This file is indexed.

/usr/share/pyshared/gamera/knn.py is in python-gamera 3.3.2-2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
#
# Copyright (C) 2001-2005 Ichiro Fujinaga, Michael Droettboom,
#                          and Karl MacMillan
#
# This program is free software; you can redistribute it and/or
# modify it under the terms of the GNU General Public License
# as published by the Free Software Foundation; either version 2
# of the License, or (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
# GNU General Public License for more details.
# 
# You should have received a copy of the GNU General Public License
# along with this program; if not, write to the Free Software
# Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
#

from threading import *
import sys, os
from gamera import core, util, config, classify
from gamera.plugins import features as features_module
import gamera.knncore, gamera.gamera_xml
import array

from gamera.knncore import CITY_BLOCK
from gamera.knncore import EUCLIDEAN
from gamera.knncore import FAST_EUCLIDEAN

KNN_XML_FORMAT_VERSION = 1.0

_distance_type_to_name = {
    CITY_BLOCK: "CITY-BLOCK",
    EUCLIDEAN: "EUCLIDEAN",
    FAST_EUCLIDEAN: "FAST-EUCLIDEAN" }

_distance_type_to_number = {
    "CITY-BLOCK": CITY_BLOCK,
    "EUCLIDEAN": EUCLIDEAN,
    "FAST-EUCLIDEAN": FAST_EUCLIDEAN }

class GaWorker(Thread):
   def __init__(self, knn):
      Thread.__init__(self)
      self.knn = knn

   def run(self):
      self.knn.ga_initial = self.knn._ga_create()
      self.knn.ga_best = self.knn.ga_initial
      while(1):
         if self.knn.ga_worker_stop:
            return
         self.knn.ga_best = self.knn._ga_step()
         self.knn.ga_generation += 1
         for x in self.knn.ga_callbacks:
            x(self.knn)

# The kNN classifier stores it settings in a simple xml file -
# this class uses the gamera_xml.LoadXML class to load that
# file. After the file is loaded, kNN.load_settings extracts
# the data from the class to set up kNN.
class _KnnLoadXML(gamera.gamera_xml.LoadXML):
   def __init__(self):
      gamera.gamera_xml.LoadXML.__init__(self)

   def _setup_handlers(self):
      self.feature_functions = []
      self.weights = { }
      self.num_k = None
      self.distance_type = None
      self.ga_mutation = None
      self.ga_crossover = None
      self.ga_population = None
      self.add_start_element_handler('gamera-knn-settings', self._tag_start_knn_settings)
      self.add_start_element_handler('ga', self._tag_start_ga)
      self.add_start_element_handler('weights', self._tag_start_weights)
      self.add_end_element_handler('weights', self._tag_end_weights)

   def _remove_handlers(self):
      self.remove_start_element_handler('gamera-knn-settings')
      self.remove_start_element_handler('ga')
      self.remove_start_element_handler('weights')

   def _tag_start_knn_settings(self, a):
      version = self.try_type_convert(a, 'version', float, 'gamera-knn-settings')
      if version < KNN_XML_FORMAT_VERSION:
         raise gamera_xml.XMLError(
            "knn-settings XML file is an older version that can not be read by this version of Gamera.")
      self.num_k = self.try_type_convert(a, 'num-k', int, 'gamera-knn-settings')
      self.distance_type = \
        _distance_type_to_number[self.try_type_convert(a, 'distance-type',
                                                       str, 'gamera-knn-settings')]

   def _tag_start_ga(self, a):
      self.ga_mutation = self.try_type_convert(a, 'mutation', float, 'ga')
      self.ga_crossover = self.try_type_convert(a, 'crossover', float, 'ga')
      self.ga_population = self.try_type_convert(a, 'population', int, 'ga')

   def _tag_start_weights(self, a):
      self.add_start_element_handler('weight', self._tag_start_weight)
      self.add_end_element_handler('weight', self._tag_end_weight)

   def _tag_end_weights(self):
      self.remove_start_element_handler('weight')
      self.remove_end_element_handler('weight')

   def _tag_start_weight(self, a):
      self._data = u''
      self._weight_name = str(a["name"])
      self._parser.CharacterDataHandler = self._add_weights

   def _tag_end_weight(self):
      self._parser.CharacterDataHandler = None
      self.weights[self._weight_name] = array.array('d')
      nums = str(self._data).split()
      tmp = array.array('d', [float(x) for x in nums])
      self.weights[self._weight_name] = tmp

   def _add_weights(self, data):
      self._data += data

class _kNNBase(gamera.knncore.kNN):
   """k-NN classifier that supports optimization using
   a Genetic Algorithm. This classifier supports all of
   the Gamera interactive/non-interactive classifier interface."""

