/usr/share/pyshared/Bio/Restriction/Restriction.py is in python-biopython 1.58-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 | #!/usr/bin/env python
#
# Restriction Analysis Libraries.
# Copyright (C) 2004. Frederic Sohm.
#
# This code is part of the Biopython distribution and governed by its
# license. Please see the LICENSE file that should have been included
# as part of this package.
#
""" Notes about the diverses class of the restriction enzyme implementation.
RestrictionType is the type of all restriction enzymes.
----------------------------------------------------------------------------
AbstractCut implements some methods that are common to all enzymes.
----------------------------------------------------------------------------
NoCut, OneCut,TwoCuts represent the number of double strand cuts
produced by the enzyme.
they correspond to the 4th field of the rebase
record emboss_e.NNN.
0->NoCut : the enzyme is not characterised.
2->OneCut : the enzyme produce one double strand cut.
4->TwoCuts : two double strand cuts.
----------------------------------------------------------------------------
Meth_Dep, Meth_Undep represent the methylation susceptibility to
the enzyme.
Not implemented yet.
----------------------------------------------------------------------------
Palindromic, if the site is palindromic or not.
NotPalindromic allow some optimisations of the code.
No need to check the reverse strand
with palindromic sites.
----------------------------------------------------------------------------
Unknown, Blunt, represent the overhang.
Ov5, Ov3 Unknown is here for symetry reasons and
correspond to enzymes that are not characterised
in rebase.
----------------------------------------------------------------------------
Defined, Ambiguous, represent the sequence of the overhang.
NotDefined
NotDefined is for enzymes not characterised in
rebase.
Defined correspond to enzymes that display a
constant overhang whatever the sequence.
ex : EcoRI. G^AATTC -> overhang :AATT
CTTAA^G
Ambiguous : the overhang varies with the
sequence restricted.
Typically enzymes which cut outside their
restriction site or (but not always)
inside an ambiguous site.
ex:
AcuI CTGAAG(22/20) -> overhang : NN
AasI GACNNN^NNNGTC -> overhang : NN
CTGN^NNNNNCAG
note : these 3 classes refers to the overhang not the site.
So the enzyme ApoI (RAATTY) is defined even if its restriction
site is ambiguous.
ApoI R^AATTY -> overhang : AATT -> Defined
YTTAA^R
Accordingly, blunt enzymes are always Defined even
when they cut outside their restriction site.
----------------------------------------------------------------------------
Not_available, as found in rebase file emboss_r.NNN files.
Commercially_available
allow the selection of the enzymes according to
their suppliers to reduce the quantity
of results.
Also will allow the implementation of buffer
compatibility tables. Not implemented yet.
the list of suppliers is extracted from
emboss_s.NNN
----------------------------------------------------------------------------
"""
import re
import itertools
from Bio.Seq import Seq, MutableSeq
from Bio.Alphabet import IUPAC
from Bio.Restriction.Restriction_Dictionary import rest_dict as enzymedict
from Bio.Restriction.Restriction_Dictionary import typedict
from Bio.Restriction.Restriction_Dictionary import suppliers as suppliers_dict
from Bio.Restriction.RanaConfig import *
from Bio.Restriction.PrintFormat import PrintFormat
#Used to use Bio.Restriction.DNAUtils.check_bases (and expose it under this
#namespace), but have deprecated that module.
def _check_bases(seq_string):
"""Check characters in a string (PRIVATE).
Remove digits and white space present in string. Allows any valid ambiguous
IUPAC DNA single letters codes (ABCDGHKMNRSTVWY, lower case are converted).
Other characters (e.g. symbols) trigger a TypeError.
Returns the string WITH A LEADING SPACE (!). This is for backwards
compatibility, and may in part be explained by the fact that
Bio.Restriction doesn't use zero based counting.
"""
#Remove white space and make upper case:
seq_string = "".join(seq_string.split()).upper()
#Remove digits
for c in "0123456789" : seq_string = seq_string.replace(c,"")
#Check only allowed IUPAC letters
if not set(seq_string).issubset(set("ABCDGHKMNRSTVWY")) :
raise TypeError("Invalid character found in %s" % repr(seq_string))
return " " + seq_string
matching = {'A' : 'ARWMHVDN', 'C' : 'CYSMHBVN', 'G' : 'GRSKBVDN',
'T' : 'TYWKHBDN', 'R' : 'ABDGHKMNSRWV', 'Y' : 'CBDHKMNSTWVY',
'W' : 'ABDHKMNRTWVY', 'S' : 'CBDGHKMNSRVY', 'M' : 'ACBDHMNSRWVY',
'K' : 'BDGHKNSRTWVY', 'H' : 'ACBDHKMNSRTWVY',
'B' : 'CBDGHKMNSRTWVY', 'V' : 'ACBDGHKMNSRWVY',
'D' : 'ABDGHKMNSRTWVY', 'N' : 'ACBDGHKMNSRTWVY'}
DNA = Seq
class FormattedSeq(object):
"""FormattedSeq(seq, [linear=True])-> new FormattedSeq.
Translate a Bio.Seq into a formatted sequence to be used with Restriction.
Roughly:
remove anything which is not IUPAC alphabet and then add a space
in front of the sequence to get a biological index instead of a
python index (i.e. index of the first base is 1 not 0).
Retains information about the shape of the molecule linear (default)
or circular. Restriction sites are search over the edges of circular
sequence."""
def __init__(self, seq, linear = True):
"""FormattedSeq(seq, [linear=True])-> new FormattedSeq.
seq is either a Bio.Seq, Bio.MutableSeq or a FormattedSeq.
if seq is a FormattedSeq, linear will have no effect on the
shape of the sequence."""
if isinstance(seq, Seq) or isinstance(seq, MutableSeq):
stringy = seq.tostring()
self.lower = stringy.islower()
#Note this adds a leading space to the sequence (!)
self.data = _check_bases(stringy)
self.linear = linear
self.klass = seq.__class__
self.alphabet = seq.alphabet
elif isinstance(seq, FormattedSeq):
self.lower = seq.lower
self.data = seq.data
self.linear = seq.linear
self.alphabet = seq.alphabet
self.klass = seq.klass
else:
raise TypeError('expected Seq or MutableSeq, got %s' % type(seq))
def __len__(self):
return len(self.data) - 1
def __repr__(self):
return 'FormattedSeq(%s, linear=%s)' %(repr(self[1:]), repr(self.linear))
def __eq__(self, other):
if isinstance(other, FormattedSeq):
if repr(self) == repr(other):
return True
else:
return False
return False
def circularise(self):
"""FS.circularise() -> circularise FS"""
self.linear = False
return
def linearise(self):
"""FS.linearise() -> linearise FS"""
self.linear = True
return
def to_linear(self):
"""FS.to_linear() -> new linear FS instance"""
new = self.__class__(self)
new.linear = True
return new
def to_circular(self):
"""FS.to_circular() -> new circular FS instance"""
new = self.__class__(self)
new.linear = False
return new
def is_linear(self):
"""FS.is_linear() -> bool.
True if the sequence will analysed as a linear sequence."""
return self.linear
def finditer(self, pattern, size):
"""FS.finditer(pattern, size) -> list.
return a list of pattern into the sequence.
the list is made of tuple (location, pattern.group).
the latter is used with non palindromic sites.
pattern is the regular expression pattern corresponding to the
enzyme restriction site.
size is the size of the restriction enzyme recognition-site size."""
if self.is_linear():
data = self.data
else:
data = self.data + self.data[1:size]
return [(i.start(), i.group) for i in re.finditer(pattern, data)]
def __getitem__(self, i):
if self.lower:
return self.klass((self.data[i]).lower(), self.alphabet)
return self.klass(self.data[i], self.alphabet)
class RestrictionType(type):
"""RestrictionType. Type from which derives all enzyme classes.
Implement the operator methods."""
def __init__(cls, name='', bases=(), dct={}):
"""RE(name, bases, dct) -> RestrictionType instance.
Not intended to be used in normal operation. The enzymes are
instantiated when importing the module.
see below."""
if "-" in name :
raise ValueError("Problem with hyphen in %s as enzyme name" \
% repr(name))
super(RestrictionType, cls).__init__(cls, name, bases, dct)
try :
cls.compsite = re.compile(cls.compsite)
except Exception, err :
raise ValueError("Problem with regular expression, re.compiled(%s)" \
% repr(cls.compsite))
def __add__(cls, other):
"""RE.__add__(other) -> RestrictionBatch().
if other is an enzyme returns a batch of the two enzymes.
if other is already a RestrictionBatch add enzyme to it."""
if isinstance(other, RestrictionType):
return RestrictionBatch([cls, other])
elif isinstance(other, RestrictionBatch):
return other.add_nocheck(cls)
else:
raise TypeError
def __div__(cls, other):
"""RE.__div__(other) -> list.
