This file is indexed.

/usr/share/pyshared/dolfin/fem/projection.py is in python-dolfin 1.0.0-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
"""This module provides a simple way to compute the projection of a
:py:class:`Function <dolfin.functions.function.Function>` or an
:py:class:`Expression <dolfin.functions.expression.Expression>` onto a
finite element space."""

# Copyright (C) 2008-2011 Anders Logg
#
# This file is part of DOLFIN.
#
# DOLFIN is free software: you can redistribute it and/or modify
# it under the terms of the GNU Lesser General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# DOLFIN is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU Lesser General Public License for more details.
#
# You should have received a copy of the GNU Lesser General Public License
# along with DOLFIN. If not, see <http://www.gnu.org/licenses/>.
#
# First added:  2008-07-13
# Last changed: 2011-11-15

__all__ = ['project']

# Import UFL and SWIG-generated extension module (DOLFIN C++)
import ufl
import dolfin.cpp as cpp

# Local imports
from dolfin.functions.function import *
from dolfin.functions.expression import *
from dolfin.functions.functionspace import *
from dolfin.fem.assembling import *

def project(v, V=None, bcs=None, mesh=None,
            solver_type="cg",
            preconditioner_type="default",
            form_compiler_parameters=None):
    """
    Return projection of given expression *v* onto the finite element space *V*.

    *Arguments*
        v
            a :py:class:`Function <dolfin.functions.function.Function>` or
            an :py:class:`Expression <dolfin.functions.expression.Expression>`
        bcs
            Optional argument :py:class:`list of BoundaryCondition
            <dolfin.fem.bcs.BoundaryCondition>`
        V
            Optional argument :py:class:`FunctionSpace
            <dolfin.functions.functionspace.FunctionSpace>`
        mesh
            Optional argument :py:class:`mesh <dolfin.cpp.Mesh>`.
        solver_type
            see :py:func:`solve <dolfin.fem.solving.solve>` for options.
        preconditioner_type
            see :py:func:`solve <dolfin.fem.solving.solve>` for options.
        form_compiler_parameters
            see :py:class:`Parameters <dolfin.cpp.Parameters>` for more
            information.

    *Example of usage*

        .. code-block:: python

            v = Expression("sin(pi*x[0])")
            V = FunctionSpace(mesh, "Lagrange", 1)
            Pv = project(v, V)

        This is useful for post-processing functions or expressions
        which are not readily handled by visualization tools (such as
        for example discontinuous functions).

    """

    # If trying to project an Expression
    if V is None and isinstance(v, Expression):
        if mesh is not None and isinstance(mesh, cpp.Mesh):
            V = FunctionSpaceBase(mesh, v.ufl_element())
        else:
            raise TypeError, "expected a mesh when projecting an Expression"

    # Try extracting function space if not specified
    if V is None:
        V = _extract_function_space(v, mesh)

    # Check arguments
    if not isinstance(V, FunctionSpaceBase):
        cpp.dolfin_error("projection.py",
                         "compute projection",
                         "Illegal function space for projection, not a FunctionSpace: " + str(v))

    # Define variational problem for projection
    w = TestFunction(V)
    Pv = TrialFunction(V)
    a = ufl.inner(w, Pv)*ufl.dx
    L = ufl.inner(w, v)*ufl.dx

    # Assemble linear system
    A, b = assemble_system(a, L, bcs=bcs,
                           form_compiler_parameters=form_compiler_parameters)

    # Solve linear system for projection
    Pv = Function(V)
    cpp.solve(A, Pv.vector(), b, solver_type, preconditioner_type)

    return Pv

def _extract_function_space(expression, mesh):
    """Try to extract a suitable function space for projection of
    given expression."""

    # Extract functions
    functions = ufl.algorithms.extract_coefficients(expression)

    # Extract mesh from functions
    if mesh is None:
        for f in functions:
            if isinstance(f, Function):
                mesh = f.function_space().mesh()
                if mesh is not None:
                    break
    if mesh is None:
        raise RuntimeError, "Unable to project expression, can't find a suitable mesh."

    # Create function space
    shape = expression.shape()
    if shape == ():
        V = FunctionSpace(mesh, "CG", 1)
    elif len(shape) == 1:
        V = VectorFunctionSpace(mesh, "CG", 1, dim=shape[0])
    elif len(shape) == 2:
        V = TensorFunctionSpace(mesh, "CG", 1, shape=shape)
    else:
        raise RuntimeError, "Unable to project expression, unhandled rank, shape is %s." % (shape,)

    return V