   def __init__(self, num_features=1, num_k=1):
      """Constructor for knn object. Features is a list
      of feature names to use for classification. If features
      is none then the default settings will be loaded from a
      file specified in the user config file. If there is no
      settings file specified then all of the features will be
      used."""
      gamera.knncore.kNN.__init__(self)
      self.num_features = num_features
      self.num_k = num_k
      self.ga_initial = 0.0
      self.ga_best = 0.0
      self.ga_worker_thread = None
      self.ga_worker_stop = 0
      self.ga_generation = 0
      self.ga_callbacks = []

   def __del__(self):
      pass

   def distance_from_images(self, images, glyph, max=None):
      """**distance_from_images** (ImageList *glyphs*, Image *glyph*, Float *max* = ``None``)

Compute a list of distances between a list of glyphs and a single glyph. Distances
greater than *max* are not included in the output.  The return value is a list of
floating-point distances.
"""
      self.generate_features(glyph)
      self.generate_features_on_glyphs(images)
      if max is None:
         return self._distance_from_images(iter(images), glyph)
      else:
         return self._distance_from_images(iter(images), glyph, max)

   def distance_between_images(self, imagea, imageb):
      """**distance_between_images** (Image *imagea*, Image *imageb*)

Compute the distance between two images using the settings
for the kNN object (distance_type, features, weights, etc). This
can be used when more control over the distance computations are
needed than with any of the other methods that work on multiple
images at once."""
      self.generate_features(imagea)
      self.generate_features(imageb)
      return self._distance_between_images(imagea, imageb)

   def distance_matrix(self, images, normalize=True):
      """**distance_matrix** (ImageList *images*, Bool *normalize* = ``True``)

Create a symmetric FloatImage containing all of the
distances between the images in the list passed in. This is useful
because it allows you to find the distance between any two pairs
of images regardless of the order of the pairs.

*normalize*
  When true, the features are normalized before performing the distance
  calculations."""
      self.generate_features_on_glyphs(images)
      l = len(images)
      progress = util.ProgressFactory("Generating unique distances...", l)
      m = self._distance_matrix(images, progress.step, normalize)
      #m = self._distance_matrix(images)
      progress.kill()
      return m

   def unique_distances(self, images, normalize=True):
      """**unique_distances** (ImageList *images*, Bool *normalize* = ``True``)

Return a list of the unique pairs of images in the passed in list
and the distances between them. The return list is a list of tuples
of (distance, imagea, imageb) so that it easy to sort.

*normalize*
  When true, the features are normalized before performing the distance
  calculations."""
      self.generate_features_on_glyphs(images)
      l = len(images)
      progress = util.ProgressFactory("Generating unique distances...", l)
      dists = self._unique_distances(images, progress.step, normalize)
      #dists = self._unique_distances(images)
      progress.kill()
      return dists

   def evaluate(self):
      """Float **evaluate** ()

Evaluate the performance of the kNN classifier using
leave-one-out cross-validation. The return value is a
floating-point number between 0.0 (0% correct) and 1.0 (100%
correct).
"""
      self.instantiate_from_images(self.database)
      ans = self.leave_one_out()
      return float(ans[0]) / float(ans[1])

   def knndistance_statistics(self, k=0):
      """**knndistance_statistics** (Int *k* = 0)

Returns a list of average distances between each training sample and its *k*
nearest neighbors. So, when you have *n* training samples, *n* average
distance values are returned. This can be useful for distance rejection.

