/usr/share/pyshared/gamera/plugins/convolution.py is in python-gamera 3.3.2-2.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 | #
#
# Copyright (C) 2001-2005 Ichiro Fujinaga, Michael Droettboom, and Karl MacMillan
#
# This program is free software; you can redistribute it and/or
# modify it under the terms of the GNU General Public License
# as published by the Free Software Foundation; either version 2
# of the License, or (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program; if not, write to the Free Software
# Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
#
"""The convolution module contains plugins for linear filtering"""
from gamera.plugin import *
from gamera.plugins import image_utilities
from gamera import util
import _arithmetic
import _convolution
CONVOLUTION_TYPES = [GREYSCALE, GREY16, FLOAT, RGB, COMPLEX]
# Note: The convolution exposed here does not allow for the case where the
# logical center of the kernel is different from the physical center.
# Saving that for another day... MGD
########################################
# Convolution methods
class convolve(PluginFunction):
u"""
Convolves an image with a given kernel.
Uses code from the Vigra library (Copyright 1998-2007 by Ullrich
K\u00f6the).
*kernel*
A kernel for the convolution. The kernel may either be a FloatImage
or a nested Python list of floats.
*border_treatment*
Specifies how to treat the borders of the image. Must be one of
the following:
- BORDER_TREATMENT_AVOID (0)
do not operate on a pixel where the kernel does not fit in the image
- BORDER_TREATMENT_CLIP (1)
clip kernel at image border. The kernel entries are renormalized
so that the total kernel sum is not changed (this is only useful
if the kernel is >= 0 everywhere).
- BORDER_TREATMENT_REPEAT (2)
repeat the nearest valid pixel
- BORDER_TREATMENT_REFLECT (3)
reflect image at last row/column
- BORDER_TREATMENT_WRAP (4)
wrap image around (periodic boundary conditions)
Example usage:
.. code:: Python
# Using a custom kernel
img2 = image.convolve([[0.125, 0.0, -0.125],
[0.25 , 0.0, -0.25 ],
[0.125, 0.0, -0.125]])
# Using one of the included kernel generators
img2 = image.convolve(GaussianKernel(3.0))
"""
category = "Filter/Convolution"
self_type = ImageType(CONVOLUTION_TYPES)
args = Args([ImageType([FLOAT], 'kernel'),
Choice('border_treatment',
['avoid', 'clip', 'repeat', 'reflect', 'wrap'],
default=1)])
return_type = ImageType(CONVOLUTION_TYPES)
def __call__(self, kernel, border_treatment=3):
from gamera.gameracore import FLOAT
if type(kernel) == list:
kernel = image_utilities.nested_list_to_image(kernel, FLOAT)
return _convolution.convolve(self, kernel, border_treatment)
__call__ = staticmethod(__call__)
class convolve_xy(PluginFunction):
u"""
Convolves an image in both X and Y directions with 1D kernels.
This is equivalent to what the Vigra library calls "Separable
Convolution".
Uses code from the Vigra library (Copyright 1998-2007 by Ullrich
K\u00f6the).
*kernel_y*
A kernel for the convolution in the *y* direction. The kernel
may either be a FloatImage or a nested Python list of floats.
*kernel_x*
A kernel for the convolution in the *x* direction. The kernel
may either be a FloatImage or a nested Python list of floats.
If *kernel_x* is omitted, *kernel_y* will be used in the *x*
direction.
*border_treatment*
Specifies how to treat the borders of the image. See
``convolve`` for information about *border_treatment* values.
