/usr/share/pyshared/gamera/knn.py is in python-gamera 3.3.2-2.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 | #
# Copyright (C) 2001-2005 Ichiro Fujinaga, Michael Droettboom,
# and Karl MacMillan
#
# This program is free software; you can redistribute it and/or
# modify it under the terms of the GNU General Public License
# as published by the Free Software Foundation; either version 2
# of the License, or (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program; if not, write to the Free Software
# Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
#
from threading import *
import sys, os
from gamera import core, util, config, classify
from gamera.plugins import features as features_module
import gamera.knncore, gamera.gamera_xml
import array
from gamera.knncore import CITY_BLOCK
from gamera.knncore import EUCLIDEAN
from gamera.knncore import FAST_EUCLIDEAN
KNN_XML_FORMAT_VERSION = 1.0
_distance_type_to_name = {
CITY_BLOCK: "CITY-BLOCK",
EUCLIDEAN: "EUCLIDEAN",
FAST_EUCLIDEAN: "FAST-EUCLIDEAN" }
_distance_type_to_number = {
"CITY-BLOCK": CITY_BLOCK,
"EUCLIDEAN": EUCLIDEAN,
"FAST-EUCLIDEAN": FAST_EUCLIDEAN }
class GaWorker(Thread):
def __init__(self, knn):
Thread.__init__(self)
self.knn = knn
def run(self):
self.knn.ga_initial = self.knn._ga_create()
self.knn.ga_best = self.knn.ga_initial
while(1):
if self.knn.ga_worker_stop:
return
self.knn.ga_best = self.knn._ga_step()
self.knn.ga_generation += 1
for x in self.knn.ga_callbacks:
x(self.knn)
# The kNN classifier stores it settings in a simple xml file -
# this class uses the gamera_xml.LoadXML class to load that
# file. After the file is loaded, kNN.load_settings extracts
# the data from the class to set up kNN.
class _KnnLoadXML(gamera.gamera_xml.LoadXML):
def __init__(self):
gamera.gamera_xml.LoadXML.__init__(self)
def _setup_handlers(self):
self.feature_functions = []
self.weights = { }
self.num_k = None
self.distance_type = None
self.ga_mutation = None
self.ga_crossover = None
self.ga_population = None
self.add_start_element_handler('gamera-knn-settings', self._tag_start_knn_settings)
self.add_start_element_handler('ga', self._tag_start_ga)
self.add_start_element_handler('weights', self._tag_start_weights)
self.add_end_element_handler('weights', self._tag_end_weights)
def _remove_handlers(self):
self.remove_start_element_handler('gamera-knn-settings')
self.remove_start_element_handler('ga')
self.remove_start_element_handler('weights')
def _tag_start_knn_settings(self, a):
version = self.try_type_convert(a, 'version', float, 'gamera-knn-settings')
if version < KNN_XML_FORMAT_VERSION:
raise gamera_xml.XMLError(
"knn-settings XML file is an older version that can not be read by this version of Gamera.")
self.num_k = self.try_type_convert(a, 'num-k', int, 'gamera-knn-settings')
self.distance_type = \
_distance_type_to_number[self.try_type_convert(a, 'distance-type',
str, 'gamera-knn-settings')]
def _tag_start_ga(self, a):
self.ga_mutation = self.try_type_convert(a, 'mutation', float, 'ga')
self.ga_crossover = self.try_type_convert(a, 'crossover', float, 'ga')
self.ga_population = self.try_type_convert(a, 'population', int, 'ga')
def _tag_start_weights(self, a):
self.add_start_element_handler('weight', self._tag_start_weight)
self.add_end_element_handler('weight', self._tag_end_weight)
def _tag_end_weights(self):
self.remove_start_element_handler('weight')
self.remove_end_element_handler('weight')
def _tag_start_weight(self, a):
self._data = u''
self._weight_name = str(a["name"])
self._parser.CharacterDataHandler = self._add_weights
def _tag_end_weight(self):
self._parser.CharacterDataHandler = None
self.weights[self._weight_name] = array.array('d')
nums = str(self._data).split()
tmp = array.array('d', [float(x) for x in nums])
self.weights[self._weight_name] = tmp
def _add_weights(self, data):
self._data += data
class _kNNBase(gamera.knncore.kNN):
"""k-NN classifier that supports optimization using
a Genetic Algorithm. This classifier supports all of
the Gamera interactive/non-interactive classifier interface."""
