/usr/share/pyshared/gamera/plugins/binarization.py is in python-gamera 3.3.2-2.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 | #
# Copyright (C) 2005 John Ashley Burgoyne and Ichiro Fujinaga
# 2011 Christoph Dalitz
#
# This program is free software; you can redistribute it and/or
# modify it under the terms of the GNU General Public License
# as published by the Free Software Foundation; either version 2
# of the License, or (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program; if not, write to the Free Software
# Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
#
# TODO: Add GREY16 compatibility.
# TODO: Add Yanowitz and Bruckstein post-processing (a la Trier and Jain).
"""Adaptive binarization tools."""
from gamera.plugin import *
from gamera.args import NoneDefault
import _binarization
class image_mean(PluginFunction):
"""
Returns the mean over all pixels of an image as a FLOAT.
"""
category = "Binarization/RegionInformation"
return_type = Real("output")
self_type = ImageType([GREYSCALE,GREY16,FLOAT])
def __call__(self):
return _binarization.image_mean(self)
__call__ = staticmethod(__call__)
class image_variance(PluginFunction):
"""
Returns the variance over all pixels of an image as a FLOAT.
"""
category = "Binarization/RegionInformation"
return_type = Real("output")
self_type = ImageType([GREYSCALE,GREY16,FLOAT])
def __call__(self):
return _binarization.image_variance(self)
__call__ = staticmethod(__call__)
class mean_filter(PluginFunction):
"""
Returns the regional mean of an image as a FLOAT.
*region_size*
The size of the region in which to calculate a mean.
"""
category = "Binarization/RegionInformation"
return_type = ImageType([FLOAT], "output")
self_type = ImageType([GREYSCALE,GREY16,FLOAT])
args = Args([Int("region size", default=5)])
doc_examples = [(GREYSCALE,), (GREY16,), (FLOAT,)]
def __call__(self, region_size=5):
return _binarization.mean_filter(self, region_size)
__call__ = staticmethod(__call__)
class variance_filter(PluginFunction):
"""
Returns the regional variance of an image as a FLOAT.
*means*
Pre-calculated means for each region.
*region_size*
The size of the region in which to calculate the variance.
"""
category = "Binarization/RegionInformation"
return_type = ImageType([FLOAT], "output")
self_type = ImageType([GREYSCALE,GREY16,FLOAT])
args = Args([ImageType([FLOAT], "means"),
Int("region size", default=5)])
def __call__(self, means, region_size=5):
return _binarization.variance_filter(self, means, region_size)
__call__ = staticmethod(__call__)
class wiener_filter(PluginFunction):
"""
Adaptive Wiener filter for de-noising.
See:
J. Lim. 2001. *Two-Dimensional Signal Processing.* Englewood
Cliffs: Prentice Hall.
*region_size*
The size of the region within which to calculate the filter
coefficients.
*noise_variance*
Variance of the noise in the image. If negative, estimated
automatically as the median of local variances.
"""
category = "Filter"
return_type = ImageType([GREYSCALE,GREY16,FLOAT], "output")
self_type = ImageType([GREYSCALE,GREY16,FLOAT])
args = Args([Int("region size", default=5),
Real("noise variance", default=-1.0)])
doc_examples = [(GREYSCALE,), (GREY16,), (FLOAT,)]
def __call__(self, region_size=5, noise_variance=-1):
return _binarization.wiener_filter(self, region_size, noise_variance)
__call__ = staticmethod(__call__)
class niblack_threshold(PluginFunction):
"""
Creates a binary image using Niblack's adaptive algorithm.
Niblack, W. 1986. *An Introduction to Digital Image Processing.* Englewood
Cliffs, NJ: Prentice Hall.
Like the QGAR library, there are two extra global thresholds for
the lightest and darkest regions.
*region_size*
The size of the region in which to calculate a threshold.
*sensitivity*
The sensitivity weight on the variance.
*lower bound*
A global threshold beneath which all pixels are considered black.
*upper bound*
A global threshold above which all pixels are considered white.