RE/other
returns RE.search(other)."""
return cls.search(other)
def __rdiv__(cls, other):
"""RE.__rdiv__(other) -> list.
other/RE
returns RE.search(other)."""
return cls.search(other)
def __truediv__(cls, other):
"""RE.__truediv__(other) -> list.
RE/other
returns RE.search(other)."""
return cls.search(other)
def __rtruediv__(cls, other):
"""RE.__rtruediv__(other) -> list.
other/RE
returns RE.search(other)."""
return cls.search(other)
def __floordiv__(cls, other):
"""RE.__floordiv__(other) -> list.
RE//other
returns RE.catalyse(other)."""
return cls.catalyse(other)
def __rfloordiv__(cls, other):
"""RE.__rfloordiv__(other) -> list.
other//RE
returns RE.catalyse(other)."""
return cls.catalyse(other)
def __str__(cls):
"""RE.__str__() -> str.
return the name of the enzyme."""
return cls.__name__
def __repr__(cls):
"""RE.__repr__() -> str.
used with eval or exec will instantiate the enzyme."""
return "%s" % cls.__name__
def __len__(cls):
"""RE.__len__() -> int.
length of the recognition site."""
return cls.size
def __hash__(cls):
#Python default is to use id(...)
#This is consistent with the __eq__ implementation
return id(cls)
def __eq__(cls, other):
"""RE == other -> bool
True if RE and other are the same enzyme.
Specifically this checks they are the same Python object.
"""
#assert (id(cls)==id(other)) == (other is cls) == (cls is other)
return id(cls)==id(other)
def __ne__(cls, other):
"""RE != other -> bool.
isoschizomer strict, same recognition site, same restriction -> False
all the other-> True
WARNING - This is not the inverse of the __eq__ method.
"""
if not isinstance(other, RestrictionType):
return True
elif cls.charac == other.charac:
return False
else:
return True
def __rshift__(cls, other):
"""RE >> other -> bool.
neoschizomer : same recognition site, different restriction. -> True
all the others : -> False"""
if not isinstance(other, RestrictionType):
return False
elif cls.site == other.site and cls.charac != other.charac:
return True
else:
return False
def __mod__(cls, other):
"""a % b -> bool.
Test compatibility of the overhang of a and b.
True if a and b have compatible overhang."""
if not isinstance(other, RestrictionType):
raise TypeError( \
'expected RestrictionType, got %s instead' % type(other))
return cls._mod1(other)
def __ge__(cls, other):
"""a >= b -> bool.
a is greater or equal than b if the a site is longer than b site.
if their site have the same length sort by alphabetical order of their
names."""
if not isinstance(other, RestrictionType):
raise NotImplementedError
if len(cls) > len(other):
return True
elif cls.size == len(other) and cls.__name__ >= other.__name__:
return True
else:
return False
def __gt__(cls, other):
"""a > b -> bool.
sorting order:
1. size of the recognition site.
2. if equal size, alphabetical order of the names."""
if not isinstance(other, RestrictionType):
raise NotImplementedError
if len(cls) > len(other):
return True
elif cls.size == len(other) and cls.__name__ > other.__name__:
return True
else:
return False
def __le__(cls, other):
"""a <= b -> bool.
sorting order:
1. size of the recognition site.
2. if equal size, alphabetical order of the names."""
if not isinstance(other, RestrictionType):
raise NotImplementedError
elif len(cls) < len(other):
return True
elif len(cls) == len(other) and cls.__name__ <= other.__name__:
return True
else:
return False
def __lt__(cls, other):
"""a < b -> bool.
sorting order:
1. size of the recognition site.
2. if equal size, alphabetical order of the names."""
if not isinstance(other, RestrictionType):
raise NotImplementedError
elif len(cls) < len(other):
return True
elif len(cls) == len(other) and cls.__name__ < other.__name__:
return True
else:
return False
class AbstractCut(RestrictionType):
"""Implement the methods that are common to all restriction enzymes.
All the methods are classmethod.
For internal use only. Not meant to be instantiate."""
def search(cls, dna, linear=True):
"""RE.search(dna, linear=True) -> list.
return a list of all the site of RE in dna. Compensate for circular
sequences and so on.
dna must be a Bio.Seq.Seq instance or a Bio.Seq.MutableSeq instance.
if linear is False, the restriction sites than span over the boundaries
will be included.
The positions are the first base of the 3' fragment,
i.e. the first base after the position the enzyme will cut. """
#
# Separating search from _search allow a (very limited) optimisation
# of the search when using a batch of restriction enzymes.
# in this case the DNA is tested once by the class which implements
# the batch instead of being tested by each enzyme single.
# see RestrictionBatch.search() for example.
#
if isinstance(dna, FormattedSeq):
cls.dna = dna
return cls._search()
else :
cls.dna = FormattedSeq(dna, linear)
return cls._search()
search = classmethod(search)
def all_suppliers(self):
"""RE.all_suppliers -> print all the suppliers of R"""
supply = [x[0] for x in suppliers_dict.itervalues()]
supply.sort()
print ",\n".join(supply)
return
all_suppliers = classmethod(all_suppliers)
def is_equischizomer(self, other):
"""RE.is_equischizomers(other) -> bool.
True if other is an isoschizomer of RE.
False else.
equischizomer <=> same site, same position of restriction."""
return not self != other
is_equischizomer = classmethod(is_equischizomer)
def is_neoschizomer(self, other):
"""RE.is_neoschizomers(other) -> bool.
True if other is an isoschizomer of RE.
False else.
neoschizomer <=> same site, different position of restriction."""
return self >> other
is_neoschizomer = classmethod(is_neoschizomer)
def is_isoschizomer(self, other):
"""RE.is_isoschizomers(other) -> bool.
True if other is an isoschizomer of RE.
False else.
isoschizomer <=> same site."""
return (not self != other) or self >> other
is_isoschizomer = classmethod(is_isoschizomer)
def equischizomers(self, batch=None):
"""RE.equischizomers([batch]) -> list.
return a tuple of all the isoschizomers of RE.
if batch is supplied it is used instead of the default AllEnzymes.
equischizomer <=> same site, same position of restriction."""
if not batch : batch = AllEnzymes
r = [x for x in batch if not self != x]
i = r.index(self)
del r[i]
r.sort()
return r
equischizomers = classmethod(equischizomers)
def neoschizomers(self, batch=None):
"""RE.neoschizomers([batch]) -> list.
return a tuple of all the neoschizomers of RE.
if batch is supplied it is used instead of the default AllEnzymes.
neoschizomer <=> same site, different position of restriction."""
if not batch : batch = AllEnzymes
r = [x for x in batch if self >> x]
r.sort()
return r
neoschizomers = classmethod(neoschizomers)
def isoschizomers(self, batch=None):
"""RE.isoschizomers([batch]) -> list.
return a tuple of all the equischizomers and neoschizomers of RE.
if batch is supplied it is used instead of the default AllEnzymes."""
if not batch : batch = AllEnzymes
r = [x for x in batch if (self >> x) or (not self != x)]
i = r.index(self)
del r[i]
r.sort()
return r
isoschizomers = classmethod(isoschizomers)
def frequency(self):
"""RE.frequency() -> int.
frequency of the site."""
return self.freq
frequency = classmethod(frequency)
class NoCut(AbstractCut):
"""Implement the methods specific to the enzymes that do not cut.
These enzymes are generally enzymes that have been only partially
characterised and the way they cut the DNA is unknow or enzymes for
which the pattern of cut is to complex to be recorded in Rebase
(ncuts values of 0 in emboss_e.###).
When using search() with these enzymes the values returned are at the start of
the restriction site.
Their catalyse() method returns a TypeError.
Unknown and NotDefined are also part of the base classes of these enzymes.
Internal use only. Not meant to be instantiated."""
def cut_once(self):
"""RE.cut_once() -> bool.
True if the enzyme cut the sequence one time on each strand."""
return False
cut_once = classmethod(cut_once)
def cut_twice(self):
"""RE.cut_twice() -> bool.