Each item in the returned list is a tuple (*d*, *classname*), where
*d* is the average kNN distance and *classname* is the class name of the
training sample. In most cases, the class name is of little interest,
but it could be useful if you need class conditional distance statistics.
Beware however, that the average distance is computed over neighbors
belonging to any class, not just the same class. If you need the latter,
you must create a new classifier from training samples belonging only
to the specific class.

When *k* is zero, the property ``num_k`` of the knn classifier is used.
"""
      self.instantiate_from_images(self.database)
      progress = util.ProgressFactory("Generating knndistance statistics...", len(self.database))
      stats = self._knndistance_statistics(k, progress.step)
      progress.kill()
      return stats

   def settings_dialog(self, parent):
      """Display a settings dialog for k-NN settings"""
      from gamera import args
      dlg = args.Args([args.Int('k', range=(0, 100), default=self.num_k),
                       args.Choice('Distance Function',
                                   ['City block', 'Euclidean', 'Fast Euclidean'],
                                   default = self.distance_type)
                       ], name="kNN settings")
      results = dlg.show(parent)
      if results is None:
         return
      self.num_k, self.distance_type = results

   def save_settings(self, filename):
      """**save_settings** (FileSave *filename*)

Save the kNN settings to the given filename. This settings file (which is XML)
includes k, distance type, GA mutation rate, GA crossover rate, GA population size,
and the current floating point weights. This file is different from the one produced
by serialize in that it contains only the settings and no data."""
      from util import word_wrap
      file = open(filename, "w")
      indent = 0
      word_wrap(file, '<?xml version="1.0" encoding="utf-8"?>', indent)
      word_wrap(file,
                '<gamera-knn-settings version="%s" num-k="%s" distance-type="%s">'
                % (KNN_XML_FORMAT_VERSION,
                   self.num_k,
                   _distance_type_to_name[self.distance_type]), indent)
      indent += 1
      word_wrap(file, '<ga mutation="%s" crossover="%s" population="%s"/>' %
                (self.ga_mutation, self.ga_crossover, self.ga_population), indent)
      if self.feature_functions != None:
         word_wrap(file, '<weights>', indent)
         indent += 1
         feature_no = 0
         weights = self.get_weights()
         for name, function in self.feature_functions[0]:
            word_wrap(file, '<weight name="%s">' % name, indent)
            length = function.return_type.length
            word_wrap(file,
                      [x for x in
                       weights[feature_no:feature_no+length]],
                      indent + 1)
            word_wrap(file, '</weight>', indent)
            feature_no += length
         indent -= 1
         word_wrap(file, '</weights>', indent)
      indent -= 1
      word_wrap(file, '</gamera-knn-settings>', indent)
      file.close()

   def load_settings(self, filename):
      """**load_settings** (FileOpen *filename*)

Load the kNN settings from an XML file.  See save_settings_."""
      from gamera import core

      loader = _KnnLoadXML()
      loader.parse_filename(filename)
      self.num_k = loader.num_k
      self.distance_type = loader.distance_type
      self.ga_mutation = loader.ga_mutation
      self.ga_crossover = loader.ga_crossover
      self.ga_population = loader.ga_population
      functions = loader.weights.keys()
      functions.sort()
      self.change_feature_set(functions)
      # Create the weights array with the weights in the correct order
      weights = array.array('d')
      for x in self.feature_functions[0]:
         weights.extend(loader.weights[x[0]])
      self.set_weights(weights)

   def serialize(self, filename):
      """**serialize** (FileSave *filename*)

Saves the classifier-specific settings *and* data in an optimized and
classifer-specific format.  

