/usr/share/pyshared/dolfin/functions/function.py is in python-dolfin 1.0.0-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 | """This module handles the Function class in Python.
"""
# Copyright (C) 2009 Johan Hake
#
# This file is part of DOLFIN.
#
# DOLFIN is free software: you can redistribute it and/or modify
# it under the terms of the GNU Lesser General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# DOLFIN is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU Lesser General Public License for more details.
#
# You should have received a copy of the GNU Lesser General Public License
# along with DOLFIN. If not, see <http://www.gnu.org/licenses/>.
#
# First added: 2009-10-06
# Last changed: 2011-04-18
__all__ = ["Function", "TestFunction", "TrialFunction", "Argument",
"TestFunctions", "TrialFunctions"]
import types
# Import UFL and SWIG-generated extension module (DOLFIN C++)
import ufl
import dolfin.cpp as cpp
import numpy
from dolfin.functions.functionspace import FunctionSpaceBase
class MetaNoEvalOverloading(type):
def __init__(mcs, name, bases, dictionary):
if "eval" in dictionary:
raise TypeError, "cannot overload 'eval'"
class Function(ufl.Coefficient, cpp.Function):
"""
This class represents a function :math:`u_h` in a finite
element function space :math:`V_h`, given by
.. math::
u_h = \sum_{i=1}^n U_i \phi_i,
where :math:`\{\phi_i\}_{i=1}^n` is a basis for :math:`V_h`,
and :math:`U` is a vector of expansion coefficients for
:math:`u_h`.
*Arguments*
There is a maximum of two arguments. The first argument must be a
Function or a :py:class:`FunctionSpace
<dolfin.functions.functionspace.FunctionSpace>`.
If instantiated from another Function, the (optional)
second argument must be an integer denoting the number
of sub functions to extract.
*Examples*
Create a Function:
- from a :py:class:`FunctionSpace
<dolfin.functions.functionspace.FunctionSpace>` ``V``
.. code-block:: python
f = Function(V)
- from another Function ``f``
.. code-block:: python
g = Function(f)
- from a :py:class:`FunctionSpace
<dolfin.functions.functionspace.FunctionSpace>` ``V`` and a
:py:class:`GenericVector <dolfin.cpp.GenericVector>` ``v``
.. code-block:: python
g = Function(V, v)
- from a :py:class:`FunctionSpace
<dolfin.functions.functionspace.FunctionSpace>` and a
filename containg a :py:class:`GenericVector
<dolfin.cpp.GenericVector>`
.. code-block:: python
g = Function(V, 'MyVectorValues.xml')
"""
__metaclass__ = MetaNoEvalOverloading
def __init__(self, *args):
"""Initialize Function."""
# Check arguments
if len(args) == 0:
raise TypeError, "expected 1 or more arguments"
if not isinstance(args[0], (FunctionSpaceBase, Function)):
raise TypeError, "expected a FunctionSpace or a Function as argument 1"
# If using the copy constuctor
if isinstance(args[0], Function):
other = args[0]
# If using the copy constuctor
if len(args) == 1:
# Instantiate base classes
cpp.Function.__init__(self, other)
ufl.Coefficient.__init__(self, other._element)
return
# If using sub-function constructor
elif len(args) == 2 and isinstance(args[1], int):
i = args[1]
num_sub_spaces = other.function_space().num_sub_spaces()
if num_sub_spaces == 1:
raise RuntimeError, "No subfunctions to extract"
if not i < num_sub_spaces:
raise RuntimeError, "Can only extract subfunctions with i = 0..%d"% num_sub_spaces
cpp.Function.__init__(self, other, i)
ufl.Coefficient.__init__(self, self.function_space().ufl_element())
return
else:
raise TypeError, "expected one or two arguments when instantiating from another Function"
V = args[0]
# Instantiate ufl base class
ufl.Coefficient.__init__(self, V.ufl_element())
# Passing only the FunctionSpace
if len(args) == 1:
# Instantiate cpp base classes
cpp.Function.__init__(self, V)
elif len(args) == 2:
# If passing FunctionSpace together with cpp.Function
# Attached passed FunctionSpace and initialize the cpp.Function
# using the passed Function
if isinstance(args[1], cpp.Function):
if args[1].function_space().dim() != V.dim():
raise ValueError, "non matching dimensions on passed FunctionSpaces"
cpp.Function.__init__(self, args[1])
else:
cpp.Function.__init__(self, *args)
else:
raise TypeError, "too many arguments"
def _sub(self, i, deepcopy = False):
"""Return a sub function.
The sub functions are numbered from i = 0..N-1, where N is the
total number of sub spaces.
*Arguments*
i
The number of the sub function
"""
if not isinstance(i, int):
raise TypeError, "expects an 'int' as first argument"
num_sub_spaces = self.function_space().num_sub_spaces()
if num_sub_spaces == 1:
raise RuntimeError, "No subfunctions to extract"
if not i < num_sub_spaces:
raise RuntimeError, "Can only extract subfunctions with i = 0..%d"% num_sub_spaces
# Create and instantiate the Function
if deepcopy:
return Function(self.function_space().sub(i), cpp.Function._sub(self, i))
else:
return Function(self, i)
def split(self, deepcopy=False):
"""
Extract any sub functions.
A sub function can be extracted from a discrete function that
is in a :py:class:`MixedFunctionSpace
<dolfin.functions.functionspace.MixedFunctionSpace>` or in a
:py:class:`VectorFunctionSpace
<dolfin.functions.functionspace.VectorFunctionSpace>`. The sub
function resides in the subspace of the mixed space.
