This file is indexed.

/usr/share/pyshared/Bio/pairwise2.py is in python-biopython 1.58-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
# Copyright 2002 by Jeffrey Chang.  All rights reserved.
# This code is part of the Biopython distribution and governed by its
# license.  Please see the LICENSE file that should have been included
# as part of this package.

"""This package implements pairwise sequence alignment using a dynamic
programming algorithm.

This provides functions to get global and local alignments between two
sequences.  A global alignment finds the best concordance between all
characters in two sequences.  A local alignment finds just the
subsequences that align the best.

When doing alignments, you can specify the match score and gap
penalties.  The match score indicates the compatibility between an
alignment of two characters in the sequences.  Highly compatible
characters should be given positive scores, and incompatible ones
should be given negative scores or 0.  The gap penalties should be
negative.

The names of the alignment functions in this module follow the
convention
<alignment type>XX
where <alignment type> is either "global" or "local" and XX is a 2
character code indicating the parameters it takes.  The first
character indicates the parameters for matches (and mismatches), and
the second indicates the parameters for gap penalties.

The match parameters are
CODE  DESCRIPTION
x     No parameters.  Identical characters have score of 1, otherwise 0.
m     A match score is the score of identical chars, otherwise mismatch score.
d     A dictionary returns the score of any pair of characters.
c     A callback function returns scores.

The gap penalty parameters are
CODE  DESCRIPTION
x     No gap penalties.
s     Same open and extend gap penalties for both sequences.
d     The sequences have different open and extend gap penalties.
c     A callback function returns the gap penalties.

All the different alignment functions are contained in an object
"align".  For example:

    >>> from Bio import pairwise2
    >>> alignments = pairwise2.align.globalxx("ACCGT", "ACG")

will return a list of the alignments between the two strings.  The
parameters of the alignment function depends on the function called.
Some examples:

>>> pairwise2.align.globalxx("ACCGT", "ACG")
    # Find the best global alignment between the two sequences.
    # Identical characters are given 1 point.  No points are deducted
    # for mismatches or gaps.
    
>>> pairwise2.align.localxx("ACCGT", "ACG")
    # Same thing as before, but with a local alignment.
    
>>> pairwise2.align.globalmx("ACCGT", "ACG", 2, -1)
    # Do a global alignment.  Identical characters are given 2 points,
    # 1 point is deducted for each non-identical character.

>>> pairwise2.align.globalms("ACCGT", "ACG", 2, -1, -.5, -.1)
    # Same as above, except now 0.5 points are deducted when opening a
    # gap, and 0.1 points are deducted when extending it.


To see a description of the parameters for a function, please look at
the docstring for the function.

>>> print newalign.align.localds.__doc__
localds(sequenceA, sequenceB, match_dict, open, extend) -> alignments

"""
# The alignment functions take some undocumented keyword parameters:
# - penalize_extend_when_opening: boolean
#   Whether to count an extension penalty when opening a gap.  If
#   false, a gap of 1 is only penalize an "open" penalty, otherwise it
#   is penalized "open+extend".
# - penalize_end_gaps: boolean
#   Whether to count the gaps at the ends of an alignment.  By
#   default, they are counted for global alignments but not for local
#   ones.
# - gap_char: string
#   Which character to use as a gap character in the alignment
#   returned.  By default, uses '-'.
# - force_generic: boolean
#   Always use the generic, non-cached, dynamic programming function.
#   For debugging.
# - score_only: boolean
#   Only get the best score, don't recover any alignments.  The return
#   value of the function is the score.
# - one_alignment_only: boolean
#   Only recover one alignment.

MAX_ALIGNMENTS = 1000   # maximum alignments recovered in traceback

class align(object):
    """This class provides functions that do alignments."""
    
    class alignment_function:
        """This class is callable impersonates an alignment function.
        The constructor takes the name of the function.  This class
        will decode the name of the function to figure out how to
        interpret the parameters.