True if the enzyme cut the sequence twice on each strand."""
return False
cut_twice = classmethod(cut_twice)
def _modify(self, location):
"""RE._modify(location) -> int.
for internal use only.
location is an integer corresponding to the location of the match for
the enzyme pattern in the sequence.
_modify returns the real place where the enzyme will cut.
example:
EcoRI pattern : GAATTC
EcoRI will cut after the G.
so in the sequence:
______
GAATACACGGAATTCGA
|
10
dna.finditer(GAATTC, 6) will return 10 as G is the 10th base
EcoRI cut after the G so:
EcoRI._modify(10) -> 11.
if the enzyme cut twice _modify will returns two integer corresponding
to each cutting site.
"""
yield location
_modify = classmethod(_modify)
def _rev_modify(self, location):
"""RE._rev_modify(location) -> generator of int.
for internal use only.
as _modify for site situated on the antiparallel strand when the
enzyme is not palindromic
"""
yield location
_rev_modify = classmethod(_rev_modify)
def characteristic(self):
"""RE.characteristic() -> tuple.
the tuple contains the attributes:
fst5 -> first 5' cut ((current strand) or None
fst3 -> first 3' cut (complementary strand) or None
scd5 -> second 5' cut (current strand) or None
scd5 -> second 3' cut (complementary strand) or None
site -> recognition site."""
return None, None, None, None, self.site
characteristic = classmethod(characteristic)
class OneCut(AbstractCut):
"""Implement the methods specific to the enzymes that cut the DNA only once
Correspond to ncuts values of 2 in emboss_e.###
Internal use only. Not meant to be instantiated."""
def cut_once(self):
"""RE.cut_once() -> bool.
True if the enzyme cut the sequence one time on each strand."""
return True
cut_once = classmethod(cut_once)
def cut_twice(self):
"""RE.cut_twice() -> bool.
True if the enzyme cut the sequence twice on each strand."""
return False
cut_twice = classmethod(cut_twice)
def _modify(self, location):
"""RE._modify(location) -> int.
for internal use only.
location is an integer corresponding to the location of the match for
the enzyme pattern in the sequence.
_modify returns the real place where the enzyme will cut.
example:
EcoRI pattern : GAATTC
EcoRI will cut after the G.
so in the sequence:
______
GAATACACGGAATTCGA
|
10
dna.finditer(GAATTC, 6) will return 10 as G is the 10th base
EcoRI cut after the G so:
EcoRI._modify(10) -> 11.
if the enzyme cut twice _modify will returns two integer corresponding
to each cutting site.
"""
yield location + self.fst5
_modify = classmethod(_modify)
def _rev_modify(self, location):
"""RE._rev_modify(location) -> generator of int.
for internal use only.
as _modify for site situated on the antiparallel strand when the
enzyme is not palindromic
"""
yield location - self.fst3
_rev_modify = classmethod(_rev_modify)
def characteristic(self):
"""RE.characteristic() -> tuple.
the tuple contains the attributes:
fst5 -> first 5' cut ((current strand) or None
fst3 -> first 3' cut (complementary strand) or None
scd5 -> second 5' cut (current strand) or None
scd5 -> second 3' cut (complementary strand) or None
site -> recognition site."""
return self.fst5, self.fst3, None, None, self.site
characteristic = classmethod(characteristic)
class TwoCuts(AbstractCut):
"""Implement the methods specific to the enzymes that cut the DNA twice
Correspond to ncuts values of 4 in emboss_e.###
Internal use only. Not meant to be instantiated."""
def cut_once(self):
"""RE.cut_once() -> bool.
True if the enzyme cut the sequence one time on each strand."""
return False
cut_once = classmethod(cut_once)
def cut_twice(self):
"""RE.cut_twice() -> bool.
True if the enzyme cut the sequence twice on each strand."""
return True
cut_twice = classmethod(cut_twice)
def _modify(self, location):
"""RE._modify(location) -> int.
for internal use only.
location is an integer corresponding to the location of the match for
the enzyme pattern in the sequence.
_modify returns the real place where the enzyme will cut.
example:
EcoRI pattern : GAATTC
EcoRI will cut after the G.
so in the sequence:
______
GAATACACGGAATTCGA
|
10
dna.finditer(GAATTC, 6) will return 10 as G is the 10th base
EcoRI cut after the G so:
EcoRI._modify(10) -> 11.
if the enzyme cut twice _modify will returns two integer corresponding
to each cutting site.
"""
yield location + self.fst5
yield location + self.scd5
_modify = classmethod(_modify)
def _rev_modify(self, location):
"""RE._rev_modify(location) -> generator of int.
for internal use only.
as _modify for site situated on the antiparallel strand when the
enzyme is not palindromic
"""
yield location - self.fst3
yield location - self.scd3
_rev_modify = classmethod(_rev_modify)
def characteristic(self):
"""RE.characteristic() -> tuple.
the tuple contains the attributes:
fst5 -> first 5' cut ((current strand) or None
fst3 -> first 3' cut (complementary strand) or None
scd5 -> second 5' cut (current strand) or None
scd5 -> second 3' cut (complementary strand) or None
site -> recognition site."""
return self.fst5, self.fst3, self.scd5, self.scd3, self.site
characteristic = classmethod(characteristic)
class Meth_Dep(AbstractCut):
"""Implement the information about methylation.
Enzymes of this class possess a site which is methylable."""
def is_methylable(self):
"""RE.is_methylable() -> bool.
True if the recognition site is a methylable."""
return True
is_methylable = classmethod(is_methylable)
class Meth_Undep(AbstractCut):
"""Implement informations about methylation sensitibility.
Enzymes of this class are not sensible to methylation."""
def is_methylable(self):
"""RE.is_methylable() -> bool.
True if the recognition site is a methylable."""
return False
is_methylable = classmethod(is_methylable)
class Palindromic(AbstractCut):
"""Implement the methods specific to the enzymes which are palindromic
palindromic means : the recognition site and its reverse complement are
identical.
Remarks : an enzyme with a site CGNNCG is palindromic even if some
of the sites that it will recognise are not.
for example here : CGAACG
Internal use only. Not meant to be instantiated."""
def _search(self):
"""RE._search() -> list.
for internal use only.
implement the search method for palindromic and non palindromic enzyme.
"""
siteloc = self.dna.finditer(self.compsite,self.size)
self.results = [r for s,g in siteloc for r in self._modify(s)]
if self.results : self._drop()
return self.results
_search = classmethod(_search)
def is_palindromic(self):
"""RE.is_palindromic() -> bool.
True if the recognition site is a palindrom."""
return True
is_palindromic = classmethod(is_palindromic)
class NonPalindromic(AbstractCut):
"""Implement the methods specific to the enzymes which are not palindromic
palindromic means : the recognition site and its reverse complement are
identical.
Internal use only. Not meant to be instantiated."""
def _search(self):
"""RE._search() -> list.
for internal use only.
implement the search method for palindromic and non palindromic enzyme.
"""
iterator = self.dna.finditer(self.compsite, self.size)
self.results = []
modif = self._modify
revmodif = self._rev_modify
s = str(self)
self.on_minus = []
for start, group in iterator:
if group(s):
self.results += [r for r in modif(start)]
else:
self.on_minus += [r for r in revmodif(start)]
self.results += self.on_minus
if self.results:
self.results.sort()
self._drop()
return self.results
_search = classmethod(_search)
def is_palindromic(self):
"""RE.is_palindromic() -> bool.
True if the recognition site is a palindrom."""
return False
is_palindromic = classmethod(is_palindromic)
class Unknown(AbstractCut):
"""Implement the methods specific to the enzymes for which the overhang
is unknown.
These enzymes are also NotDefined and NoCut.
Internal use only. Not meant to be instantiated."""
def catalyse(self, dna, linear=True):
"""RE.catalyse(dna, linear=True) -> tuple of DNA.
RE.catalyze(dna, linear=True) -> tuple of DNA.
return a tuple of dna as will be produced by using RE to restrict the
dna.
dna must be a Bio.Seq.Seq instance or a Bio.Seq.MutableSeq instance.
if linear is False, the sequence is considered to be circular and the
output will be modified accordingly."""
raise NotImplementedError('%s restriction is unknown.' \
% self.__name__)
catalyze = catalyse = classmethod(catalyse)
def is_blunt(self):
"""RE.is_blunt() -> bool.