"""
return_type = ImageType([ONEBIT], "output")
self_type = ImageType([GREYSCALE])
args = Args([Int("region size", default=15),
Real("sensitivity", default=-0.2),
Int("lower bound", range=(0,255), default=20),
Int("upper bound", range=(0,255), default=150)])
doc_examples = [(GREYSCALE,)]
def __call__(self,
region_size=15,
sensitivity=-0.2,
lower_bound=20,
upper_bound=150):
return _binarization.niblack_threshold(self,
region_size,
sensitivity,
lower_bound,
upper_bound)
__call__ = staticmethod(__call__)
class sauvola_threshold(PluginFunction):
"""
Creates a binary image using Sauvola's adaptive algorithm.
Sauvola, J. and M. Pietikainen. 2000. Adaptive document image
binarization. *Pattern Recognition* 33: 225--236.
Like the QGAR library, there are two extra global thresholds for
the lightest and darkest regions.
*region_size*
The size of the region in which to calculate a threshold.
*sensitivity*
The sensitivity weight on the adjusted variance.
*dynamic_range*
The dynamic range of the variance.
*lower bound*
A global threshold beneath which all pixels are considered black.
*upper bound*
A global threshold above which all pixels are considered white.
"""
return_type = ImageType([ONEBIT], "output")
self_type = ImageType([GREYSCALE])
args = Args([Int("region size", default=15),
Real("sensitivity", default=0.5),
Int("dynamic range", range=(1, 255), default=128),
Int("lower bound", range=(0,255), default=20),
Int("upper bound", range=(0,255), default=150)])
doc_examples = [(GREYSCALE,)]
def __call__(self,
region_size=15,
sensitivity=0.5,
dynamic_range=128,
lower_bound=20,
upper_bound=150):
return _binarization.sauvola_threshold(self,
region_size,
sensitivity,
dynamic_range,
lower_bound,
upper_bound)
__call__ = staticmethod(__call__)
class gatos_background(PluginFunction):
"""
Estimates the background of an image according to Gatos et al.'s
method. See:
Gatos, Basilios, Ioannis Pratikakis, and Stavros
J. Perantonis. 2004. An adaptive binarization technique for low
quality historical documents. *Lecture Notes in Computer
Science* 3163: 102--113.
*region_size*
Region size for interpolation.
*binarization*
A preliminary binarization of the image.
"""
category = "Binarization/RegionInformation"
return_type = ImageType([GREYSCALE], "output")
self_type = ImageType([GREYSCALE])
args = Args([ImageType([ONEBIT], "binarization"),
Int("region size", default=15)])
def __call__(self, binarization, region_size=15):
return _binarization.gatos_background(self, binarization, region_size)
__call__ = staticmethod(__call__)
class gatos_threshold(PluginFunction):
"""
Thresholds an image according to Gatos et al.'s method. See:
Gatos, Basilios, Ioannis Pratikakis, and Stavros
J. Perantonis. 2004. An adaptive binarization technique for low
quality historical documents. *Lecture Notes in Computer
Science* 3163: 102-113.
*background*
Estimated background of the image.
*binarization*
A preliminary binarization of the image.
Use the default settings for the other parameters unless you know
what you are doing.
"""
return_type = ImageType([ONEBIT], "output")
self_type = ImageType([GREYSCALE])
args = Args([ImageType([GREYSCALE], "background"),
ImageType([ONEBIT], "binarization"),
Real("q", default=0.6),
Real("p1", default=0.5),
Real("p2", default=0.8)])
def __call__(self, background, binarization, q=0.6, p1=0.5, p2=0.8):
return _binarization.gatos_threshold(self,
background,
binarization,
q,
p1,
p2)
__call__ = staticmethod(__call__)
class white_rohrer_threshold(PluginFunction):
"""
Creates a binary image using White and Rohrer's dynamic thresholding
algorithm. It is the first of the two algorithms described in:
J. M. White and G. D. Rohrer. 1983. Image thresholding for optical
character recognition and other applications requiring character
image extraction. *IBM J. Res. Dev.* 27(4), pp. 400-411
The algorithm uses a 'running' average instead of true average of
the gray values in the neighborhood. The lookahead parameter
gives the number of lookahead pixels used in the biased running
average that is used in deciding the threshold at each pixel
location.