        """
        # match code -> tuple of (parameters, docstring)
        match2args = {
            'x' : ([], ''),
            'm' : (['match', 'mismatch'],
"""match is the score to given to identical characters.  mismatch is
the score given to non-identical ones."""),
            'd' : (['match_dict'],
"""match_dict is a dictionary where the keys are tuples of pairs of
characters and the values are the scores, e.g. ("A", "C") : 2.5."""),
            'c' : (['match_fn'],
"""match_fn is a callback function that takes two characters and
returns the score between them."""),
            }
        # penalty code -> tuple of (parameters, docstring)
        penalty2args = {
            'x' : ([], ''),
            's' : (['open', 'extend'],
"""open and extend are the gap penalties when a gap is opened and
extended.  They should be negative."""),
            'd' : (['openA', 'extendA', 'openB', 'extendB'],
"""openA and extendA are the gap penalties for sequenceA, and openB
and extendB for sequeneB.  The penalties should be negative."""),
            'c' : (['gap_A_fn', 'gap_B_fn'],
"""gap_A_fn and gap_B_fn are callback functions that takes 1) the
index where the gap is opened, and 2) the length of the gap.  They
should return a gap penalty."""),
            }

        def __init__(self, name):
            # Check to make sure the name of the function is
            # reasonable.
            if name.startswith("global"):
                if len(name) != 8:
                    raise AttributeError("function should be globalXX")
            elif name.startswith("local"):
                if len(name) != 7:
                    raise AttributeError("function should be localXX")
            else:
                raise AttributeError(name)
            align_type, match_type, penalty_type = \
                        name[:-2], name[-2], name[-1]
            try:
                match_args, match_doc = self.match2args[match_type]
            except KeyError, x:
                raise AttributeError("unknown match type %r" % match_type)
            try:
                penalty_args, penalty_doc = self.penalty2args[penalty_type]
            except KeyError, x:
                raise AttributeError("unknown penalty type %r" % penalty_type)

            # Now get the names of the parameters to this function.
            param_names = ['sequenceA', 'sequenceB']
            param_names.extend(match_args)
            param_names.extend(penalty_args)
            self.function_name = name
            self.align_type = align_type
            self.param_names = param_names

            self.__name__ = self.function_name
            # Set the doc string.
            doc = "%s(%s) -> alignments\n" % (
                self.__name__, ', '.join(self.param_names))
            if match_doc:
                doc += "\n%s\n" % match_doc
            if penalty_doc:
                doc += "\n%s\n" % penalty_doc
            doc += (
"""\nalignments is a list of tuples (seqA, seqB, score, begin, end).
seqA and seqB are strings showing the alignment between the
sequences.  score is the score of the alignment.  begin and end
are indexes into seqA and seqB that indicate the where the
alignment occurs.
""")
            self.__doc__ = doc

        def decode(self, *args, **keywds):
            # Decode the arguments for the _align function.  keywds
            # will get passed to it, so translate the arguments to
            # this function into forms appropriate for _align.
            keywds = keywds.copy()
            if len(args) != len(self.param_names):
                raise TypeError("%s takes exactly %d argument (%d given)" \
                    % (self.function_name, len(self.param_names), len(args)))
            i = 0
            while i < len(self.param_names):
                if self.param_names[i] in [
                    'sequenceA', 'sequenceB',
                    'gap_A_fn', 'gap_B_fn', 'match_fn']:
                    keywds[self.param_names[i]] = args[i]
                    i += 1
                elif self.param_names[i] == 'match':
                    assert self.param_names[i+1] == 'mismatch'
                    match, mismatch = args[i], args[i+1]
                    keywds['match_fn'] = identity_match(match, mismatch)
                    i += 2
                elif self.param_names[i] == 'match_dict':
                    keywds['match_fn'] = dictionary_match(args[i])
                    i += 1
                elif self.param_names[i] == 'open':
                    assert self.param_names[i+1] == 'extend'
                    open, extend = args[i], args[i+1]
                    pe = keywds.get('penalize_extend_when_opening', 0)
                    keywds['gap_A_fn'] = affine_penalty(open, extend, pe)
                    keywds['gap_B_fn'] = affine_penalty(open, extend, pe)
                    i += 2
                elif self.param_names[i] == 'openA':
                    assert self.param_names[i+3] == 'extendB'
                    openA, extendA, openB, extendB = args[i:i+4]
                    pe = keywds.get('penalize_extend_when_opening', 0)
                    keywds['gap_A_fn'] = affine_penalty(openA, extendA, pe)
                    keywds['gap_B_fn'] = affine_penalty(openB, extendB, pe)
                    i += 4
                else:
                    raise ValueError("unknown parameter %r" \
                                     % self.param_names[i])