True if the enzyme produces blunt end.
see also:
RE.is_3overhang()
RE.is_5overhang()
RE.is_unknown()"""
return False
is_blunt = classmethod(is_blunt)
def is_5overhang(self):
"""RE.is_5overhang() -> bool.
True if the enzyme produces 5' overhang sticky end.
see also:
RE.is_3overhang()
RE.is_blunt()
RE.is_unknown()"""
return False
is_5overhang = classmethod(is_5overhang)
def is_3overhang(self):
"""RE.is_3overhang() -> bool.
True if the enzyme produces 3' overhang sticky end.
see also:
RE.is_5overhang()
RE.is_blunt()
RE.is_unknown()"""
return False
is_3overhang = classmethod(is_3overhang)
def overhang(self):
"""RE.overhang() -> str. type of overhang of the enzyme.,
can be "3' overhang", "5' overhang", "blunt", "unknown" """
return 'unknown'
overhang = classmethod(overhang)
def compatible_end(self):
"""RE.compatible_end() -> list.
list of all the enzymes that share compatible end with RE."""
return []
compatible_end = classmethod(compatible_end)
def _mod1(self, other):
"""RE._mod1(other) -> bool.
for internal use only
test for the compatibility of restriction ending of RE and other."""
return False
_mod1 = classmethod(_mod1)
class Blunt(AbstractCut):
"""Implement the methods specific to the enzymes for which the overhang
is blunt.
The enzyme cuts the + strand and the - strand of the DNA at the same
place.
Internal use only. Not meant to be instantiated."""
def catalyse(self, dna, linear=True):
"""RE.catalyse(dna, linear=True) -> tuple of DNA.
RE.catalyze(dna, linear=True) -> tuple of DNA.
return a tuple of dna as will be produced by using RE to restrict the
dna.
dna must be a Bio.Seq.Seq instance or a Bio.Seq.MutableSeq instance.
if linear is False, the sequence is considered to be circular and the
output will be modified accordingly."""
r = self.search(dna, linear)
d = self.dna
if not r : return d[1:],
fragments = []
length = len(r)-1
if d.is_linear():
#
# START of the sequence to FIRST site.
#
fragments.append(d[1:r[0]])
if length:
#
# if more than one site add them.
#
fragments += [d[r[x]:r[x+1]] for x in xrange(length)]
#
# LAST site to END of the sequence.
#
fragments.append(d[r[-1]:])
else:
#
# circular : bridge LAST site to FIRST site.
#
fragments.append(d[r[-1]:]+d[1:r[0]])
if not length:
#
# one site we finish here.
#
return tuple(fragments)
#
# add the others.
#
fragments += [d[r[x]:r[x+1]] for x in xrange(length)]
return tuple(fragments)
catalyze = catalyse = classmethod(catalyse)
def is_blunt(self):
"""RE.is_blunt() -> bool.
True if the enzyme produces blunt end.
see also:
RE.is_3overhang()
RE.is_5overhang()
RE.is_unknown()"""
return True
is_blunt = classmethod(is_blunt)
def is_5overhang(self):
"""RE.is_5overhang() -> bool.
True if the enzyme produces 5' overhang sticky end.
see also:
RE.is_3overhang()
RE.is_blunt()
RE.is_unknown()"""
return False
is_5overhang = classmethod(is_5overhang)
def is_3overhang(self):
"""RE.is_3overhang() -> bool.
True if the enzyme produces 3' overhang sticky end.
see also:
RE.is_5overhang()
RE.is_blunt()
RE.is_unknown()"""
return False
is_3overhang = classmethod(is_3overhang)
def overhang(self):
"""RE.overhang() -> str. type of overhang of the enzyme.,
can be "3' overhang", "5' overhang", "blunt", "unknown" """
return 'blunt'
overhang = classmethod(overhang)
def compatible_end(self, batch=None):
"""RE.compatible_end() -> list.
list of all the enzymes that share compatible end with RE."""
if not batch : batch = AllEnzymes
r = [x for x in iter(AllEnzymes) if x.is_blunt()]
r.sort()
return r
compatible_end = classmethod(compatible_end)
def _mod1(other):
"""RE._mod1(other) -> bool.
for internal use only
test for the compatibility of restriction ending of RE and other."""
if issubclass(other, Blunt) : return True
else : return False
_mod1 = staticmethod(_mod1)
class Ov5(AbstractCut):
"""Implement the methods specific to the enzymes for which the overhang
is recessed in 3'.
The enzyme cuts the + strand after the - strand of the DNA.
Internal use only. Not meant to be instantiated."""
def catalyse(self, dna, linear=True):
"""RE.catalyse(dna, linear=True) -> tuple of DNA.
RE.catalyze(dna, linear=True) -> tuple of DNA.
return a tuple of dna as will be produced by using RE to restrict the
dna.
dna must be a Bio.Seq.Seq instance or a Bio.Seq.MutableSeq instance.
if linear is False, the sequence is considered to be circular and the
output will be modified accordingly."""
r = self.search(dna, linear)
d = self.dna
if not r : return d[1:],
length = len(r)-1
fragments = []
if d.is_linear():
#
# START of the sequence to FIRST site.
#
fragments.append(d[1:r[0]])
if length:
#
# if more than one site add them.
#
fragments += [d[r[x]:r[x+1]] for x in xrange(length)]
#
# LAST site to END of the sequence.
#
fragments.append(d[r[-1]:])
else:
#
# circular : bridge LAST site to FIRST site.
#
fragments.append(d[r[-1]:]+d[1:r[0]])
if not length:
#
# one site we finish here.
#
return tuple(fragments)
#
# add the others.
#
fragments += [d[r[x]:r[x+1]] for x in xrange(length)]
return tuple(fragments)
catalyze = catalyse = classmethod(catalyse)
def is_blunt(self):
"""RE.is_blunt() -> bool.
True if the enzyme produces blunt end.
see also:
RE.is_3overhang()
RE.is_5overhang()
RE.is_unknown()"""
return False
is_blunt = classmethod(is_blunt)
def is_5overhang(self):
"""RE.is_5overhang() -> bool.
True if the enzyme produces 5' overhang sticky end.
see also:
RE.is_3overhang()
RE.is_blunt()
RE.is_unknown()"""
return True
is_5overhang = classmethod(is_5overhang)
def is_3overhang(self):
"""RE.is_3overhang() -> bool.
True if the enzyme produces 3' overhang sticky end.
see also:
RE.is_5overhang()
RE.is_blunt()
RE.is_unknown()"""
return False
is_3overhang = classmethod(is_3overhang)
def overhang(self):
"""RE.overhang() -> str. type of overhang of the enzyme.,
can be "3' overhang", "5' overhang", "blunt", "unknown" """
return "5' overhang"
overhang = classmethod(overhang)
def compatible_end(self, batch=None):
"""RE.compatible_end() -> list.
list of all the enzymes that share compatible end with RE."""
if not batch : batch = AllEnzymes
r = [x for x in iter(AllEnzymes) if x.is_5overhang() and x % self]
r.sort()
return r
compatible_end = classmethod(compatible_end)
def _mod1(self, other):
"""RE._mod1(other) -> bool.
for internal use only
test for the compatibility of restriction ending of RE and other."""
if issubclass(other, Ov5) : return self._mod2(other)
else : return False
_mod1 = classmethod(_mod1)
class Ov3(AbstractCut):
"""Implement the methods specific to the enzymes for which the overhang
is recessed in 5'.
The enzyme cuts the - strand after the + strand of the DNA.
Internal use only. Not meant to be instantiated."""
def catalyse(self, dna, linear=True):
"""RE.catalyse(dna, linear=True) -> tuple of DNA.
RE.catalyze(dna, linear=True) -> tuple of DNA.
return a tuple of dna as will be produced by using RE to restrict the
dna.
dna must be a Bio.Seq.Seq instance or a Bio.Seq.MutableSeq instance.
if linear is False, the sequence is considered to be circular and the
output will be modified accordingly."""
r = self.search(dna, linear)
d = self.dna
if not r : return d[1:],
fragments = []
length = len(r)-1
if d.is_linear():
#
# START of the sequence to FIRST site.
#
fragments.append(d[1:r[0]])
if length:
#
# if more than one site add them.
#
fragments += [d[r[x]:r[x+1]] for x in xrange(length)]
#
# LAST site to END of the sequence.
#
fragments.append(d[r[-1]:])
else:
#
# circular : bridge LAST site to FIRST site.
#
fragments.append(d[r[-1]:]+d[1:r[0]])
if not length:
#
# one site we finish here.
#
return tuple(fragments)
#
# add the others.
#
fragments += [d[r[x]:r[x+1]] for x in xrange(length)]
return tuple(fragments)
catalyze = catalyse = classmethod(catalyse)
def is_blunt(self):
"""RE.is_blunt() -> bool.