"""
category = "Filter/Convolution"
self_type = ImageType(CONVOLUTION_TYPES)
args = Args([ImageType([FLOAT], 'kernel_x'),
ImageType([FLOAT], 'kernel_y'),
Choice('border_treatment',
['avoid', 'clip', 'repeat', 'reflect', 'wrap'],
default=1)])
return_type = ImageType(CONVOLUTION_TYPES)
pure_python = True
def __call__(self, kernel_x, kernel_y=None, border_treatment=1):
from gamera.gameracore import FLOAT
if kernel_y is None:
kernel_y = kernel_x
if kernel_y == kernel_x:
if type(kernel_y) == list:
kernel_x = kernel_y = image_utilities.nested_list_to_image(kernel_y, FLOAT)
else:
if type(kernel_y) == list:
kernel_y = image_utilities.nested_list_to_image(kernel_y, FLOAT)
if type(kernel_x) == list:
kernel_x = image_utilities.nested_list_to_image(kernel_x, FLOAT)
result = _convolution.convolve_x(self, kernel_x, border_treatment)
return _convolution.convolve_y(result, kernel_y, border_treatment)
__call__ = staticmethod(__call__)
class convolve_x(PluginFunction):
u"""
Convolves an image in the X directions with a 1D kernel. This is
equivalent to what the Vigra library calls "Separable
Convolution".
Uses code from the Vigra library (Copyright 1998-2007 by Ullrich
K\u00f6the).
*kernel_x*
A kernel for the convolution in the *x* direction. The kernel
may either be a FloatImage or a nested Python list of floats.
It must consist of only a single row.
*border_treatment*
Specifies how to treat the borders of the image. See
``convolve`` for information about *border_treatment* values.
"""
category = "Filter/Convolution"
self_type = ImageType(CONVOLUTION_TYPES)
args = Args([ImageType([FLOAT], 'kernel_x'),
Choice('border_treatment',
['avoid', 'clip', 'repeat', 'reflect', 'wrap'],
default=1)])
return_type = ImageType(CONVOLUTION_TYPES)
def __call__(self, kernel, border_treatment=1):
from gamera.gameracore import FLOAT
if type(kernel) == list:
kernel = image_utilities.nested_list_to_image(kernel, FLOAT)
return _convolution.convolve_x(self, kernel, border_treatment)
__call__ = staticmethod(__call__)
class convolve_y(PluginFunction):
u"""
Convolves an image in the X directions with a 1D kernel. This is
equivalent to what the Vigra library calls "Separable Convolution".
Uses code from the Vigra library (Copyright 1998-2007 by Ullrich
K\u00f6the).
*kernel_y*
A kernel for the convolution in the *x* direction. The kernel
may either be a FloatImage or a nested Python list of floats.
It must consist of only a single row.
*border_treatment*
Specifies how to treat the borders of the image. See
``convolve`` for information about *border_treatment* values.
"""
category = "Filter/Convolution"
self_type = ImageType(CONVOLUTION_TYPES)
args = Args([ImageType([FLOAT], 'kernel_y'),
Choice('border_treatment',
['avoid', 'clip', 'repeat', 'reflect', 'wrap'],
default=1)])
return_type = ImageType(CONVOLUTION_TYPES)
def __call__(self, kernel, border_treatment=1):
from gamera.gameracore import FLOAT
if type(kernel) == list:
kernel = image_utilities.nested_list_to_image(kernel, FLOAT)
return _convolution.convolve_y(self, kernel, border_treatment)
__call__ = staticmethod(__call__)
########################################
# Convolution kernels
class ConvolutionKernel(PluginFunction):
self_type = None
return_type = ImageType([FLOAT])
category = "Filter/ConvolutionKernels"
class GaussianKernel(ConvolutionKernel):
"""
Init as a Gaussian function. The radius of the kernel is always
3*standard_deviation.
*standard_deviation*
The standard deviation of the Gaussian kernel.
"""
args = Args([Float("standard_deviation", default=1.0)])
class GaussianDerivativeKernel(ConvolutionKernel):
"""
Init as a Gaussian derivative of order 'order'. The radius of the
kernel is always 3*std_dev.
*standard_deviation*
The standard deviation of the Gaussian kernel.
*order*
The order of the Gaussian kernel.