            # Here are the default parameters for _align.  Assign
            # these to keywds, unless already specified.
            pe = keywds.get('penalize_extend_when_opening', 0)
            default_params = [
                ('match_fn', identity_match(1, 0)),
                ('gap_A_fn', affine_penalty(0, 0, pe)),
                ('gap_B_fn', affine_penalty(0, 0, pe)),
                ('penalize_extend_when_opening', 0),
                ('penalize_end_gaps', self.align_type == 'global'),
                ('align_globally', self.align_type == 'global'),
                ('gap_char', '-'),
                ('force_generic', 0),
                ('score_only', 0),
                ('one_alignment_only', 0)
                ]
            for name, default in default_params:
                keywds[name] = keywds.get(name, default)
            return keywds
            
        def __call__(self, *args, **keywds):
            keywds = self.decode(*args, **keywds)
            return _align(**keywds)
        
    def __getattr__(self, attr):
        return self.alignment_function(attr)
align = align()


def _align(sequenceA, sequenceB, match_fn, gap_A_fn, gap_B_fn,
           penalize_extend_when_opening, penalize_end_gaps,
           align_globally, gap_char, force_generic, score_only,
           one_alignment_only):
    if not sequenceA or not sequenceB:
        return []

    if (not force_generic) and isinstance(gap_A_fn, affine_penalty) \
    and isinstance(gap_B_fn, affine_penalty):
        open_A, extend_A = gap_A_fn.open, gap_A_fn.extend
        open_B, extend_B = gap_B_fn.open, gap_B_fn.extend
        x = _make_score_matrix_fast(
            sequenceA, sequenceB, match_fn, open_A, extend_A, open_B, extend_B,
            penalize_extend_when_opening, penalize_end_gaps, align_globally,
            score_only)
    else:
        x = _make_score_matrix_generic(
            sequenceA, sequenceB, match_fn, gap_A_fn, gap_B_fn,
            penalize_extend_when_opening, penalize_end_gaps, align_globally,
            score_only)
    score_matrix, trace_matrix = x

    #print "SCORE"; print_matrix(score_matrix)
    #print "TRACEBACK"; print_matrix(trace_matrix)
         
    # Look for the proper starting point.  Get a list of all possible
    # starting points.
    starts = _find_start(
        score_matrix, sequenceA, sequenceB,
        gap_A_fn, gap_B_fn, penalize_end_gaps, align_globally)
    # Find the highest score.
    best_score = max([x[0] for x in starts])

    # If they only want the score, then return it.
    if score_only:
        return best_score
    
    tolerance = 0  # XXX do anything with this?
    # Now find all the positions within some tolerance of the best
    # score.
    i = 0
    while i < len(starts):
        score, pos = starts[i]
        if rint(abs(score-best_score)) > rint(tolerance):
            del starts[i]
        else:
            i += 1
    
    # Recover the alignments and return them.
    x = _recover_alignments(
        sequenceA, sequenceB, starts, score_matrix, trace_matrix,
        align_globally, penalize_end_gaps, gap_char, one_alignment_only)
    return x

def _make_score_matrix_generic(
    sequenceA, sequenceB, match_fn, gap_A_fn, gap_B_fn, 
    penalize_extend_when_opening, penalize_end_gaps, align_globally,
    score_only):
    # This is an implementation of the Needleman-Wunsch dynamic
    # programming algorithm for aligning sequences.
    
    # Create the score and traceback matrices.  These should be in the
    # shape:
    # sequenceA (down) x sequenceB (across)
    lenA, lenB = len(sequenceA), len(sequenceB)
    score_matrix, trace_matrix = [], []
    for i in range(lenA):
        score_matrix.append([None] * lenB)
        trace_matrix.append([[None]] * lenB)

    # The top and left borders of the matrices are special cases
    # because there are no previously aligned characters.  To simplify
    # the main loop, handle these separately.
    for i in range(lenA):
        # Align the first residue in sequenceB to the ith residue in
        # sequence A.  This is like opening up i gaps at the beginning
        # of sequence B.
        score = match_fn(sequenceA[i], sequenceB[0])
        if penalize_end_gaps:
            score += gap_B_fn(0, i)
        score_matrix[i][0] = score
    for i in range(1, lenB):
        score = match_fn(sequenceA[0], sequenceB[i])
        if penalize_end_gaps:
            score += gap_A_fn(0, i)
        score_matrix[0][i] = score