True if the enzyme produces blunt end.
see also:
RE.is_3overhang()
RE.is_5overhang()
RE.is_unknown()"""
return False
is_blunt = classmethod(is_blunt)
def is_5overhang(self):
"""RE.is_5overhang() -> bool.
True if the enzyme produces 5' overhang sticky end.
see also:
RE.is_3overhang()
RE.is_blunt()
RE.is_unknown()"""
return False
is_5overhang = classmethod(is_5overhang)
def is_3overhang(self):
"""RE.is_3overhang() -> bool.
True if the enzyme produces 3' overhang sticky end.
see also:
RE.is_5overhang()
RE.is_blunt()
RE.is_unknown()"""
return True
is_3overhang = classmethod(is_3overhang)
def overhang(self):
"""RE.overhang() -> str. type of overhang of the enzyme.,
can be "3' overhang", "5' overhang", "blunt", "unknown" """
return "3' overhang"
overhang = classmethod(overhang)
def compatible_end(self, batch=None):
"""RE.compatible_end() -> list.
list of all the enzymes that share compatible end with RE."""
if not batch : batch = AllEnzymes
r = [x for x in iter(AllEnzymes) if x.is_3overhang() and x % self]
r.sort()
return r
compatible_end = classmethod(compatible_end)
def _mod1(self, other):
"""RE._mod1(other) -> bool.
for internal use only
test for the compatibility of restriction ending of RE and other."""
#
# called by RE._mod1(other) when the one of the enzyme is ambiguous
#
if issubclass(other, Ov3) : return self._mod2(other)
else : return False
_mod1 = classmethod(_mod1)
class Defined(AbstractCut):
"""Implement the methods specific to the enzymes for which the overhang
and the cut are not variable.
Typical example : EcoRI -> G^AATT_C
The overhang will always be AATT
Notes:
Blunt enzymes are always defined. even if there site is GGATCCNNN^_N
There overhang is always the same : blunt!
Internal use only. Not meant to be instantiated."""
def _drop(self):
"""RE._drop() -> list.
for internal use only.
drop the site that are situated outside the sequence in linear sequence.
modify the index for site in circular sequences."""
#
# remove or modify the results that are outside the sequence.
# This is necessary since after finding the site we add the distance
# from the site to the cut with the _modify and _rev_modify methods.
# For linear we will remove these sites altogether.
# For circular sequence, we modify the result rather than _drop it
# since the site is in the sequence.
#
length = len(self.dna)
drop = itertools.dropwhile
take = itertools.takewhile
if self.dna.is_linear():
self.results = [x for x in drop(lambda x:x<1, self.results)]
self.results = [x for x in take(lambda x:x<length, self.results)]
else:
for index, location in enumerate(self.results):
if location < 1:
self.results[index] += length
else:
break
for index, location in enumerate(self.results[::-1]):
if location > length:
self.results[-(index+1)] -= length
else:
break
return
_drop = classmethod(_drop)
def is_defined(self):
"""RE.is_defined() -> bool.
True if the sequence recognised and cut is constant,
i.e. the recognition site is not degenerated AND the enzyme cut inside
the site.
see also:
RE.is_ambiguous()
RE.is_unknown()"""
return True
is_defined = classmethod(is_defined)
def is_ambiguous(self):
"""RE.is_ambiguous() -> bool.
True if the sequence recognised and cut is ambiguous,
i.e. the recognition site is degenerated AND/OR the enzyme cut outside
the site.
see also:
RE.is_defined()
RE.is_unknown()"""
return False
is_ambiguous = classmethod(is_ambiguous)
def is_unknown(self):
"""RE.is_unknown() -> bool.
True if the sequence is unknown,
i.e. the recognition site has not been characterised yet.
see also:
RE.is_defined()
RE.is_ambiguous()"""
return False
is_unknown = classmethod(is_unknown)
def elucidate(self):
"""RE.elucidate() -> str
return a representation of the site with the cut on the (+) strand
represented as '^' and the cut on the (-) strand as '_'.
ie:
>>> EcoRI.elucidate() # 5' overhang
'G^AATT_C'
>>> KpnI.elucidate() # 3' overhang
'G_GTAC^C'
>>> EcoRV.elucidate() # blunt
'GAT^_ATC'
>>> SnaI.elucidate() # NotDefined, cut profile unknown.
'? GTATAC ?'
>>>
"""
f5 = self.fst5
f3 = self.fst3
site = self.site
if self.cut_twice() : re = 'cut twice, not yet implemented sorry.'
elif self.is_5overhang():
if f5 == f3 == 0 : re = 'N^'+ self.site + '_N'
elif f3 == 0 : re = site[:f5] + '^' + site[f5:] + '_N'
else : re = site[:f5] + '^' + site[f5:f3] + '_' + site[f3:]
elif self.is_blunt():
re = site[:f5] + '^_' + site[f5:]
else:
if f5 == f3 == 0 : re = 'N_'+ site + '^N'
else : re = site[:f3] + '_' + site[f3:f5] +'^'+ site[f5:]
return re
elucidate = classmethod(elucidate)
def _mod2(self, other):
"""RE._mod2(other) -> bool.
for internal use only
test for the compatibility of restriction ending of RE and other."""
#
# called by RE._mod1(other) when the one of the enzyme is ambiguous
#
if other.ovhgseq == self.ovhgseq:
return True
elif issubclass(other, Ambiguous):
return other._mod2(self)
else:
return False
_mod2 = classmethod(_mod2)
class Ambiguous(AbstractCut):
"""Implement the methods specific to the enzymes for which the overhang
is variable.
Typical example : BstXI -> CCAN_NNNN^NTGG
The overhang can be any sequence of 4 bases.
Notes:
Blunt enzymes are always defined. even if there site is GGATCCNNN^_N
There overhang is always the same : blunt!
Internal use only. Not meant to be instantiated."""
def _drop(self):
"""RE._drop() -> list.
for internal use only.
drop the site that are situated outside the sequence in linear sequence.
modify the index for site in circular sequences."""
length = len(self.dna)
drop = itertools.dropwhile
take = itertools.takewhile
if self.dna.is_linear():
self.results = [x for x in drop(lambda x : x < 1, self.results)]
self.results = [x for x in take(lambda x : x <length, self.results)]
else:
for index, location in enumerate(self.results):
if location < 1:
self.results[index] += length
else:
break
for index, location in enumerate(self.results[::-1]):
if location > length:
self.results[-(index+1)] -= length
else:
break
return
_drop = classmethod(_drop)
def is_defined(self):
"""RE.is_defined() -> bool.
True if the sequence recognised and cut is constant,
i.e. the recognition site is not degenerated AND the enzyme cut inside
the site.
see also:
RE.is_ambiguous()
RE.is_unknown()"""
return False
is_defined = classmethod(is_defined)
def is_ambiguous(self):
"""RE.is_ambiguous() -> bool.
True if the sequence recognised and cut is ambiguous,
i.e. the recognition site is degenerated AND/OR the enzyme cut outside
the site.
see also:
RE.is_defined()
RE.is_unknown()"""
return True
is_ambiguous = classmethod(is_ambiguous)
def is_unknown(self):
"""RE.is_unknown() -> bool.
True if the sequence is unknown,
i.e. the recognition site has not been characterised yet.
see also:
RE.is_defined()
RE.is_ambiguous()"""
return False
is_unknown = classmethod(is_unknown)
def _mod2(self, other):
"""RE._mod2(other) -> bool.
for internal use only
test for the compatibility of restriction ending of RE and other."""
#
# called by RE._mod1(other) when the one of the enzyme is ambiguous
#
if len(self.ovhgseq) != len(other.ovhgseq):
return False
else:
se = self.ovhgseq
for base in se:
if base in 'ATCG':
pass
if base in 'N':
se = '.'.join(se.split('N'))
if base in 'RYWMSKHDBV':
expand = '['+ matching[base] + ']'
se = expand.join(se.split(base))
if re.match(se, other.ovhgseq):
return True
else:
return False
_mod2 = classmethod(_mod2)
def elucidate(self):
"""RE.elucidate() -> str
return a representation of the site with the cut on the (+) strand
represented as '^' and the cut on the (-) strand as '_'.
ie:
>>> EcoRI.elucidate() # 5' overhang
'G^AATT_C'
>>> KpnI.elucidate() # 3' overhang
'G_GTAC^C'
>>> EcoRV.elucidate() # blunt
'GAT^_ATC'
>>> SnaI.elucidate() # NotDefined, cut profile unknown.