"""
args = Args([Float("standard_deviation", default=1.0),
Int("order", default=1)])
class BinomialKernel(ConvolutionKernel):
"""
Creates a binomial filter kernel for use with separable
convolution of a given radius.
*radius*
The radius of the kernel.
"""
args = Args([Int("radius", default=3)])
class AveragingKernel(ConvolutionKernel):
"""
Creates an Averaging filter kernel for use with separable
convolution. The window size is (2*radius+1) * (2*radius+1).
*radius*
The radius of the kernel.
"""
args = Args([Int("radius", default=3)])
class SymmetricGradientKernel(ConvolutionKernel):
"""
Init as a symmetric gradient filter of the form [ 0.5, 0.0, -0.5]
"""
args = Args([])
class SimpleSharpeningKernel(ConvolutionKernel):
"""
Creates a kernel for simple sharpening.
"""
args = Args([Float('sharpening_factor', default=0.5)])
########################################
# Convolution applications
#
# The following are some applications of convolution built from the above
# parts. This could have been implemented by calling the corresponding
# Vigra functions directly, but that would have increased the compiled
# binary size of an already large module emmensely. This approach has
# slightly more overhead, being in Python, but it should hopefully
# not have a significant impact. MGD
class gaussian_smoothing(PluginFunction):
"""
Performs gaussian smoothing on an image.
*standard_deviation*
The standard deviation of the Gaussian kernel.
"""
self_type = ImageType(CONVOLUTION_TYPES)
args = Args([Float("standard_deviation", default=1.0)])
return_type = ImageType(CONVOLUTION_TYPES)
pure_python = True
doc_examples = [(GREYSCALE, 1.0), (RGB, 3.0), (COMPLEX, 1.0)]
def __call__(self, std_dev=1.0):
return self.convolve_xy(
_convolution.GaussianKernel(std_dev),
border_treatment = BORDER_TREATMENT_REFLECT)
__call__ = staticmethod(__call__)
class simple_sharpen(PluginFunction):
"""
Perform simple sharpening.
*sharpening_factor*
The amount of sharpening to perform.
"""
self_type = ImageType(CONVOLUTION_TYPES)
args = Args([Float("sharpening_factor", default=0.5)])
return_type = ImageType(CONVOLUTION_TYPES)
pure_python = True
doc_examples = [(GREYSCALE, 1.0), (RGB, 3.0)]
def __call__(self, sharpening_factor=0.5):
return self.convolve(
_convolution.SimpleSharpeningKernel(sharpening_factor),
border_treatment = BORDER_TREATMENT_REFLECT)
__call__ = staticmethod(__call__)
class gaussian_gradient(PluginFunction):
"""
Calculate the gradient vector by means of a 1st derivatives of
Gaussian filter.
*scale*
Returns a tuple of (*x_gradient*, *y_gradient*).
"""
self_type = ImageType(CONVOLUTION_TYPES)
args = Args([Float("scale", default=0.5)])
return_type = ImageList("gradients")
pure_python = True
doc_examples = [(GREYSCALE, 1.0), (RGB, 1.0), (COMPLEX, 1.0)]
def __call__(self, scale=1.0):
smooth = _convolution.GaussianKernel(scale)
grad = _convolution.GaussianDerivativeKernel(scale, 1)
tmp = self.convolve_x(grad)
result_x = tmp.convolve_y(smooth)
tmp = self.convolve_x(smooth)
result_y = tmp.convolve_y(grad)
return result_x, result_y
__call__ = staticmethod(__call__)
class laplacian_of_gaussian(PluginFunction):
"""
Filter image with the Laplacian of Gaussian operator at the given
scale.