.. note:: 
   It is good practice to retain the XML
   file, since it is portable across platforms and to future versions of
   Gamera.  The binary format is not guaranteed to be portable."""
      if self.features == 'all':
         gamera.knncore.kNN.serialize(self, filename,['all'])
      else:
         gamera.knncore.kNN.serialize(self, filename,self.features)

   def unserialize(self, filename):
      """**unserialize** (FileOpen *filename*)

Opens the classifier-specific settings *and* data from an optimized and
classifer-specific format."""
      features = gamera.knncore.kNN.unserialize(self, filename)
      if len(features) == 1 and features[0] == 'all':
         self.change_feature_set('all')
      else:
         self.change_feature_set(features)

   def generate_features(self, glyph):
      """**generate_features** (Image *glyph*)

Generates features for the given glyph.
"""
      glyph.generate_features(self.feature_functions)

class kNNInteractive(_kNNBase, classify.InteractiveClassifier):
   def __init__(self, database=[], features='all', perform_splits=1, num_k=1):
      """**kNNInteractive** (ImageList *database* = ``[]``, *features* = 'all', bool *perform_splits* = ``True``, int *num_k* = ``1``)

Creates a new kNN interactive classifier instance.

*database*
        Must be a list (or Python interable) containing glyphs to use
        as training data for the classifier.

        Any images in the list that were manually classified (have
	classification_state == MANUAL) will be used as training data
	for the classifier.  Any UNCLASSIFIED or AUTOMATICALLY
	classified images will be ignored.

	When initializing a noninteractive classifier, the database
	*must* be non-empty.

*features*
	A list of feature function names to use for classification.
	These feature names
	correspond to the `feature plugin methods`__.  To use all
	available feature functions, pass in ``'all'``.

.. __: plugins.html#features

*perform_splits*
	  If ``perform_splits`` is ``True``, glyphs trained with names
	  beginning with ``_split.`` are run through a given splitting
	  algorithm.  For instance, glyphs that need to be broken into
	  upper and lower halves for further classification of those
	  parts would be trained as ``_split.splity``.  When the
	  automatic classifier encounters glyphs that most closely
	  match those trained as ``_split``, it will perform the
	  splitting algorithm and then continue to recursively
	  classify its parts.

	  The `splitting algorithms`__ are documented in the plugin documentation.

.. __: plugins.html#segmentation

          New splitting algorithms can be created by `writing plugin`__ methods
          in the category ``Segmentation``.  

.. __: writing_plugins.html

      """
      self.features = features
      self.feature_functions = core.ImageBase.get_feature_functions(features)
      num_features = features_module.get_features_length(features)
      _kNNBase.__init__(self, num_features=num_features, num_k=num_k)
      classify.InteractiveClassifier.__init__(self, database, perform_splits)

   def __del__(self):
      _kNNBase.__del__(self)
      classify.InteractiveClassifier.__del__(self)

   def noninteractive_copy(self):
      """**noninteractive_copy** ()

Creates a non-interactive copy of the interactive classifier."""
      return kNNNonInteractive(
         list(self.get_glyphs()), self.features, self._perform_splits, num_k=self.num_k)

   def supports_optimization(self):
      """Flag indicating that this classifier supports optimization."""
      return False

   def change_feature_set(self, f):
      """**change_feature_set** (*features*)

Changes the set of features used in the classifier to the given list of feature names.

*features*
  These feature names correspond to the `feature plugin methods`__.
  To use all available feature functions, pass in ``'all'``.

.. __: plugins.html#features"""
      self.features = f
      self.feature_functions = core.ImageBase.get_feature_functions(f)
      self.num_features = features_module.get_features_length(f)
      if len(self.database):
         self.is_dirty = True
         self.generate_features_on_glyphs(self.database)

class kNNNonInteractive(_kNNBase, classify.NonInteractiveClassifier):
   def __init__(self, database=[], features='all', perform_splits=True, num_k=1):
      """**kNNNonInteractive** (ImageList *database* = ``[]``, *features* = ``'all'``,
bool *perform_splits* = ``True``, int *num_k* = ``1``)

Creates a new kNN classifier instance.

*database*
        Can be in one of two forms:

           - When a list (or Python iterable) each element is a glyph
             to use as training data for the classifier.  (For
             non-interactive classifiers, this list must be
             non-empty).

           - For non-interactive classifiers, *database* may be a
             filename, in which case the classifier will be
             "unserialized" from the given file.

        Any images in the list that were manually classified (have
	classification_state == MANUAL) will be used as training data
	for the classifier.  Any UNCLASSIFIED or AUTOMATICALLY
	classified images will be ignored.

	When initializing a noninteractive classifier, the database
	*must* be non-empty.