'? GTATAC ?'
>>>
"""
f5 = self.fst5
f3 = self.fst3
length = len(self)
site = self.site
if self.cut_twice() : re = 'cut twice, not yet implemented sorry.'
elif self.is_5overhang():
if f3 == f5 == 0:
re = 'N^' + site +'_N'
elif 0 <= f5 <= length and 0 <= f3+length <= length:
re = site[:f5] + '^' + site[f5:f3] + '_' + site[f3:]
elif 0 <= f5 <= length:
re = site[:f5] + '^' + site[f5:] + f3*'N' + '_N'
elif 0 <= f3+length <= length:
re = 'N^' + abs(f5) * 'N' + site[:f3] + '_' + site[f3:]
elif f3+length < 0:
re = 'N^'*abs(f5)*'N' + '_' + abs(length+f3)*'N' + site
elif f5 > length:
re = site + (f5-length)*'N'+'^'+(length+f3-f5)*'N'+'_N'
else:
re = 'N^' + abs(f5) * 'N' + site + f3*'N' + '_N'
elif self.is_blunt():
if f5 < 0:
re = 'N^_' + abs(f5)*'N' + site
elif f5 > length:
re = site + (f5-length)*'N' + '^_N'
else:
raise ValueError('%s.easyrepr() : error f5=%i' \
% (self.name,f5))
else:
if f3 == 0:
if f5 == 0 : re = 'N_' + site + '^N'
else : re = site + '_' + (f5-length)*'N' + '^N'
elif 0 < f3+length <= length and 0 <= f5 <= length:
re = site[:f3] + '_' + site[f3:f5] + '^' + site[f5:]
elif 0 < f3+length <= length:
re = site[:f3] + '_' + site[f3:] + (f5-length)*'N' + '^N'
elif 0 <= f5 <= length:
re = 'N_' +'N'*(f3+length) + site[:f5] + '^' + site[f5:]
elif f3 > 0:
re = site + f3*'N' + '_' + (f5-f3-length)*'N' + '^N'
elif f5 < 0:
re = 'N_' + abs(f3-f5+length)*'N' + '^' + abs(f5)*'N' + site
else:
re = 'N_' + abs(f3+length)*'N' + site + (f5-length)*'N' + '^N'
return re
elucidate = classmethod(elucidate)
class NotDefined(AbstractCut):
"""Implement the methods specific to the enzymes for which the overhang
is not characterised.
Correspond to NoCut and Unknown.
Internal use only. Not meant to be instantiated."""
def _drop(self):
"""RE._drop() -> list.
for internal use only.
drop the site that are situated outside the sequence in linear sequence.
modify the index for site in circular sequences."""
if self.dna.is_linear():
return
else:
length = len(self.dna)
for index, location in enumerate(self.results):
if location < 1:
self.results[index] += length
else:
break
for index, location in enumerate(self.results[:-1]):
if location > length:
self.results[-(index+1)] -= length
else:
break
return
_drop = classmethod(_drop)
def is_defined(self):
"""RE.is_defined() -> bool.
True if the sequence recognised and cut is constant,
i.e. the recognition site is not degenerated AND the enzyme cut inside
the site.
see also:
RE.is_ambiguous()
RE.is_unknown()"""
return False
is_defined = classmethod(is_defined)
def is_ambiguous(self):
"""RE.is_ambiguous() -> bool.
True if the sequence recognised and cut is ambiguous,
i.e. the recognition site is degenerated AND/OR the enzyme cut outside
the site.
see also:
RE.is_defined()
RE.is_unknown()"""
return False
is_ambiguous = classmethod(is_ambiguous)
def is_unknown(self):
"""RE.is_unknown() -> bool.
True if the sequence is unknown,
i.e. the recognition site has not been characterised yet.
see also:
RE.is_defined()
RE.is_ambiguous()"""
return True
is_unknown = classmethod(is_unknown)
def _mod2(self, other):
"""RE._mod2(other) -> bool.
for internal use only
test for the compatibility of restriction ending of RE and other."""
#
# Normally we should not arrive here. But well better safe than sorry.
# the overhang is not defined we are compatible with nobody.
# could raise an Error may be rather than return quietly.
#
#return False
raise ValueError("%s.mod2(%s), %s : NotDefined. pas glop pas glop!" \
% (str(self), str(other), str(self)))
_mod2 = classmethod(_mod2)
def elucidate(self):
"""RE.elucidate() -> str
return a representation of the site with the cut on the (+) strand
represented as '^' and the cut on the (-) strand as '_'.
ie:
>>> EcoRI.elucidate() # 5' overhang
'G^AATT_C'
>>> KpnI.elucidate() # 3' overhang
'G_GTAC^C'
>>> EcoRV.elucidate() # blunt
'GAT^_ATC'
>>> SnaI.elucidate() # NotDefined, cut profile unknown.
'? GTATAC ?'
>>>
"""
return '? %s ?' % self.site
elucidate = classmethod(elucidate)
class Commercially_available(AbstractCut):
#
# Recent addition to Rebase make this naming convention uncertain.
# May be better to says enzymes which have a supplier.
#
"""Implement the methods specific to the enzymes which are commercially
available.
Internal use only. Not meant to be instantiated."""
def suppliers(self):
"""RE.suppliers() -> print the suppliers of RE."""
supply = suppliers_dict.items()
for k,v in supply:
if k in self.suppl:
print v[0]+','
return
suppliers = classmethod(suppliers)
def supplier_list(self):
"""RE.supplier_list() -> list.
list of the supplier names for RE."""
return [v[0] for k,v in suppliers_dict.items() if k in self.suppl]
supplier_list = classmethod(supplier_list)
def buffers(self, supplier):
"""RE.buffers(supplier) -> string.
not implemented yet."""
return
buffers = classmethod(buffers)
def is_comm(self):
"""RE.iscomm() -> bool.
True if RE has suppliers."""
return True
is_comm = classmethod(is_comm)
class Not_available(AbstractCut):
"""Implement the methods specific to the enzymes which are not commercially
available.
Internal use only. Not meant to be instantiated."""
def suppliers():
"""RE.suppliers() -> print the suppliers of RE."""
return None
suppliers = staticmethod(suppliers)
def supplier_list(self):
"""RE.supplier_list() -> list.
list of the supplier names for RE."""
return []
supplier_list = classmethod(supplier_list)
def buffers(self, supplier):
"""RE.buffers(supplier) -> string.
not implemented yet."""
raise TypeError("Enzyme not commercially available.")
buffers = classmethod(buffers)
def is_comm(self):
"""RE.iscomm() -> bool.
True if RE has suppliers."""
return False
is_comm = classmethod(is_comm)
###############################################################################
# #
# Restriction Batch #
# #
###############################################################################
class RestrictionBatch(set):
def __init__(self, first=[], suppliers=[]):
"""RestrictionBatch([sequence]) -> new RestrictionBatch."""
first = [self.format(x) for x in first]
first += [eval(x) for n in suppliers for x in suppliers_dict[n][1]]
set.__init__(self, first)
self.mapping = dict.fromkeys(self)
self.already_mapped = None
def __str__(self):
if len(self) < 5:
return '+'.join(self.elements())
else:
return '...'.join(('+'.join(self.elements()[:2]),\
'+'.join(self.elements()[-2:])))
def __repr__(self):
return 'RestrictionBatch(%s)' % self.elements()
def __contains__(self, other):
try:
other = self.format(other)
except ValueError : # other is not a restriction enzyme
return False
return set.__contains__(self, other)
def __div__(self, other):
return self.search(other)
def __rdiv__(self, other):
return self.search(other)
def get(self, enzyme, add=False):
"""B.get(enzyme[, add]) -> enzyme class.
if add is True and enzyme is not in B add enzyme to B.
if add is False (which is the default) only return enzyme.
if enzyme is not a RestrictionType or can not be evaluated to
a RestrictionType, raise a ValueError."""