*scale*
"""
self_type = ImageType([GREYSCALE, GREY16, FLOAT])
args = Args([Float("scale", default=0.5)])
return_type = ImageType([GREYSCALE, GREY16, FLOAT])
pure_python = True
doc_examples = [(GREYSCALE, 1.0)]
def __call__(self, scale=1.0):
smooth = _convolution.GaussianKernel(scale)
deriv = _convolution.GaussianDerivativeKernel(scale, 2)
fp = self.to_float()
tmp = fp.convolve_x(deriv)
tmp_x = tmp.convolve_y(smooth)
tmp = fp.convolve_x(smooth)
tmp_y = tmp.convolve_y(deriv)
result = _arithmetic.add_images(tmp_x, tmp_y, False)
if self.data.pixel_type == GREYSCALE:
return result.to_greyscale()
if self.data.pixel_type == GREY16:
return result.to_grey16()
return result
__call__ = staticmethod(__call__)
class hessian_matrix_of_gaussian(PluginFunction):
"""
Filter image with the 2nd derivatives of the Gaussian at the given
scale to get the Hessian matrix.
*scale*
"""
self_type = ImageType([GREYSCALE, GREY16, FLOAT])
args = Args([Float("scale", default=0.5)])
return_type = ImageList("hessian_matrix")
pure_python = True
doc_examples = [(GREYSCALE, 1.0)]
def __call__(self, scale=1.0):
smooth = _convolution.GaussianKernel(scale)
deriv1 = _convolution.GaussianDerivativeKernel(scale, 1)
deriv2 = _convolution.GaussianDerivativeKernel(scale, 2)
fp = self.to_float()
tmp = fp.convolve_x(deriv2)
tmp_x = tmp.convolve_y(smooth)
tmp = fp.convolve_x(smooth)
tmp_y = tmp.convolve_y(deriv2)
tmp = fp.convolve_x(deriv1)
tmp_xy = fp.convolve_y(deriv1)
if self.data.pixel_type == GREYSCALE:
return tmp_x.to_greyscale(), tmp_y.to_greyscale(), tmp_xy.to_greyscale()
if self.data.pixel_type == GREY16:
return tmp_x.to_grey16(), tmp_y.to_grey16(), tmp_xy.to_grey16()
return result
__call__ = staticmethod(__call__)
class sobel_edge_detection(PluginFunction):
"""
Performs simple Sobel edge detection on the image.
"""
self_type = ImageType(CONVOLUTION_TYPES)
return_type = ImageType(CONVOLUTION_TYPES)
pure_python = True
doc_examples = [(GREYSCALE, 1.0), (RGB, 3.0)]
def __call__(self, scale=1.0):
return self.convolve([[.125, 0.0, -.125],
[.25, 0.0, -.25],
[.125, 0.0, -.125]])
__call__ = staticmethod(__call__)
class ConvolutionModule(PluginModule):
cpp_headers=["convolution.hpp"]
category = "Filter"
functions = [convolve, convolve_xy, convolve_x, convolve_y,
GaussianKernel, GaussianDerivativeKernel,
BinomialKernel, AveragingKernel,
SymmetricGradientKernel, SimpleSharpeningKernel,
gaussian_smoothing, simple_sharpen,
gaussian_gradient, laplacian_of_gaussian,
hessian_matrix_of_gaussian, sobel_edge_detection]
author = u"Michael Droettboom (With code from VIGRA by Ullrich K\u00f6the)"
url = "http://gamera.sourceforge.net/"
module = ConvolutionModule()
BORDER_TREATMENT_AVOID = 0
BORDER_TREATMENT_CLIP = 1
BORDER_TREATMENT_REPEAT = 2
BORDER_TREATMENT_REFLECT = 3
BORDER_TREATMENT_WRAP = 4
GaussianKernel = GaussianKernel()
GaussianDerivativeKernel = GaussianDerivativeKernel()
BinomialKernel = BinomialKernel()
AveragingKernel = AveragingKernel()
SymmetricGradientKernel = SymmetricGradientKernel()
SimpleSharpeningKernel = SimpleSharpeningKernel()
del CONVOLUTION_TYPES
del ConvolutionKernel
|