This file is indexed.

/usr/share/pyshared/guiqwt/io.py is in python-guiqwt 2.1.6-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
# -*- coding: utf-8 -*-
#
# Copyright © 2009-2010 CEA
# Pierre Raybaut
# Licensed under the terms of the CECILL License
# (see guiqwt/__init__.py for details)

# pylint: disable=C0103

"""
guiqwt.io
---------

The `io` module provides input/output helper functions:
    * :py:func:`guiqwt.io.imagefile_to_array`: load an image (.png, .tiff, 
      .dicom, etc.) and return its data as a NumPy array
    * :py:func:`guiqwt.io.array_to_imagefile`: save an array to an image file
    * :py:func:`guiqwt.io.array_to_dicomfile`: save an array to a DICOM image 
      file according to a passed DICOM structure (base file)

Reference
~~~~~~~~~

.. autofunction:: imagefile_to_array
.. autofunction:: array_to_imagefile
.. autofunction:: array_to_dicomfile
"""

#TODO: Implement an XML-based serialize/deserialize mechanism for plot items

import sys, os.path as osp, numpy as np, os, time, re

# Local imports
from guiqwt.config import _


if sys.byteorder == 'little':
    _ENDIAN = '<'
else:
    _ENDIAN = '>'

DTYPES = {
          "1": ('|b1', None),
          "L": ('|u1', None),
          "I": ('%si4' % _ENDIAN, None),
          "F": ('%sf4' % _ENDIAN, None),
          "I;16": ('%su2' % _ENDIAN, None),
          "I;16B": ('%su2' % _ENDIAN, None),
          "I;16S": ('%si2' % _ENDIAN, None),
          "P": ('|u1', None),
          "RGB": ('|u1', 3),
          "RGBX": ('|u1', 4),
          "RGBA": ('|u1', 4),
          "CMYK": ('|u1', 4),
          "YCbCr": ('|u1', 4),
          }

# Image save mode constants
# they map directly to PIL modes
MODE_INTENSITY_S8  = "1"
MODE_INTENSITY_U8  = "L"
MODE_INTENSITY_S16 = "I;16S"
MODE_INTENSITY_U16 = "I;16"
MODE_INTENSITY_S32 = "I"
MODE_INTENSITY_FLOAT32 = "F"
MODE_RGB = "RGB"
MODE_RGBA = "RGBA"
VALID_MODES = [varname for varname in globals().keys()
               if varname.startswith("MODE_")]


def make_uid(root):
    uidparts = [root, str(time.time()),
                str(os.getpid()),
                str(np.random.randint(1000000)),
                ]
    return ".".join(uidparts)
                
def make_secondary_capture():
    from dicom.dataset import Dataset
    from dicom.UID import root
    ds = Dataset()
    uid = make_uid(root)
    ds.MediaStorageSOPClassUID = '1.2.840.10008.5.1.4.1.1.7'
    ds.MediaStorageSOPInstanceUID = uid
    ds.ImplementationClassUID = root+"2.2.2.2" # ???
    ds.ImplementationVersionName = "GUIQWT_10"
    ds.SpecificCharacterSet = "ISO_IR 192" # UTF-8
    ds.ImageType = ['DERIVED', 'SECONDARY']
    ds.SOPClassUID = '1.2.840.10008.5.1.4.1.1.7'
    ds.SOPInstanceUID = uid
    ds.preamble = "\x00"*128
    ds.isExplicitVR = True
    ds.isLittleEndian = True
    return ds

    
def set_dynamic_range_from_dtype(data, dtype):
    """WARNING modifies data in place"""
    info = np.iinfo(dtype)
    dmin = data.min()
    dmax = data.max()
    data -= dmin
    data *= float(info.max-info.min)/(dmax-dmin)
    data += float(info.min)
    return np.array(data, dtype)
    
def set_dynamic_range_from_mode(data, mode):
    """
    Set image dynamic range
    Mode: PIL modes (MODE_INTENSITY_U8, MODE_INTENSITY_U16, ...)
    
    *** WARNING modifies data in place ***
    """
    dtypes = {
              MODE_INTENSITY_U8: np.uint8,
              MODE_INTENSITY_S8: np.int8,
              MODE_INTENSITY_U16: np.uint16,
              MODE_INTENSITY_S16: np.int16,
             }
    return set_dynamic_range_from_dtype(data, dtypes[mode])
    