e = self.format(enzyme)
if e in self:
return e
elif add:
self.add(e)
return e
else:
raise ValueError('enzyme %s is not in RestrictionBatch' \
% e.__name__)
def lambdasplit(self, func):
"""B.lambdasplit(func) -> RestrictionBatch .
the new batch will contains only the enzymes for which
func return True."""
d = [x for x in itertools.ifilter(func, self)]
new = RestrictionBatch()
new._data = dict(zip(d, [True]*len(d)))
return new
def add_supplier(self, letter):
"""B.add_supplier(letter) -> add a new set of enzyme to B.
letter represents the suppliers as defined in the dictionary
RestrictionDictionary.suppliers
return None.
raise a KeyError if letter is not a supplier code."""
supplier = suppliers_dict[letter]
self.suppliers.append(letter)
for x in supplier[1]:
self.add_nocheck(eval(x))
return
def current_suppliers(self):
"""B.current_suppliers() -> add a new set of enzyme to B.
return a sorted list of the suppliers which have been used to
create the batch."""
suppl_list = [suppliers_dict[x][0] for x in self.suppliers]
suppl_list.sort()
return suppl_list
def __iadd__(self, other):
""" b += other -> add other to b, check the type of other."""
self.add(other)
return self
def __add__(self, other):
""" b + other -> new RestrictionBatch."""
new = self.__class__(self)
new.add(other)
return new
def remove(self, other):
"""B.remove(other) -> remove other from B if other is a RestrictionType.
Safe set.remove method. Verify that other is a RestrictionType or can be
evaluated to a RestrictionType.
raise a ValueError if other can not be evaluated to a RestrictionType.
raise a KeyError if other is not in B."""
return set.remove(self, self.format(other))
def add(self, other):
"""B.add(other) -> add other to B if other is a RestrictionType.
Safe set.add method. Verify that other is a RestrictionType or can be
evaluated to a RestrictionType.
raise a ValueError if other can not be evaluated to a RestrictionType.
"""
return set.add(self, self.format(other))
def add_nocheck(self, other):
"""B.add_nocheck(other) -> add other to B. don't check type of other.
"""
return set.add(self, other)
def format(self, y):
"""B.format(y) -> RestrictionType or raise ValueError.
if y is a RestrictionType return y
if y can be evaluated to a RestrictionType return eval(y)
raise a Value Error in all other case."""
try:
if isinstance(y, RestrictionType):
return y
elif isinstance(eval(str(y)), RestrictionType):
return eval(y)
else:
pass
except (NameError, SyntaxError):
pass
raise ValueError('%s is not a RestrictionType' % y.__class__)
def is_restriction(self, y):
"""B.is_restriction(y) -> bool.
True is y or eval(y) is a RestrictionType."""
return isinstance(y, RestrictionType) or \
isinstance(eval(str(y)), RestrictionType)
def split(self, *classes, **bool):
"""B.split(class, [class.__name__ = True]) -> new RestrictionBatch.
it works but it is slow, so it has really an interest when splitting
over multiple conditions."""
def splittest(element):
for klass in classes:
b = bool.get(klass.__name__, True)
if issubclass(element, klass):
if b:
continue
else:
return False
elif b:
return False
else:
continue
return True
d = [k for k in itertools.ifilter(splittest, self)]
new = RestrictionBatch()
new._data = dict(zip(d, [True]*len(d)))
return new
def elements(self):
"""B.elements() -> tuple.
give all the names of the enzymes in B sorted alphabetically."""
l = [str(e) for e in self]
l.sort()
return l
def as_string(self):
"""B.as_string() -> list.
return a list of the name of the elements of B."""
return [str(e) for e in self]
def suppl_codes(self):
"""B.suppl_codes() -> dict
letter code for the suppliers"""
supply = dict([(k,v[0]) for k,v in suppliers_dict.iteritems()])
return supply
suppl_codes = classmethod(suppl_codes)
def show_codes(self):
"B.show_codes() -> letter codes for the suppliers"""
supply = [' = '.join(i) for i in self.suppl_codes().iteritems()]
print '\n'.join(supply)
return
show_codes = classmethod(show_codes)
def search(self, dna, linear=True):
"""B.search(dna) -> dict."""
#
# here we replace the search method of the individual enzymes
# with one unique testing method.
#
if not hasattr(self, "already_mapped") :
#TODO - Why does this happen!
#Try the "doctest" at the start of PrintFormat.py
self.already_mapped = None
if isinstance(dna, DNA):
# For the searching, we just care about the sequence as a string,
# if that is the same we can use the cached search results.
# At the time of writing, Seq == method isn't implemented,
# and therefore does object identity which is stricter.
if (str(dna), linear) == self.already_mapped:
return self.mapping
else:
self.already_mapped = str(dna), linear
fseq = FormattedSeq(dna, linear)
self.mapping = dict([(x, x.search(fseq)) for x in self])
return self.mapping
elif isinstance(dna, FormattedSeq):
if (str(dna), dna.linear) == self.already_mapped:
return self.mapping
else:
self.already_mapped = str(dna), dna.linear
self.mapping = dict([(x, x.search(dna)) for x in self])
return self.mapping
raise TypeError("Expected Seq or MutableSeq instance, got %s instead"\
%type(dna))
###############################################################################
# #
# Restriction Analysis #
# #
###############################################################################
class Analysis(RestrictionBatch, PrintFormat):
def __init__(self, restrictionbatch=RestrictionBatch(),sequence=DNA(''),
linear=True):
"""Analysis([restrictionbatch [, sequence] linear=True]) -> New Analysis class.
For most of the method of this class if a dictionary is given it will
be used as the base to calculate the results.
If no dictionary is given a new analysis using the Restriction Batch
which has been given when the Analysis class has been instantiated."""
RestrictionBatch.__init__(self, restrictionbatch)
self.rb = restrictionbatch
self.sequence = sequence
self.linear = linear
if self.sequence:
self.search(self.sequence, self.linear)
def __repr__(self):
return 'Analysis(%s,%s,%s)'%\
(repr(self.rb),repr(self.sequence),self.linear)
def _sub_set(self, wanted):
"""A._sub_set(other_set) -> dict.
Internal use only.
screen the results through wanted set.
Keep only the results for which the enzymes is in wanted set.
"""
return dict([(k,v) for k,v in self.mapping.iteritems() if k in wanted])
def _boundaries(self, start, end):
"""A._boundaries(start, end) -> tuple.
Format the boundaries for use with the methods that limit the
search to only part of the sequence given to analyse.
"""
if not isinstance(start, int):
raise TypeError('expected int, got %s instead' % type(start))
if not isinstance(end, int):
raise TypeError('expected int, got %s instead' % type(end))
if start < 1:
start += len(self.sequence)
if end < 1:
end += len(self.sequence)
if start < end:
pass
else:
start, end == end, start
if start < 1:
start == 1
if start < end:
return start, end, self._test_normal
else:
return start, end, self._test_reverse
def _test_normal(self, start, end, site):
"""A._test_normal(start, end, site) -> bool.
Internal use only
Test if site is in between start and end.
"""
return start <= site < end
def _test_reverse(self, start, end, site):
"""A._test_reverse(start, end, site) -> bool.
Internal use only
Test if site is in between end and start (for circular sequences).
"""
return start <= site <= len(self.sequence) or 1 <= site < end
def print_that(self, dct=None, title='', s1=''):
"""A.print_that([dct[, title[, s1]]]) -> print the results from dct.
If dct is not given the full dictionary is used.
"""
if not dct:
dct = self.mapping
print
return PrintFormat.print_that(self, dct, title, s1)
def change(self, **what):
"""A.change(**attribute_name) -> Change attribute of Analysis.
It is possible to change the width of the shell by setting
self.ConsoleWidth to what you want.
self.NameWidth refer to the maximal length of the enzyme name.
Changing one of these parameters here might not give the results
you expect. In which case, you can settle back to a 80 columns shell
or try to change self.Cmodulo and self.PrefWidth in PrintFormat until
you get it right."""
for k,v in what.iteritems():
if k in ('NameWidth', 'ConsoleWidth'):
setattr(self, k, v)
self.Cmodulo = self.ConsoleWidth % self.NameWidth
self.PrefWidth = self.ConsoleWidth - self.Cmodulo
elif k is 'sequence':
setattr(self, 'sequence', v)
self.search(self.sequence, self.linear)
elif k is 'rb':
self = Analysis.__init__(self, v, self.sequence, self.linear)
elif k is 'linear':
setattr(self, 'linear', v)
self.search(self.sequence, v)
elif k in ('Indent', 'Maxsize'):
setattr(self, k, v)
elif k in ('Cmodulo', 'PrefWidth'):
raise AttributeError( \
'To change %s, change NameWidth and/or ConsoleWidth' \
% name)
else:
raise AttributeError( \
'Analysis has no attribute %s' % name)
return
def full(self, linear=True):
"""A.full() -> dict.