    # Fill in the score matrix.  Each position in the matrix
    # represents an alignment between a character from sequenceA to
    # one in sequence B.  As I iterate through the matrix, find the
    # alignment by choose the best of:
    #    1) extending a previous alignment without gaps
    #    2) adding a gap in sequenceA
    #    3) adding a gap in sequenceB
    for row in range(1, lenA):
        for col in range(1, lenB):
            # First, calculate the score that would occur by extending
            # the alignment without gaps.
            best_score = score_matrix[row-1][col-1]
            best_score_rint = rint(best_score)
            best_indexes = [(row-1, col-1)]

            # Try to find a better score by opening gaps in sequenceA.
            # Do this by checking alignments from each column in the
            # previous row.  Each column represents a different
            # character to align from, and thus a different length
            # gap.
            for i in range(0, col-1):
                score = score_matrix[row-1][i] + gap_A_fn(i, col-1-i)
                score_rint = rint(score)
                if score_rint == best_score_rint:
                    best_score, best_score_rint = score, score_rint
                    best_indexes.append((row-1, i))
                elif score_rint > best_score_rint:
                    best_score, best_score_rint = score, score_rint
                    best_indexes = [(row-1, i)]
            
            # Try to find a better score by opening gaps in sequenceB.
            for i in range(0, row-1):
                score = score_matrix[i][col-1] + gap_B_fn(i, row-1-i)
                score_rint = rint(score)
                if score_rint == best_score_rint:
                    best_score, best_score_rint = score, score_rint
                    best_indexes.append((i, col-1))
                elif score_rint > best_score_rint:
                    best_score, best_score_rint = score, score_rint
                    best_indexes = [(i, col-1)]

            score_matrix[row][col] = best_score + \
                                     match_fn(sequenceA[row], sequenceB[col])
            if not align_globally and score_matrix[row][col] < 0:
                score_matrix[row][col] = 0
            trace_matrix[row][col] = best_indexes
    return score_matrix, trace_matrix

def _make_score_matrix_fast(
    sequenceA, sequenceB, match_fn, open_A, extend_A, open_B, extend_B,
    penalize_extend_when_opening, penalize_end_gaps,
    align_globally, score_only):
    first_A_gap = calc_affine_penalty(1, open_A, extend_A,
                                      penalize_extend_when_opening)
    first_B_gap = calc_affine_penalty(1, open_B, extend_B,
                                      penalize_extend_when_opening)

    # Create the score and traceback matrices.  These should be in the
    # shape:
    # sequenceA (down) x sequenceB (across)
    lenA, lenB = len(sequenceA), len(sequenceB)
    score_matrix, trace_matrix = [], []
    for i in range(lenA):
        score_matrix.append([None] * lenB)
        trace_matrix.append([[None]] * lenB)

    # The top and left borders of the matrices are special cases
    # because there are no previously aligned characters.  To simplify
    # the main loop, handle these separately.
    for i in range(lenA):
        # Align the first residue in sequenceB to the ith residue in
        # sequence A.  This is like opening up i gaps at the beginning
        # of sequence B.
        score = match_fn(sequenceA[i], sequenceB[0])
        if penalize_end_gaps:
            score += calc_affine_penalty(
                i, open_B, extend_B, penalize_extend_when_opening)
        score_matrix[i][0] = score
    for i in range(1, lenB):
        score = match_fn(sequenceA[0], sequenceB[i])
        if penalize_end_gaps:
            score += calc_affine_penalty(
                i, open_A, extend_A, penalize_extend_when_opening)
        score_matrix[0][i] = score

    # In the generic algorithm, at each row and column in the score
    # matrix, we had to scan all previous rows and columns to see
    # whether opening a gap might yield a higher score.  Here, since
    # we know the penalties are affine, we can cache just the best
    # score in the previous rows and columns.  Instead of scanning
    # through all the previous rows and cols, we can just look at the
    # cache for the best one.  Whenever the row or col increments, the
    # best cached score just decreases by extending the gap longer.