def eliminate_outliers(data, percent=2., bins=256):
    """Eliminate data histogram outliers"""
    hist, bin_edges = np.histogram(data, bins)
    from guiqwt.histogram import hist_range_threshold
    vmin, vmax = hist_range_threshold(hist, bin_edges, percent)
    return data.clip(vmin, vmax)


IMAGE_LOAD_FILTERS = '%s (*.png *.jpg *.gif *.tif *.tiff)\n'\
                     '%s (*.npy)\n%s (*.txt *.csv)'\
                     % (_(u"Images"), _(u"NumPy arrays"), _(u"Text files"))
IMAGE_SAVE_FILTERS = IMAGE_LOAD_FILTERS
try:
    import logging
    logger = logging.getLogger("pydicom")
    logger.setLevel(logging.CRITICAL)
    import dicom
    logger.setLevel(logging.WARNING)
    IMAGE_LOAD_FILTERS += ('\n%s (*.dcm)' % _(u"DICOM images"))
except ImportError:
    pass

def _add_all_supported_files(filters):
    extlist = re.findall(r'\*.[a-zA-Z0-9]*', filters)
    allfiles = '%s (%s)\n' % (_("All supported files"), ' '.join(extlist))
    return allfiles+filters    

IMAGE_LOAD_FILTERS = _add_all_supported_files(IMAGE_LOAD_FILTERS)

def imagefile_to_array(filename, to_grayscale=False):
    """
    Return a NumPy array from an image file *filename*
    If *to_grayscale* is True, convert RGB images to grayscale
    """
    if not isinstance(filename, basestring):
        filename = unicode(filename) # in case *filename* is a QString instance
    _base, ext = osp.splitext(filename)
    if ext.lower() in (".jpg", ".png", ".gif", ".tif", ".tiff", ".jp2"):
        import PIL.Image
        import PIL.TiffImagePlugin # py2exe
        img = PIL.Image.open(filename)
        if img.mode in ("CMYK", "YCbCr"):
            # Converting to RGB
            img = img.convert("RGB")
        if to_grayscale and img.mode in ("RGB", "RGBA", "RGBX"):
            # Converting to grayscale
            img = img.convert("L")
        try:
            dtype, extra = DTYPES[img.mode]
        except KeyError:
            raise RuntimeError("%s mode is not supported" % img.mode)
        shape = (img.size[1], img.size[0])
        if extra is not None:
            shape += (extra,)
        arr = np.array(img.getdata(), dtype=np.dtype(dtype)).reshape(shape)
        if img.mode in ("RGB", "RGBA", "RGBX"):
            arr = np.flipud(arr)
    elif ext.lower() == ".npy":
        arr = np.load(filename)
    elif ext.lower() in (".txt", ".asc", ""):
        for delimiter in ('\t', ',', ' ', ';'):
            try:
                arr = np.loadtxt(filename, delimiter=delimiter)
                break
            except ValueError:
                continue
        else:
            raise
    elif ext.lower() in (".dcm",):
        dcm = dicom.ReadFile(filename)
        # **********************************************************************
        # The following is necessary until pydicom numpy support is improved:
        # (after that, a simple: 'arr = dcm.PixelArray' will work the same)
        format_str = '%sint%s' % (('u', '')[dcm.PixelRepresentation],
                                  dcm.BitsAllocated)
        try:
            dtype = np.dtype(format_str)
        except TypeError:
            raise TypeError("Data type not understood by NumPy: "
                            "PixelRepresentation=%d, BitsAllocated=%d" % (
                            dcm.PixelRepresentation, dcm.BitsAllocated))
        arr = np.fromstring(dcm.PixelData, dtype)
        try:
            # pydicom 0.9.3:
            dcm_is_little_endian = dcm.isLittleEndian
        except AttributeError:
            # pydicom 0.9.4:
            dcm_is_little_endian = dcm.is_little_endian