*x_lookahead*
the number of lookahead pixels in the horizontal direction for
computing the running average. White and Rohrer suggest a value
of 8 for a 240 dpi scanning resolution.
*y_lookahead*
number of lines used for further averaging from the horizontal
averages.
The other parameters are for calculating biased running average.
Without bias the thresholding decision would be determined by
noise fluctuations in uniform areas.
This implementation uses code from XITE__.
.. __: http://www.ifi.uio.no/forskning/grupper/dsb/Software/Xite/
.. note::
Permission to use, copy, modify and distribute this software
and its documentation for any purpose and without fee is hereby
granted, provided that this copyright notice appear in all
copies and that both that copyright notice and this permission
notice appear in supporting documentation and that the name of
B-lab, Department of Informatics or University of Oslo not be
used in advertising or publicity pertaining to distribution of
the software without specific, written prior permission.
B-LAB DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS SOFTWARE,
INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND
FITNESS, IN NO EVENT SHALL B-LAB BE LIABLE FOR ANY SPECIAL,
INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER
RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION,
ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF
THIS SOFTWARE.
"""
return_type = ImageType([ONEBIT], "onebit")
self_type = ImageType([GREYSCALE])
args = Args([Int("x lookahead", default=8),
Int("y lookahead", default=1),
Int("bias mode", default=0),
Int("bias factor", default=100),
Int("f factor",default=100),
Int("g factor",default=100)])
author = "Uma Kompella (using code from the XITE library)"
doc_examples = [(GREYSCALE,)]
def __call__(self, x_lookahead=8, y_lookahead=1, bias_mode=0,
bias_factor=100, f_factor=100, g_factor=100):
return _binarization.white_rohrer_threshold(
self,
x_lookahead,
y_lookahead,
bias_mode,
bias_factor,
f_factor,
g_factor)
__call__ = staticmethod(__call__)
class shading_subtraction(PluginFunction):
"""
Thresholds an image after subtracting a -possibly shaded- background.
First the backgrund image is extracted with a maximum filter with a
*k\*k* window, and this image is subtracted from the original image.
On the difference image, a threshold is applied, and the inverted
image thereof is the binarization result.
Parameters:
*k*
Window size of the maximum filter. Must be odd. For decent results,
it must be chosen so large that every window includes at least one
background pixel.
*threshold*
Threshold applied to the difference image. A possibly reasonable
value might lie around 20. When ``None``, the threshold is
determined automatically with otsu_find_threshold_.
.. _otsu_find_threshold: binarization.html#otsu-find-threshold
Reference: K.D. Toennies: *Grundlagen der Bildverarbeitung.*
Pearson Studium, 2005, p.202
"""
author = "Christoph Dalitz"
return_type = ImageType([ONEBIT], "onebit")
self_type = ImageType([GREYSCALE])
args = Args([Int("k", default=7), Int("threshold", default=NoneDefault)])
pure_python = True
doc_examples = [(GREYSCALE,)]
def __call__(self, k=7, threshold=None):
background = self.rank(k*k,k,border_treatment=1)
backfloat = background.to_float()
imgfloat = self.to_float()
difffloat = backfloat.subtract_images(imgfloat)
if threshold is None:
diffgrey = difffloat.to_greyscale()
diffgrey.invert()
return diffgrey.otsu_threshold()
else:
onebit = difffloat.threshold(threshold)
onebit.invert()
return onebit
__call__ = staticmethod(__call__)
class BinarizationGenerator(PluginModule):
category = "Binarization"
cpp_headers = ["binarization.hpp"]
functions = [image_mean,
image_variance,
mean_filter,
variance_filter,
wiener_filter,
niblack_threshold,
sauvola_threshold,
gatos_background,
gatos_threshold,
white_rohrer_threshold,
shading_subtraction]
author = "John Ashley Burgoyne and Ichiro Fujinaga"
url = "http://gamera.sourceforge.net/"
module = BinarizationGenerator()
|