    # The best score and indexes for each row (goes down all columns).
    # I don't need to store the last row because it's the end of the
    # sequence.
    row_cache_score, row_cache_index = [None]*(lenA-1), [None]*(lenA-1)
    # The best score and indexes for each column (goes across rows).
    col_cache_score, col_cache_index = [None]*(lenB-1), [None]*(lenB-1)

    for i in range(lenA-1):
        # Initialize each row to be the alignment of sequenceA[i] to
        # sequenceB[0], plus opening a gap in sequenceA.
        row_cache_score[i] = score_matrix[i][0] + first_A_gap
        row_cache_index[i] = [(i, 0)]
    for i in range(lenB-1):
        col_cache_score[i] = score_matrix[0][i] + first_B_gap
        col_cache_index[i] = [(0, i)]
        
    # Fill in the score_matrix.
    for row in range(1, lenA):
        for col in range(1, lenB):
            # Calculate the score that would occur by extending the
            # alignment without gaps.
            nogap_score = score_matrix[row-1][col-1]
            
            # Check the score that would occur if there were a gap in
            # sequence A.
            if col > 1:
                row_score = row_cache_score[row-1]
            else:
                row_score = nogap_score - 1   # Make sure it's not the best.
            # Check the score that would occur if there were a gap in
            # sequence B.  
            if row > 1:
                col_score = col_cache_score[col-1]
            else:
                col_score = nogap_score - 1

            best_score = max(nogap_score, row_score, col_score)
            best_score_rint = rint(best_score)
            best_index = []
            if best_score_rint == rint(nogap_score):
                best_index.append((row-1, col-1))
            if best_score_rint == rint(row_score):
                best_index.extend(row_cache_index[row-1])
            if best_score_rint == rint(col_score):
                best_index.extend(col_cache_index[col-1])

            # Set the score and traceback matrices.
            score = best_score + match_fn(sequenceA[row], sequenceB[col])
            if not align_globally and score < 0:
                score_matrix[row][col] = 0
            else:
                score_matrix[row][col] = score
            trace_matrix[row][col] = best_index

            # Update the cached column scores.  The best score for
            # this can come from either extending the gap in the
            # previous cached score, or opening a new gap from the
            # most previously seen character.  Compare the two scores
            # and keep the best one.
            open_score = score_matrix[row-1][col-1] + first_B_gap
            extend_score = col_cache_score[col-1] + extend_B
            open_score_rint, extend_score_rint = \
                             rint(open_score), rint(extend_score)
            if open_score_rint > extend_score_rint:
                col_cache_score[col-1] = open_score
                col_cache_index[col-1] = [(row-1, col-1)]
            elif extend_score_rint > open_score_rint:
                col_cache_score[col-1] = extend_score
            else:
                col_cache_score[col-1] = open_score
                if (row-1, col-1) not in col_cache_index[col-1]:
                    col_cache_index[col-1] = col_cache_index[col-1] + \
                                             [(row-1, col-1)]

            # Update the cached row scores.
            open_score = score_matrix[row-1][col-1] + first_A_gap
            extend_score = row_cache_score[row-1] + extend_A
            open_score_rint, extend_score_rint = \
                             rint(open_score), rint(extend_score)
            if open_score_rint > extend_score_rint:
                row_cache_score[row-1] = open_score
                row_cache_index[row-1] = [(row-1, col-1)]
            elif extend_score_rint > open_score_rint:
                row_cache_score[row-1] = extend_score
            else:
                row_cache_score[row-1] = open_score
                if (row-1, col-1) not in row_cache_index[row-1]:
                    row_cache_index[row-1] = row_cache_index[row-1] + \
                                             [(row-1, col-1)]
                    
    return score_matrix, trace_matrix
    
def _recover_alignments(sequenceA, sequenceB, starts,
                        score_matrix, trace_matrix, align_globally,
                        penalize_end_gaps, gap_char, one_alignment_only):
    # Recover the alignments by following the traceback matrix.  This
    # is a recursive procedure, but it's implemented here iteratively
    # with a stack.
    lenA, lenB = len(sequenceA), len(sequenceB)
    tracebacks = [] # list of (seq1, seq2, score, begin, end)
    in_process = [] # list of ([same as tracebacks], prev_pos, next_pos)

    # sequenceA and sequenceB may be sequences, including strings,
    # lists, or list-like objects.  In order to preserve the type of
    # the object, we need to use slices on the sequences instead of
    # indexes.  For example, sequenceA[row] may return a type that's
    # not compatible with sequenceA, e.g. if sequenceA is a list and
    # sequenceA[row] is a string.  Thus, avoid using indexes and use
    # slices, e.g. sequenceA[row:row+1].  Assume that client-defined
    # sequence classes preserve these semantics.