def __init__(self, num_features=1, num_k=1):
"""Constructor for knn object. Features is a list
of feature names to use for classification. If features
is none then the default settings will be loaded from a
file specified in the user config file. If there is no
settings file specified then all of the features will be
used."""
gamera.knncore.kNN.__init__(self)
self.num_features = num_features
self.num_k = num_k
self.ga_initial = 0.0
self.ga_best = 0.0
self.ga_worker_thread = None
self.ga_worker_stop = 0
self.ga_generation = 0
self.ga_callbacks = []
def __del__(self):
pass
def distance_from_images(self, images, glyph, max=None):
"""**distance_from_images** (ImageList *glyphs*, Image *glyph*, Float *max* = ``None``)
Compute a list of distances between a list of glyphs and a single glyph. Distances
greater than *max* are not included in the output. The return value is a list of
floating-point distances.
"""
self.generate_features(glyph)
self.generate_features_on_glyphs(images)
if max is None:
return self._distance_from_images(iter(images), glyph)
else:
return self._distance_from_images(iter(images), glyph, max)
def distance_between_images(self, imagea, imageb):
"""**distance_between_images** (Image *imagea*, Image *imageb*)
Compute the distance between two images using the settings
for the kNN object (distance_type, features, weights, etc). This
can be used when more control over the distance computations are
needed than with any of the other methods that work on multiple
images at once."""
self.generate_features(imagea)
self.generate_features(imageb)
return self._distance_between_images(imagea, imageb)
def distance_matrix(self, images, normalize=True):
"""**distance_matrix** (ImageList *images*, Bool *normalize* = ``True``)
Create a symmetric FloatImage containing all of the
distances between the images in the list passed in. This is useful
because it allows you to find the distance between any two pairs
of images regardless of the order of the pairs.
*normalize*
When true, the features are normalized before performing the distance
calculations."""
self.generate_features_on_glyphs(images)
l = len(images)
progress = util.ProgressFactory("Generating unique distances...", l)
m = self._distance_matrix(images, progress.step, normalize)
#m = self._distance_matrix(images)
progress.kill()
return m
def unique_distances(self, images, normalize=True):
"""**unique_distances** (ImageList *images*, Bool *normalize* = ``True``)
Return a list of the unique pairs of images in the passed in list
and the distances between them. The return list is a list of tuples
of (distance, imagea, imageb) so that it easy to sort.
*normalize*
When true, the features are normalized before performing the distance
calculations."""
self.generate_features_on_glyphs(images)
l = len(images)
progress = util.ProgressFactory("Generating unique distances...", l)
dists = self._unique_distances(images, progress.step, normalize)
#dists = self._unique_distances(images)
progress.kill()
return dists
def evaluate(self):
"""Float **evaluate** ()
Evaluate the performance of the kNN classifier using
leave-one-out cross-validation. The return value is a
floating-point number between 0.0 (0% correct) and 1.0 (100%
correct).
"""
self.instantiate_from_images(self.database)
ans = self.leave_one_out()
return float(ans[0]) / float(ans[1])
def knndistance_statistics(self, k=0):
"""**knndistance_statistics** (Int *k* = 0)
Returns a list of average distances between each training sample and its *k*
nearest neighbors. So, when you have *n* training samples, *n* average
distance values are returned. This can be useful for distance rejection.
