maxSize = None, minSize = None,
            onResize = lambda: None,
            onDrop = lambda: None,
            onStop = lambda: None,
            onAction = lambda: None,
            onMotion = lambda pos, size, angle, pivot: None,
            onResetMotion = lambda: None,
            onDragStart = lambda: None,
            initialDown = None,
            inertia = 0.95,
            torque = 0.95,
            moveNode = True):

        global g_Player
        self.__inertia = inertia
        self.__torque = torque
        self.__node = node
        self.__minSize = minSize
        self.__maxSize = maxSize
        self.__moveNode = moveNode
        self.__callback = {
                'onResize': onResize,
                'onDrop': onDrop,
                'onStop': onStop,
                'onAction': onAction,
                'onMotion': onMotion,
                'onResetMotion': onResetMotion,
                'onDragStart': onDragStart,
                }

        self.__stopInertia()
        #self.__oldAngle = 0.0
        self.__lastFixPoint = None
        self.__lastNumFingers = 0
        self.__onFrameHandler = g_Player.setOnFrameHandler(self.__onFrame)

        self.__eventList = ClusteredEventList (self.__node,
                source = source,
                onMotion = self.__onMotion,
                onUp = self.__onUp,
                onDown = self.__onDown,
                resetMotion = self.__resetMotion
                )
        if initialDown:
            self.__eventList.handleInitialDown (initialDown)
        self.__lastPos = None
        self.__stopped = True

    def isDragging(self):
        return len(self.__eventList) > 0
    
    def getSpeed(self):
        return self.__speed
    
    def getAngle(self):
        return self.__angle
    
    def delete(self):
        global g_Player
        g_Player.clearInterval(self.__onFrameHandler)
        self.__eventList.delete()
        self.__node = None

    def __onFrame(self):
        global g_Player
        if len (self.__eventList) == 0:
            # inertia
            if self.__speed.getNorm() < 1:
                if not self.__stopped:
                    pos = Point2D(round(self.__node.pos.x), round(self.__node.pos.y))
                    size = Point2D(round(self.__node.size.x), round(self.__node.size.y))
                    self.__callback['onMotion'](pos, size, self.__node.angle, 
                            self.__node.pivot)
                    self.__stopped = True
                    self.__callback['onStop']()
                    self.__stopInertia()
                return

            pos = self.__node.pos + self.__speed
            angle = self.__node.angle + self.__rotSpeed
            size = self.__node.size
            pivot = self.__node.pivot

            if self.__moveNode:
                self.__node.pos = pos
                self.__node.size = size
                self.__node.angle = angle
                self.__node.pivot = pivot

            self.__callback['onMotion'](pos, size, angle, pivot)

            self.__speed *= self.__inertia
            self.__rotSpeed *= self.__torque
        else:
            self.__stopped = False
            # save current speed for inertia
            pos = self.__node.pos
            angle = self.__node.angle
            if self.__lastPos:
                speed = pos - self.__lastPos
                rotSpeed = angle - self.__lastAngle
                # use minimal angle to avoid extreme rotation:
                if rotSpeed < -math.pi/2:
                    rotSpeed += math.pi*2
                if rotSpeed > math.pi/2:
                    rotSpeed -= math.pi*2
                self.__speeds = (self.__speeds + [speed])[-NUM_SPEEDS:]
                self.__rotSpeeds = (self.__rotSpeeds + [rotSpeed])[-NUM_SPEEDS:]
            self.__lastPos = pos
            self.__lastAngle = angle

    def __stopInertia (self):
        self.__speed = Point2D(0,0)
        self.__rotSpeed = 0
        self.__speeds = [Point2D(0,0)]
        self.__rotSpeeds = [0.0]
        self.__lastPos = None

    def __onDown(self):
        def __gotoTopLayer():
            parent = self.__node.getParent()
            numChildren = parent.getNumChildren()
            parent.reorderChild(self.__node, numChildren - 1)

        self.__stopInertia()
        self.__reshape()
        if len(self.__eventList) == 1: # first finger down
            if self.__moveNode:
                __gotoTopLayer()
            self.__callback['onDragStart']()
        self.__callback['onAction']()

    def __onMotion(self):
        self.__reshape()
        self.__callback['onAction']()

    def __drop(self):
        self.__speed = sum(self.__speeds, Point2D(0,0)) / len(self.__speeds)
        self.__rotSpeed = sum(self.__rotSpeeds, 0.0) / len(self.__rotSpeeds)
        self.__callback['onDrop']()

    def __onUp(self):
        if len(self.__eventList) == 0:
            self.__drop()
        self.__callback['onAction']()