        if dcm_is_little_endian != (sys.byteorder == 'little'):
            arr.byteswap(True)
        if hasattr(dcm, 'NumberofFrames') and dcm.NumberofFrames > 1:
            if dcm.SamplesperPixel > 1:
                arr = arr.reshape(dcm.SamplesperPixel, dcm.NumberofFrames,
                                  dcm.Rows, dcm.Columns)
            else:
                arr = arr.reshape(dcm.NumberofFrames, dcm.Rows, dcm.Columns)
        else:
            if dcm.SamplesperPixel > 1:
                if dcm.BitsAllocated == 8:
                    arr = arr.reshape(dcm.SamplesperPixel, dcm.Rows, dcm.Columns)
                else:
                    raise NotImplementedError("This code only handles "
                                "SamplesPerPixel > 1 if Bits Allocated = 8")
            else:
                arr = arr.reshape(dcm.Rows, dcm.Columns)
        # **********************************************************************
    else:
        raise RuntimeError("%s: unsupported image file"
                           % osp.basename(filename))
    if to_grayscale and arr.ndim == 3:
        # Converting to grayscale
        return arr[...,:4].mean(axis=2)
    else:
        return arr

def array_to_imagefile(arr, filename, mode=None, max_range=False):
    """
    Save a numpy array *arr* into an image file *filename*
    Warning: option 'max_range' changes data in place
    """
    if max_range:
        assert mode is not None
        arr = set_dynamic_range_from_mode(arr, mode)
    _base, ext = osp.splitext(filename)
    if arr.dtype in (np.int8, np.uint8, np.int16, np.uint16,
                     np.int32, np.uint32):
        fmt = '%d'
    else:
        fmt = '%.18e'
    if ext.lower() in (".jpg", ".png", ".gif", ".tif", ".tiff"):
        import PIL.Image
        import PIL.TiffImagePlugin # py2exe
        if mode is None:
            for mode, (dtype, _extra) in DTYPES.iteritems():
                if dtype == arr.dtype.str:
                    break
            else:
                raise RuntimeError("Cannot determine PIL data type")
        img = PIL.Image.fromarray(arr, mode)
        img.save(filename)
    elif ext.lower() == ".npy":
        np.save(filename, arr)
    elif ext.lower() in (".txt", ".asc", ""):
        np.savetxt(filename, arr, fmt=fmt)
    elif ext.lower() == ".csv":
        np.savetxt(filename, arr, fmt=fmt, delimiter=',')
    else:
        raise RuntimeError("%s: unsupported image file type" % ext)

def array_to_dicomfile(arr, dcmstruct, filename, dtype=None, max_range=False):
    """
    Save a numpy array *arr* into a DICOM image file *filename*
    based on DICOM structure *dcmstruct*
    """
    if max_range:
        assert dtype is not None
        arr = set_dynamic_range_from_dtype(arr, dtype)
    infos = np.iinfo(arr.dtype)
    dcmstruct.BitsAllocated = infos.bits
    dcmstruct.BitsStored = infos.bits
    dcmstruct.HighBit = infos.bits-1
    dcmstruct.PixelRepresentation = ('u', 'i').index(infos.kind)
    data_vr = ('US', 'SS')[dcmstruct.PixelRepresentation]
    dcmstruct.Rows = arr.shape[0]
    dcmstruct.Columns = arr.shape[1]
    dcmstruct.SmallestImagePixelValue = int(arr.min())
    dcmstruct[0x00280106].VR = data_vr
    dcmstruct.LargestImagePixelValue = int(arr.max())
    dcmstruct[0x00280107].VR = data_vr
    if not dcmstruct.PhotometricInterpretation.startswith('MONOCHROME'):
        dcmstruct.PhotometricInterpretation = 'MONOCHROME1'
    dcmstruct.PixelData = arr.tostring()
    dcmstruct[0x7fe00010].VR = 'OB'
    dcmstruct.save_as(filename)