    # Initialize the in_process stack
    for score, (row, col) in starts:
        if align_globally:
            begin, end = None, None
        else:
            begin, end = None, -max(lenA-row, lenB-col)+1
            if not end:
                end = None
        # Initialize the in_process list with empty sequences of the
        # same type as sequenceA.  To do this, take empty slices of
        # the sequences.
        in_process.append(
            (sequenceA[0:0], sequenceB[0:0], score, begin, end,
             (lenA, lenB), (row, col)))
        if one_alignment_only:
            break
    while in_process and len(tracebacks) < MAX_ALIGNMENTS:
        seqA, seqB, score, begin, end, prev_pos, next_pos = in_process.pop()
        prevA, prevB = prev_pos
        if next_pos is None:
            prevlen = len(seqA)
            # add the rest of the sequences
            seqA = sequenceA[:prevA] + seqA
            seqB = sequenceB[:prevB] + seqB
            # add the rest of the gaps
            seqA, seqB = _lpad_until_equal(seqA, seqB, gap_char)
            
            # Now make sure begin is set.
            if begin is None:
                if align_globally:
                    begin = 0
                else:
                    begin = len(seqA) - prevlen
            tracebacks.append((seqA, seqB, score, begin, end))
        else:
            nextA, nextB = next_pos
            nseqA, nseqB = prevA-nextA, prevB-nextB
            maxseq = max(nseqA, nseqB)
            ngapA, ngapB = maxseq-nseqA, maxseq-nseqB
            seqA = sequenceA[nextA:nextA+nseqA] + gap_char*ngapA + seqA
            seqB = sequenceB[nextB:nextB+nseqB] + gap_char*ngapB + seqB
            prev_pos = next_pos
            # local alignment stops early if score falls < 0
            if not align_globally and score_matrix[nextA][nextB] <= 0:
                begin = max(prevA, prevB)
                in_process.append(
                    (seqA, seqB, score, begin, end, prev_pos, None))
            else:
                for next_pos in trace_matrix[nextA][nextB]:
                    in_process.append(
                        (seqA, seqB, score, begin, end, prev_pos, next_pos))
                    if one_alignment_only:
                        break
                    
    return _clean_alignments(tracebacks)

def _find_start(score_matrix, sequenceA, sequenceB, gap_A_fn, gap_B_fn,
                penalize_end_gaps, align_globally):
    # Return a list of (score, (row, col)) indicating every possible
    # place to start the tracebacks.
    if align_globally:
        if penalize_end_gaps:
            starts = _find_global_start(
                sequenceA, sequenceB, score_matrix, gap_A_fn, gap_B_fn, 1)
        else:
            starts = _find_global_start(
                sequenceA, sequenceB, score_matrix, None, None, 0)
    else:
        starts = _find_local_start(score_matrix)
    return starts

def _find_global_start(sequenceA, sequenceB,
                       score_matrix, gap_A_fn, gap_B_fn, penalize_end_gaps):
    # The whole sequence should be aligned, so return the positions at
    # the end of either one of the sequences.
    nrows, ncols = len(score_matrix), len(score_matrix[0])
    positions = []
    # Search all rows in the last column.
    for row in range(nrows):
        # Find the score, penalizing end gaps if necessary.
        score = score_matrix[row][ncols-1]
        if penalize_end_gaps:
            score += gap_B_fn(ncols, nrows-row-1)
        positions.append((score, (row, ncols-1)))
    # Search all columns in the last row.
    for col in range(ncols-1):
        score = score_matrix[nrows-1][col]
        if penalize_end_gaps:
            score += gap_A_fn(nrows, ncols-col-1)
        positions.append((score, (nrows-1, col)))
    return positions

def _find_local_start(score_matrix):
    # Return every position in the matrix.
    positions = []
    nrows, ncols = len(score_matrix), len(score_matrix[0])
    for row in range(nrows):
        for col in range(ncols):
            score = score_matrix[row][col]
            positions.append((score, (row, col)))
    return positions

def _clean_alignments(alignments):
    # Take a list of alignments and return a cleaned version.  Remove
    # duplicates, make sure begin and end are set correctly, remove
    # empty alignments.
    unique_alignments = []
    for align in alignments :
        if align not in unique_alignments :
            unique_alignments.append(align)
    i = 0
    while i < len(unique_alignments):
        seqA, seqB, score, begin, end = unique_alignments[i]
        # Make sure end is set reasonably.
        if end is None:   # global alignment
            end = len(seqA)
        elif end < 0:
            end = end + len(seqA)
        # If there's no alignment here, get rid of it.
        if begin >= end:
            del unique_alignments[i]
            continue
        unique_alignments[i] = seqA, seqB, score, begin, end
        i += 1
    return unique_alignments