    def __reshape (self):
        def applyAffineTransformation (parameters, p):
            """apply transformation to point:
                         M:       v:
              P' = P * (m  -n) + (v0)
                       (n   m)   (v1) """
            m, n, v0, v1 = parameters
            nx = p[0] * m - p[1] * n + v0
            ny = p[0] * n + p[1] * m + v1
            return Point2D(nx, ny)

        clusters = self.__eventList.getCursors()

        if len(clusters) == 1:
            cursor = self.__eventList.getCursors()[0]

            pos = self.__oldpos + cursor.getDelta()
            size = self.__node.size
            angle = self.__node.angle
            pivot = self.__node.pivot

        elif len(clusters) == 2:
            # calculate an affine transformation which describes cluster movement
            # TODO: explain used maths
            cursor1, cursor2 = clusters
            equationMatrix = (
                    ((cursor1.getStartPos().x, -cursor1.getStartPos().y, 1, 0), cursor1.getPos().x),
                    ((cursor1.getStartPos().y,  cursor1.getStartPos().x, 0, 1), cursor1.getPos().y),
                    ((cursor2.getStartPos().x, -cursor2.getStartPos().y, 1, 0), cursor2.getPos().x),
                    ((cursor2.getStartPos().y,  cursor2.getStartPos().x, 0, 1), cursor2.getPos().y),
                    )
            try:
                param = solveEquationMatrix (equationMatrix)
            except (EquationSingular, EquationNotSolvable):
#                g_Log.trace(g_Log.APP, 
#                        "Grabbable: cannot solve equation, skipping movement")
                return False

            absTouchCenter = cursor2.getPos() + (cursor1.getPos() - cursor2.getPos()) / 2

            n_tl = applyAffineTransformation (param, self.o_tl)
            n_bl = applyAffineTransformation (param, self.o_bl)
            n_tr = applyAffineTransformation (param, self.o_tr)
            
            pos = n_tl
            if pos.x > 1e6 and pos.x > self.o_tl.x:
                pos = self.o_tl
            if pos.y > 1e6 and pos.y > self.o_tl.y:
                pos = self.o_tl
            if pos.x < -1e6 and pos.x < self.o_tl.x:
                pos = self.o_tl
            if pos.y < -1e6 and pos.y < self.o_tl.y:
                pos = self.o_tl

            size = Point2D(getDistance (n_tl, n_tr), getDistance (n_tl, n_bl))
            if size.x<=0.1:
                size.x=0.1
            if size.y<=0.1:
                size.y=0.1
            angle = getAngle(n_tl, n_tr) # pivot for this rotation is 0,0 (rel. to node)

            # get middle of touches relative to the node
            relTouchCenter = getRelPos(absTouchCenter, pos, angle, Point2D(0,0))
            pos += getOffsetForMovedPivot(
                    oldPivot = Point2D(0,0),
                    newPivot = relTouchCenter,
                    angle = angle)
            pivot = relTouchCenter

            # the absolute position of the pivot should change when
            # resizing, so we track and revert absolute pivot movement
            oldAbsPivot = getAbsPos(pivot, pos, angle, pivot)

            newSize = getScaledDim (size,
                    max = self.__maxSize,
                    min = self.__minSize)

            ratio = newSize.x / size.x
            newPivot = pivot * ratio

            pos += getOffsetForMovedPivot(
                    oldPivot = pivot,
                    newPivot = newPivot,
                    angle = angle)
            oldPivot = pivot
            pivot = newPivot

            size = newSize

            newAbsPivot = getAbsPos(pivot, pos, angle, pivot)

            # move node to revert absolute pivot position
            pos -= (newAbsPivot - oldAbsPivot)

        else: # more than 2 clusters
            assert False

        if self.__moveNode:
            self.__node.angle = angle
            self.__node.size = size
            self.__node.pos = pos
            self.__node.pivot = pivot
            self.__callback['onResize']()

        self.__callback['onMotion'](pos, size, angle, pivot)

    def __resetMotion (self):
        """ sets a new movement start point """
        # store absolute position at the beginning of the movement
        # for 2-finger-movements:
        def getPos(pos):
            return getAbsPos(pos, self.__node.pos, self.__node.angle, self.__node.pivot)
        self.o_tl = getPos((0, 0))
        self.o_bl = getPos((0, self.__node.height))
        self.o_tr = getPos((self.__node.width, 0))

        # for 1-finger-movements:
        self.__oldpos = self.__node.pos

        self.__lastFixPoint = None
        self.__callback['onResetMotion']()