Each item in the returned list is a tuple (*d*, *classname*), where
*d* is the average kNN distance and *classname* is the class name of the
training sample. In most cases, the class name is of little interest,
but it could be useful if you need class conditional distance statistics.
Beware however, that the average distance is computed over neighbors
belonging to any class, not just the same class. If you need the latter,
you must create a new classifier from training samples belonging only
to the specific class.
When *k* is zero, the property ``num_k`` of the knn classifier is used.
"""
self.instantiate_from_images(self.database)
progress = util.ProgressFactory("Generating knndistance statistics...", len(self.database))
stats = self._knndistance_statistics(k, progress.step)
progress.kill()
return stats
def settings_dialog(self, parent):
"""Display a settings dialog for k-NN settings"""
from gamera import args
dlg = args.Args([args.Int('k', range=(0, 100), default=self.num_k),
args.Choice('Distance Function',
['City block', 'Euclidean', 'Fast Euclidean'],
default = self.distance_type)
], name="kNN settings")
results = dlg.show(parent)
if results is None:
return
self.num_k, self.distance_type = results
def save_settings(self, filename):
"""**save_settings** (FileSave *filename*)
Save the kNN settings to the given filename. This settings file (which is XML)
includes k, distance type, GA mutation rate, GA crossover rate, GA population size,
and the current floating point weights. This file is different from the one produced
by serialize in that it contains only the settings and no data."""
from util import word_wrap
file = open(filename, "w")
indent = 0
word_wrap(file, '<?xml version="1.0" encoding="utf-8"?>', indent)
word_wrap(file,
'<gamera-knn-settings version="%s" num-k="%s" distance-type="%s">'
% (KNN_XML_FORMAT_VERSION,
self.num_k,
_distance_type_to_name[self.distance_type]), indent)
indent += 1
word_wrap(file, '<ga mutation="%s" crossover="%s" population="%s"/>' %
(self.ga_mutation, self.ga_crossover, self.ga_population), indent)
if self.feature_functions != None:
word_wrap(file, '<weights>', indent)
indent += 1
feature_no = 0
weights = self.get_weights()
for name, function in self.feature_functions[0]:
word_wrap(file, '<weight name="%s">' % name, indent)
length = function.return_type.length
word_wrap(file,
[x for x in
weights[feature_no:feature_no+length]],
indent + 1)
word_wrap(file, '</weight>', indent)
feature_no += length
indent -= 1
word_wrap(file, '</weights>', indent)
indent -= 1
word_wrap(file, '</gamera-knn-settings>', indent)
file.close()
def load_settings(self, filename):
"""**load_settings** (FileOpen *filename*)
Load the kNN settings from an XML file. See save_settings_."""
from gamera import core
loader = _KnnLoadXML()
loader.parse_filename(filename)
self.num_k = loader.num_k
self.distance_type = loader.distance_type
self.ga_mutation = loader.ga_mutation
self.ga_crossover = loader.ga_crossover
self.ga_population = loader.ga_population
functions = loader.weights.keys()
functions.sort()
self.change_feature_set(functions)
# Create the weights array with the weights in the correct order
weights = array.array('d')
for x in self.feature_functions[0]:
weights.extend(loader.weights[x[0]])
self.set_weights(weights)
def serialize(self, filename):
"""**serialize** (FileSave *filename*)
Saves the classifier-specific settings *and* data in an optimized and
classifer-specific format.
.. note::
It is good practice to retain the XML
file, since it is portable across platforms and to future versions of
Gamera. The binary format is not guaranteed to be portable."""
if self.features == 'all':
gamera.knncore.kNN.serialize(self, filename,['all'])
else:
gamera.knncore.kNN.serialize(self, filename,self.features)
def unserialize(self, filename):
"""**unserialize** (FileOpen *filename*)
Opens the classifier-specific settings *and* data from an optimized and
classifer-specific format."""
features = gamera.knncore.kNN.unserialize(self, filename)
if len(features) == 1 and features[0] == 'all':
self.change_feature_set('all')
else:
self.change_feature_set(features)
def generate_features(self, glyph):
"""**generate_features** (Image *glyph*)
Generates features for the given glyph.