*Arguments*
deepcopy
Copy sub function vector instead of sharing
"""
num_sub_spaces = self.function_space().num_sub_spaces()
if num_sub_spaces == 1:
raise RuntimeError, "No subfunctions to extract"
return tuple(self._sub(i, deepcopy) for i in xrange(num_sub_spaces))
def ufl_element(self):
"""Return ufl element"""
return self._element
def __str__(self):
"""Return a pertty print representation of it self.
Use ufl.__str__ is used for this.
"""
return ufl.Coefficient.__str__(self)
def __repr__(self):
"""Return a str repr of it self.
Must use ufl.__repr__ for this"""
return ufl.Coefficient.__repr__(self)
def str(self, verose=False):
"""Return an informative str representation of itself"""
# FIXME: We might change this using rank and dimension instead
return "<Function in %s>" % str(self.function_space())
def ufl_evaluate(self, x, component, derivatives):
"""Function used by ufl to evaluate the Function"""
import numpy
import ufl
assert derivatives == () # TODO: Handle derivatives
if component:
shape = self.shape()
assert len(shape) == len(component)
value_size = ufl.common.product(shape)
index = ufl.common.component_to_index(component, shape)
values = numpy.zeros(value_size)
self(*x, values=values)
return values[index]
else:
# Scalar evaluation
return self(*x)
def __call__(self, *args, **kwargs):
"""
Evaluates the Function.
*Examples*
1) Using an iterable as x:
.. code-block:: python
fs = Expression("sin(x[0])*cos(x[1])*sin(x[3])")
x0 = (1.,0.5,0.5)
x1 = [1.,0.5,0.5]
x2 = numpy.array([1.,0.5,0.5])
v0 = fs(x0)
v1 = fs(x1)
v2 = fs(x2)
2) Using multiple scalar args for x, interpreted as a
point coordinate
.. code-block:: python
v0 = f(1.,0.5,0.5)
3) Using a Point
.. code-block:: python
p0 = Point(1.,0.5,0.5)
v0 = f(p0)
3) Passing return array
.. code-block:: python
fv = Expression(("sin(x[0])*cos(x[1])*sin(x[3])",
"2.0","0.0"))
x0 = numpy.array([1.,0.5,0.5])
v0 = numpy.zeros(3)
fv(x0, values = v0)
.. note::
A longer values array may be passed. In this way one can fast
fill up an array with different evaluations.
.. code-block:: python
values = numpy.zeros(9)
for i in xrange(0,10,3):
fv(x[i:i+3], values = values[i:i+3])
"""
if len(args)==0:
raise TypeError, "expected at least 1 argument"
# Test for ufl restriction
if len(args) == 1 and args[0] in ('+','-'):
return ufl.Coefficient.__call__(self, *args)
# Test for ufl mapping
if len(args) == 2 and isinstance(args[1], dict) and self in args[1]:
return ufl.Coefficient.__call__(self, *args)
# Some help variables
value_size = ufl.common.product(self.ufl_element().value_shape())
# If values (return argument) is passed, check the type and length
values = kwargs.get("values", None)
if values is not None:
if not isinstance(values, numpy.ndarray):
raise TypeError, "expected a NumPy array for 'values'"
if len(values) != value_size or \
not numpy.issubdtype(values.dtype, 'd'):
raise TypeError, "expected a double NumPy array of length"\
" %d for return values."%value_size
values_provided = True
else:
values_provided = False
values = numpy.zeros(value_size, dtype='d')
# Get the dimension of the cell
dim = self.ufl_element().cell().geometric_dimension()
# Assume all args are x argument
x = args
# If only one x argument has been provided, unpack it if it's an iterable
if len(x) == 1:
if isinstance(x[0], cpp.Point):
x = (x[0][i] for i in xrange(dim))
elif hasattr(x[0], '__iter__'):
x = x[0]
# Convert it to an 1D numpy array
try:
x = numpy.fromiter(x, 'd')
except (TypeError, ValueError, AssertionError):
raise TypeError, "expected scalar arguments for the coordinates"
if len(x) == 0:
raise TypeError, "coordinate argument too short"
if len(x) != dim:
raise TypeError, "expected the geometry argument to be of "\
"length %d"%dim
# The actual evaluation
self.eval(values, x)
# If scalar return statement, return scalar value.
if value_size == 1 and not values_provided:
return values[0]
return values
#--- Subclassing of ufl.{Basis, Trial, Test}Function ---
class Argument(ufl.Argument):
"""An Argument represents a possibly differentiated component
of an argument on the reference cell.
"""
def __init__(self, V, index=None):
if not isinstance(V, FunctionSpaceBase):
raise TypeError, "Illegal argument for creation of Argument, not a FunctionSpace: " + str(V)
ufl.Argument.__init__(self, V.ufl_element(), index)
self._V = V
def function_space(self):
"Return the FunctionSpace"
return self._V
def TrialFunction(V):
"""A TrialFunction is the Argument with the next lowest primary
index. We simply pick an index lower than almost all others (-1).
"""
return Argument(V, -1)
def TestFunction(V):
"""A TestFunction is the Argument with the lowest primary
index. We simply pick an index lower than all others (-2).
"""
return Argument(V, -2)
#--- TestFunctions and TrialFunctions ---
def TestFunctions(V):
"Create test functions from mixed function space."
return ufl.split(TestFunction(V))
def TrialFunctions(V):
"Create trial functions from mixed function space."
return ufl.split(TrialFunction(V))
|