def _pad_until_equal(s1, s2, char):
    # Add char to the end of s1 or s2 until they are equal length.
    ls1, ls2 = len(s1), len(s2)
    if ls1 < ls2:
        s1 = _pad(s1, char, ls2-ls1)
    elif ls2 < ls1:
        s2 = _pad(s2, char, ls1-ls2)
    return s1, s2

def _lpad_until_equal(s1, s2, char):
    # Add char to the beginning of s1 or s2 until they are equal
    # length.
    ls1, ls2 = len(s1), len(s2)
    if ls1 < ls2:
        s1 = _lpad(s1, char, ls2-ls1)
    elif ls2 < ls1:
        s2 = _lpad(s2, char, ls1-ls2)
    return s1, s2

def _pad(s, char, n):
    # Append n chars to the end of s.
    return s + char*n

def _lpad(s, char, n):
    # Prepend n chars to the beginning of s.
    return char*n + s

_PRECISION = 1000
def rint(x, precision=_PRECISION):
    return int(x * precision + 0.5)

class identity_match:
    """identity_match([match][, mismatch]) -> match_fn

    Create a match function for use in an alignment.  match and
    mismatch are the scores to give when two residues are equal or
    unequal.  By default, match is 1 and mismatch is 0.

    """
    def __init__(self, match=1, mismatch=0):
        self.match = match
        self.mismatch = mismatch
    def __call__(self, charA, charB):
        if charA == charB:
            return self.match
        return self.mismatch

class dictionary_match:
    """dictionary_match(score_dict[, symmetric]) -> match_fn

    Create a match function for use in an alignment.  score_dict is a
    dictionary where the keys are tuples (residue 1, residue 2) and
    the values are the match scores between those residues.  symmetric
    is a flag that indicates whether the scores are symmetric.  If
    true, then if (res 1, res 2) doesn't exist, I will use the score
    at (res 2, res 1).

    """
    def __init__(self, score_dict, symmetric=1):
        self.score_dict = score_dict
        self.symmetric = symmetric
    def __call__(self, charA, charB):
        if self.symmetric and (charA, charB) not in self.score_dict:
            # If the score dictionary is symmetric, then look up the
            # score both ways.
            charB, charA = charA, charB
        return self.score_dict[(charA, charB)]

class affine_penalty:
    """affine_penalty(open, extend[, penalize_extend_when_opening]) -> gap_fn

    Create a gap function for use in an alignment.

    """
    def __init__(self, open, extend, penalize_extend_when_opening=0):
        if open > 0 or extend > 0:
            raise ValueError("Gap penalties should be non-positive.")
        self.open, self.extend = open, extend
        self.penalize_extend_when_opening = penalize_extend_when_opening
    def __call__(self, index, length):
        return calc_affine_penalty(
            length, self.open, self.extend, self.penalize_extend_when_opening)

def calc_affine_penalty(length, open, extend, penalize_extend_when_opening):
    if length <= 0:
        return 0
    penalty = open + extend * length
    if not penalize_extend_when_opening:
        penalty -= extend
    return penalty

def print_matrix(matrix):
    """print_matrix(matrix)

    Print out a matrix.  For debugging purposes.

    """
    # Transpose the matrix and get the length of the values in each column.
    matrixT = [[] for x in range(len(matrix[0]))]
    for i in range(len(matrix)):
        for j in range(len(matrix[i])):
            matrixT[j].append(len(str(matrix[i][j])))
    ndigits = map(max, matrixT)
    for i in range(len(matrix)):
        #Using string formatting trick to add leading spaces,
        print " ".join("%*s " % (ndigits[j], matrix[i][j]) \
                       for j in range(len(matrix[i])))

def format_alignment(align1, align2, score, begin, end):
    """format_alignment(align1, align2, score, begin, end) -> string

    Format the alignment prettily into a string.

    """
    s = []
    s.append("%s\n" % align1)
    s.append("%s%s\n" % (" "*begin, "|"*(end-begin)))
    s.append("%s\n" % align2)
    s.append("  Score=%g\n" % score)
    return ''.join(s)


# Try and load C implementations of functions.  If I can't,
# then just ignore and use the pure python implementations.
try:
    from cpairwise2 import rint, _make_score_matrix_fast
except ImportError:
    pass