"""
glyph.generate_features(self.feature_functions)
class kNNInteractive(_kNNBase, classify.InteractiveClassifier):
def __init__(self, database=[], features='all', perform_splits=1, num_k=1):
"""**kNNInteractive** (ImageList *database* = ``[]``, *features* = 'all', bool *perform_splits* = ``True``, int *num_k* = ``1``)
Creates a new kNN interactive classifier instance.
*database*
Must be a list (or Python interable) containing glyphs to use
as training data for the classifier.
Any images in the list that were manually classified (have
classification_state == MANUAL) will be used as training data
for the classifier. Any UNCLASSIFIED or AUTOMATICALLY
classified images will be ignored.
When initializing a noninteractive classifier, the database
*must* be non-empty.
*features*
A list of feature function names to use for classification.
These feature names
correspond to the `feature plugin methods`__. To use all
available feature functions, pass in ``'all'``.
.. __: plugins.html#features
*perform_splits*
If ``perform_splits`` is ``True``, glyphs trained with names
beginning with ``_split.`` are run through a given splitting
algorithm. For instance, glyphs that need to be broken into
upper and lower halves for further classification of those
parts would be trained as ``_split.splity``. When the
automatic classifier encounters glyphs that most closely
match those trained as ``_split``, it will perform the
splitting algorithm and then continue to recursively
classify its parts.
The `splitting algorithms`__ are documented in the plugin documentation.
.. __: plugins.html#segmentation
New splitting algorithms can be created by `writing plugin`__ methods
in the category ``Segmentation``.
.. __: writing_plugins.html
"""
self.features = features
self.feature_functions = core.ImageBase.get_feature_functions(features)
num_features = features_module.get_features_length(features)
_kNNBase.__init__(self, num_features=num_features, num_k=num_k)
classify.InteractiveClassifier.__init__(self, database, perform_splits)
def __del__(self):
_kNNBase.__del__(self)
classify.InteractiveClassifier.__del__(self)
def noninteractive_copy(self):
"""**noninteractive_copy** ()
Creates a non-interactive copy of the interactive classifier."""
return kNNNonInteractive(
list(self.get_glyphs()), self.features, self._perform_splits, num_k=self.num_k)
def supports_optimization(self):
"""Flag indicating that this classifier supports optimization."""
return False
def change_feature_set(self, f):
"""**change_feature_set** (*features*)
Changes the set of features used in the classifier to the given list of feature names.
*features*
These feature names correspond to the `feature plugin methods`__.
To use all available feature functions, pass in ``'all'``.
.. __: plugins.html#features"""
self.features = f
self.feature_functions = core.ImageBase.get_feature_functions(f)
self.num_features = features_module.get_features_length(f)
if len(self.database):
self.is_dirty = True
self.generate_features_on_glyphs(self.database)
class kNNNonInteractive(_kNNBase, classify.NonInteractiveClassifier):
def __init__(self, database=[], features='all', perform_splits=True, num_k=1):
"""**kNNNonInteractive** (ImageList *database* = ``[]``, *features* = ``'all'``,
bool *perform_splits* = ``True``, int *num_k* = ``1``)
Creates a new kNN classifier instance.
*database*
Can be in one of two forms:
- When a list (or Python iterable) each element is a glyph
to use as training data for the classifier. (For
non-interactive classifiers, this list must be
non-empty).
- For non-interactive classifiers, *database* may be a
filename, in which case the classifier will be
"unserialized" from the given file.
Any images in the list that were manually classified (have
classification_state == MANUAL) will be used as training data
for the classifier. Any UNCLASSIFIED or AUTOMATICALLY
classified images will be ignored.
When initializing a noninteractive classifier, the database
*must* be non-empty.