*features*
	A list of feature function names to use for classification.
	These feature names
	correspond to the `feature plugin methods`__.  To use all
	available feature functions, pass in ``'all'``.

.. __: plugins.html#features

*perform_splits*
	  If ``perform_splits`` is ``True``, glyphs trained with names
	  beginning with ``_split.`` are run through a given splitting
	  algorithm.  For instance, glyphs that need to be broken into
	  upper and lower halves for further classification of those
	  parts would be trained as ``_split.splity``.  When the
	  automatic classifier encounters glyphs that most closely
	  match those trained as ``_split``, it will perform the
	  splitting algorithm and then continue to recursively
	  classify its parts.

	  The `splitting algorithms`__ are documented in the plugin documentation.

.. __: plugins.html#segmentation

          New splitting algorithms can be created by `writing plugin`__ methods
          in the category ``Segmentation``.  

.. __: writing_plugins.html

      """
      self.features = features
      self.feature_functions = core.ImageBase.get_feature_functions(features)
      num_features = features_module.get_features_length(features)
      _kNNBase.__init__(self, num_features=num_features, num_k=num_k)
      classify.NonInteractiveClassifier.__init__(self, database, perform_splits)

   def __del__(self):
      _kNNBase.__del__(self)
      classify.NonInteractiveClassifier.__del__(self)

   def change_feature_set(self, f):
      """**change_feature_set** (*features*)

Changes the set of features used in the classifier to the given list of feature names.

*features*
  These feature names correspond to the `feature plugin methods`__.
  To use all available feature functions, pass in ``'all'``.

.. __: plugins.html#features"""
      self.features = f
      self.feature_functions = core.ImageBase.get_feature_functions(f)
      self.num_features = features_module.get_features_length(f)
      if len(self.database):
         self.is_dirty = True
         self.generate_features_on_glyphs(self.database)
         self.instantiate_from_images(self.database)

   def supports_optimization(self):
      """Flag indicating that this classifier supports optimization."""
      return True

   def start_optimizing(self):
      """**start_optimizing** ()

Starts the genetic algorithm optimization of the weights of the
features.  The optimization is run in a background thread.

In the genetic algorithm, the population consists of vectors of
feature weights.  The vectors are evaluated using the
leave_one_out algorithm.  The vectors that perform well are
allowed to reproduce to producing offspring using combination at a
randomly chosen split point.

For a user-friendly way to perform GA optimization, consider the Biollante_
tool in the Gamera GUI.

.. _Biollante: gui.html#classifier-optimization-biollante"""
      self.ga_worker_stop = False
      self.ga_worker_thread = GaWorker(self)
      self.ga_worker_thread.setDaemon(1)
      self.ga_worker_thread.start()

   def stop_optimizing(self):
      """**stop_optimizing** ()

Stops the background optimization thread.

NOTE: This method has to wait for the current GA generation to finish before returning, which
could take several seconds."""
      if not self.ga_worker_thread:
         return
      self.ga_worker_stop = 1
      self.ga_worker_thread.join()
      self.ga_worker_thread = None
      self._ga_destroy()
      return self.ga_best

   def add_optimization_callback(self, func):
      """**add_optimization_callback** (*function*)

Adds a function that will be called everytime the optimization process
improves the performance of the classifier.  This callback function must take
one argument which is an instance of the kNN classifier."""
      self.ga_callbacks.append(func)

   def remove_optimization_callback(self, func):
      """**remove_optimization_callback** (*function*)

Removes an optimization callback function added using
add_optimization_callback_."""
      try:
         self.ga_callbacks.remove(func)
      except:
         pass

def simple_feature_selector(glyphs):
   """simple_feature_selector does a brute-force search through all
   possible combinations of features and returns a sorted list of
   tuples (accuracy, features). WARNING: this function should take
   a long time to complete."""

   if len(glyphs) <= 1:
      raise RuntimeError("Lenght of list must be greater than 1")
   
   c = classify.kNNNonInteractive()