Full Restriction Map of the sequence."""
return self.mapping
def blunt(self, dct = None):
"""A.blunt([dct]) -> dict.
Only the enzymes which have a 3'overhang restriction site."""
if not dct:
dct = self.mapping
return dict([(k,v) for k,v in dct.iteritems() if k.is_blunt()])
def overhang5(self, dct=None):
"""A.overhang5([dct]) -> dict.
Only the enzymes which have a 5' overhang restriction site."""
if not dct:
dct = self.mapping
return dict([(k,v) for k,v in dct.iteritems() if k.is_5overhang()])
def overhang3(self, dct=None):
"""A.Overhang3([dct]) -> dict.
Only the enzymes which have a 3'overhang restriction site."""
if not dct:
dct = self.mapping
return dict([(k,v) for k,v in dct.iteritems() if k.is_3overhang()])
def defined(self, dct=None):
"""A.defined([dct]) -> dict.
Only the enzymes that have a defined restriction site in Rebase."""
if not dct:
dct = self.mapping
return dict([(k,v) for k,v in dct.iteritems() if k.is_defined()])
def with_sites(self, dct=None):
"""A.with_sites([dct]) -> dict.
Enzymes which have at least one site in the sequence."""
if not dct:
dct = self.mapping
return dict([(k,v) for k,v in dct.iteritems() if v])
def without_site(self, dct=None):
"""A.without_site([dct]) -> dict.
Enzymes which have no site in the sequence."""
if not dct:
dct = self.mapping
return dict([(k,v) for k,v in dct.iteritems() if not v])
def with_N_sites(self, N, dct=None):
"""A.With_N_Sites(N [, dct]) -> dict.
Enzymes which cut N times the sequence."""
if not dct:
dct = self.mapping
return dict([(k,v) for k,v in dct.iteritems()if len(v) == N])
def with_number_list(self, list, dct= None):
if not dct:
dct = self.mapping
return dict([(k,v) for k,v in dct.iteritems() if len(v) in list])
def with_name(self, names, dct=None):
"""A.with_name(list_of_names [, dct]) ->
Limit the search to the enzymes named in list_of_names."""
for i, enzyme in enumerate(names):
if not enzyme in AllEnzymes:
print "no datas for the enzyme:", str(name)
del names[i]
if not dct:
return RestrictionBatch(names).search(self.sequence)
return dict([(n, dct[n]) for n in names if n in dct])
def with_site_size(self, site_size, dct=None):
"""A.with_site_size(site_size [, dct]) ->
Limit the search to the enzymes whose site is of size <site_size>."""
sites = [name for name in self if name.size == site_size]
if not dct:
return RestrictionBatch(sites).search(self.sequence)
return dict([(k,v) for k,v in dct.iteritems() if k in site_size])
def only_between(self, start, end, dct=None):
"""A.only_between(start, end[, dct]) -> dict.
Enzymes that cut the sequence only in between start and end."""
start, end, test = self._boundaries(start, end)
if not dct:
dct = self.mapping
d = dict(dct)
for key, sites in dct.iteritems():
if not sites:
del d[key]
continue
for site in sites:
if test(start, end, site):
continue
else:
del d[key]
break
return d
def between(self, start, end, dct=None):
"""A.between(start, end [, dct]) -> dict.
Enzymes that cut the sequence at least in between start and end.
They may cut outside as well."""
start, end, test = self._boundaries(start, end)
d = {}
if not dct:
dct = self.mapping
for key, sites in dct.iteritems():
for site in sites:
if test(start, end, site):
d[key] = sites
break
continue
return d
def show_only_between(self, start, end, dct=None):
"""A.show_only_between(start, end [, dct]) -> dict.
Enzymes that cut the sequence outside of the region
in between start and end but do not cut inside."""
d = []
if start <= end:
d = [(k, [vv for vv in v if start<=vv<=end])
for v in self.between(start, end, dct)]
else:
d = [(k, [vv for vv in v if start<=vv or vv <= end])
for v in self.between(start, end, dct)]
return dict(d)
def only_outside(self, start, end, dct = None):
"""A.only_outside(start, end [, dct]) -> dict.
Enzymes that cut the sequence outside of the region
in between start and end but do not cut inside."""
start, end, test = self._boundaries(start, end)
if not dct : dct = self.mapping
d = dict(dct)
for key, sites in dct.iteritems():
if not sites:
del d[key]
continue
for site in sites:
if test(start, end, site):
del d[key]
break
else:
continue
return d
def outside(self, start, end, dct=None):
"""A.outside((start, end [, dct]) -> dict.
Enzymes that cut outside the region in between start and end.
No test is made to know if they cut or not inside this region."""
start, end, test = self._boundaries(start, end)
if not dct:
dct = self.mapping
d = {}
for key, sites in dct.iteritems():
for site in sites:
if test(start, end, site):
continue
else:
d[key] = sites
break
return d
def do_not_cut(self, start, end, dct = None):
"""A.do_not_cut(start, end [, dct]) -> dict.
Enzymes that do not cut the region in between start and end."""
if not dct:
dct = self.mapping
d = self.without_site()
d.update(self.only_outside(start, end, dct))
return d
#
# The restriction enzyme classes are created dynamically when the module is
# imported. Here is the magic which allow the creation of the
# restriction-enzyme classes.
#
# The reason for the two dictionaries in Restriction_Dictionary
# one for the types (which will be called pseudo-type as they really
# correspond to the values that instances of RestrictionType can take)
# and one for the enzymes is efficiency as the bases are evaluated
# once per pseudo-type.
#
# However Restriction is still a very inefficient module at import. But
# remember that around 660 classes (which is more or less the size of Rebase)
# have to be created dynamically. However, this processing take place only
# once.
# This inefficiency is however largely compensated by the use of metaclass
# which provide a very efficient layout for the class themselves mostly
# alleviating the need of if/else loops in the class methods.
#
# It is essential to run Restriction with doc string optimisation (-OO switch)
# as the doc string of 660 classes take a lot of processing.
#
CommOnly = RestrictionBatch() # commercial enzymes
NonComm = RestrictionBatch() # not available commercially
for TYPE, (bases, enzymes) in typedict.iteritems():
#
# The keys are the pseudo-types TYPE (stored as type1, type2...)
# The names are not important and are only present to differentiate
# the keys in the dict. All the pseudo-types are in fact RestrictionType.
# These names will not be used after and the pseudo-types are not
# kept in the locals() dictionary. It is therefore impossible to
# import them.
# Now, if you have look at the dictionary, you will see that not all the
# types are present as those without corresponding enzymes have been
# removed by Dictionary_Builder().
#
# The values are tuples which contain
# as first element a tuple of bases (as string) and
# as second element the names of the enzymes.
#
# First eval the bases.
#
bases = tuple([eval(x) for x in bases])
#
# now create the particular value of RestrictionType for the classes
# in enzymes.
#
T = type.__new__(RestrictionType, 'RestrictionType', bases, {})
for k in enzymes:
#
# Now, we go through all the enzymes and assign them their type.
# enzymedict[k] contains the values of the attributes for this
# particular class (self.site, self.ovhg,....).
#
newenz = T(k, bases, enzymedict[k])
#
# we add the enzymes to the corresponding batch.
#
# No need to verify the enzyme is a RestrictionType -> add_nocheck
#
if newenz.is_comm() : CommOnly.add_nocheck(newenz)
else : NonComm.add_nocheck(newenz)
#
# AllEnzymes is a RestrictionBatch with all the enzymes from Rebase.
#
AllEnzymes = CommOnly | NonComm
#
# Now, place the enzymes in locals so they can be imported.
#
names = [str(x) for x in AllEnzymes]
try:
del x
except NameError:
#Scoping changed in Python 3, the variable isn't leaked
pass
locals().update(dict(zip(names, AllEnzymes)))
__all__=['FormattedSeq', 'Analysis', 'RestrictionBatch','AllEnzymes','CommOnly','NonComm']+names
del k, enzymes, TYPE, bases, names
|