*features*
A list of feature function names to use for classification.
These feature names
correspond to the `feature plugin methods`__. To use all
available feature functions, pass in ``'all'``.
.. __: plugins.html#features
*perform_splits*
If ``perform_splits`` is ``True``, glyphs trained with names
beginning with ``_split.`` are run through a given splitting
algorithm. For instance, glyphs that need to be broken into
upper and lower halves for further classification of those
parts would be trained as ``_split.splity``. When the
automatic classifier encounters glyphs that most closely
match those trained as ``_split``, it will perform the
splitting algorithm and then continue to recursively
classify its parts.
The `splitting algorithms`__ are documented in the plugin documentation.
.. __: plugins.html#segmentation
New splitting algorithms can be created by `writing plugin`__ methods
in the category ``Segmentation``.
.. __: writing_plugins.html
"""
self.features = features
self.feature_functions = core.ImageBase.get_feature_functions(features)
num_features = features_module.get_features_length(features)
_kNNBase.__init__(self, num_features=num_features, num_k=num_k)
classify.NonInteractiveClassifier.__init__(self, database, perform_splits)
def __del__(self):
_kNNBase.__del__(self)
classify.NonInteractiveClassifier.__del__(self)
def change_feature_set(self, f):
"""**change_feature_set** (*features*)
Changes the set of features used in the classifier to the given list of feature names.
*features*
These feature names correspond to the `feature plugin methods`__.
To use all available feature functions, pass in ``'all'``.
.. __: plugins.html#features"""
self.features = f
self.feature_functions = core.ImageBase.get_feature_functions(f)
self.num_features = features_module.get_features_length(f)
if len(self.database):
self.is_dirty = True
self.generate_features_on_glyphs(self.database)
self.instantiate_from_images(self.database)
def supports_optimization(self):
"""Flag indicating that this classifier supports optimization."""
return True
def start_optimizing(self):
"""**start_optimizing** ()
Starts the genetic algorithm optimization of the weights of the
features. The optimization is run in a background thread.
In the genetic algorithm, the population consists of vectors of
feature weights. The vectors are evaluated using the
leave_one_out algorithm. The vectors that perform well are
allowed to reproduce to producing offspring using combination at a
randomly chosen split point.
For a user-friendly way to perform GA optimization, consider the Biollante_
tool in the Gamera GUI.
.. _Biollante: gui.html#classifier-optimization-biollante"""
self.ga_worker_stop = False
self.ga_worker_thread = GaWorker(self)
self.ga_worker_thread.setDaemon(1)
self.ga_worker_thread.start()
def stop_optimizing(self):
"""**stop_optimizing** ()
Stops the background optimization thread.
NOTE: This method has to wait for the current GA generation to finish before returning, which
could take several seconds."""
if not self.ga_worker_thread:
return
self.ga_worker_stop = 1
self.ga_worker_thread.join()
self.ga_worker_thread = None
self._ga_destroy()
return self.ga_best
def add_optimization_callback(self, func):
"""**add_optimization_callback** (*function*)
Adds a function that will be called everytime the optimization process
improves the performance of the classifier. This callback function must take
one argument which is an instance of the kNN classifier."""
self.ga_callbacks.append(func)
def remove_optimization_callback(self, func):
"""**remove_optimization_callback** (*function*)
Removes an optimization callback function added using
add_optimization_callback_."""
try:
self.ga_callbacks.remove(func)
except:
pass
def simple_feature_selector(glyphs):
"""simple_feature_selector does a brute-force search through all
possible combinations of features and returns a sorted list of
tuples (accuracy, features). WARNING: this function should take
a long time to complete."""