   # For efficiency we calculate all of the features and pass in the
   # indexes of the features vector that we want to use for the distance
   # calculation. This is more efficient than using the features weights
   # or recalculating the features.
   all_features = []
   feature_indexes = {}
   offset = 0
   for x in glyphs[0].get_feature_functions()[0]:
      all_features.append(x[0])
      feature_indexes[x[0]] = range(offset, offset + x[1].return_type.length)
      offset += x[1].return_type.length
   # First do the easy ones = single features and all features
   answers = []
   c.change_feature_set(all_features)
   c.set_glyphs(glyphs)
   ans = c.classifier.leave_one_out()
   # Because we are only interested in top score, we can stop the evaluation
   # after we have missed too many answers to possibly beat the top score.
   # Therefore, we store the number missed for the top score here and pass
   # it into leave_one_out.
   stop_threshold = ans[1] - ans[0]
   answer = (float(ans[0]) / float(ans[1]), all_features)
   for x in all_features:
      ans = c.classifier.leave_one_out(feature_indexes[x], stop_threshold)
      num_wrong = ans[1] - ans[0]
      print num_wrong, ans[1], ans[0]
      if num_wrong < stop_threshold:
         stop_threshold = num_wrong
         answer = (float(ans[0]) / float(ans[1]), x)
   # Now do the remaining combinations using the CombGen object for each
   # size subset of all of the features.
   for i in range(2, len(all_features) - 1):
      for x in CombGen(all_features, i):
         indexes = []
         for y in x:
            indexes.extend(feature_indexes[y])
         ans = c.classifier.leave_one_out(indexes, stop_threshold)
         num_wrong = ans[1] - ans[0]
         print num_wrong, ans[1], ans[0]
         if num_wrong < stop_threshold:
            stop_threshold = num_wrong
            answer = (float(ans[0]) / float(ans[1]), x)
   return answer


class CombGen:
   """Generate the k-combinations of a sequence. This is a iterator
   that generates the combinations on the fly. This code was adapted
   from a posting by Tim Peters"""
   def __init__(self, seq, k):
      n = self.n = len(seq)
      if not 1 <= k <= n:
         raise ValueError("k must be in 1.." + `n` + ": " + `k`)
      self.k = k
      self.seq = seq
      self.indices = range(k)
      # Trickery to make the first .next() call work.
      self.indices[-1] = self.indices[-1] - 1

   def __iter__(self):
      return self

   def next(self):
      n, k, indices = self.n, self.k, self.indices
      lasti, limit = k-1, n-1
      while lasti >= 0 and indices[lasti] == limit:
         lasti = lasti - 1
         limit = limit - 1
      if lasti < 0:
         raise StopIteration
      newroot = indices[lasti] + 1
      indices[lasti:] = range(newroot, newroot + k - lasti)
      # Build the result.
      result = []
      seq = self.seq
      for i in indices:
         result.append(seq[i])
      return result

def _get_id_stats(glyphs, k=None):
   import stats
   if len(glyphs) < 3:
      return (len(glyphs),1.0, 1.0, 1.0)
   if k is None:
      k = kNN()
   distances = k.unique_distances(glyphs)
   return (len(glyphs),stats.lmean(distances), stats.lstdev(distances), stats.lmedian(distances))

def get_glyphs_stats(glyphs):
   k = kNN()
   klasses = {}
   for x in glyphs:
      id = x.get_main_id()
      if not klasses.has_key(id):
         klasses[id] = []
      klasses[id].append(x)
   stats = {}
   for x in klasses.iteritems():
      stats[x[0]] = _get_id_stats(x[1], k)
   return stats

def comma_delim_stats(glyphs, filename):
   file = open(filename, "w")
   stats = get_glyphs_stats(glyphs)
   for x in stats.iteritems():
      file.write(x[0])
      file.write(',')
      file.write(str(x[1][0]))
      file.write(',')
      file.write(str(x[1][1]))
      file.write(',')
      file.write(str(x[1][2]))
      file.write(',')
      file.write(str(x[1][3]))
      file.write('\n')
   file.close()

def glyphs_by_category(glyphs):
   klasses = {}
   for x in glyphs:
      id = x.get_main_id()
      if not klasses.has_key(id):
         klasses[id] = []
      klasses[id].append(x)
   return klasses