if len(glyphs) <= 1:
raise RuntimeError("Lenght of list must be greater than 1")
c = classify.kNNNonInteractive()
# For efficiency we calculate all of the features and pass in the
# indexes of the features vector that we want to use for the distance
# calculation. This is more efficient than using the features weights
# or recalculating the features.
all_features = []
feature_indexes = {}
offset = 0
for x in glyphs[0].get_feature_functions()[0]:
all_features.append(x[0])
feature_indexes[x[0]] = range(offset, offset + x[1].return_type.length)
offset += x[1].return_type.length
# First do the easy ones = single features and all features
answers = []
c.change_feature_set(all_features)
c.set_glyphs(glyphs)
ans = c.classifier.leave_one_out()
# Because we are only interested in top score, we can stop the evaluation
# after we have missed too many answers to possibly beat the top score.
# Therefore, we store the number missed for the top score here and pass
# it into leave_one_out.
stop_threshold = ans[1] - ans[0]
answer = (float(ans[0]) / float(ans[1]), all_features)
for x in all_features:
ans = c.classifier.leave_one_out(feature_indexes[x], stop_threshold)
num_wrong = ans[1] - ans[0]
print num_wrong, ans[1], ans[0]
if num_wrong < stop_threshold:
stop_threshold = num_wrong
answer = (float(ans[0]) / float(ans[1]), x)
# Now do the remaining combinations using the CombGen object for each
# size subset of all of the features.
for i in range(2, len(all_features) - 1):
for x in CombGen(all_features, i):
indexes = []
for y in x:
indexes.extend(feature_indexes[y])
ans = c.classifier.leave_one_out(indexes, stop_threshold)
num_wrong = ans[1] - ans[0]
print num_wrong, ans[1], ans[0]
if num_wrong < stop_threshold:
stop_threshold = num_wrong
answer = (float(ans[0]) / float(ans[1]), x)
return answer
class CombGen:
"""Generate the k-combinations of a sequence. This is a iterator
that generates the combinations on the fly. This code was adapted
from a posting by Tim Peters"""
def __init__(self, seq, k):
n = self.n = len(seq)
if not 1 <= k <= n:
raise ValueError("k must be in 1.." + `n` + ": " + `k`)
self.k = k
self.seq = seq
self.indices = range(k)
# Trickery to make the first .next() call work.
self.indices[-1] = self.indices[-1] - 1
def __iter__(self):
return self
def next(self):
n, k, indices = self.n, self.k, self.indices
lasti, limit = k-1, n-1
while lasti >= 0 and indices[lasti] == limit:
lasti = lasti - 1
limit = limit - 1
if lasti < 0:
raise StopIteration
newroot = indices[lasti] + 1
indices[lasti:] = range(newroot, newroot + k - lasti)
# Build the result.
result = []
seq = self.seq
for i in indices:
result.append(seq[i])
return result
def _get_id_stats(glyphs, k=None):
import stats
if len(glyphs) < 3:
return (len(glyphs),1.0, 1.0, 1.0)
if k is None:
k = kNN()
distances = k.unique_distances(glyphs)
return (len(glyphs),stats.lmean(distances), stats.lstdev(distances), stats.lmedian(distances))
def get_glyphs_stats(glyphs):
k = kNN()
klasses = {}
for x in glyphs:
id = x.get_main_id()
if not klasses.has_key(id):
klasses[id] = []
klasses[id].append(x)
stats = {}
for x in klasses.iteritems():
stats[x[0]] = _get_id_stats(x[1], k)
return stats
def comma_delim_stats(glyphs, filename):
file = open(filename, "w")
stats = get_glyphs_stats(glyphs)
for x in stats.iteritems():
file.write(x[0])
file.write(',')
file.write(str(x[1][0]))
file.write(',')
file.write(str(x[1][1]))
file.write(',')
file.write(str(x[1][2]))
file.write(',')
file.write(str(x[1][3]))
file.write('\n')
file.close()
def glyphs_by_category(glyphs):
klasses = {}
for x in glyphs:
id = x.get_main_id()
if not klasses.has_key(id):
klasses[id] = []
klasses[id].append(x)
return klasses
|