This file is indexed.

/usr/share/pyshared/PyMca/TextImageStack.py is in pymca 4.5.0-4.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
#/*##########################################################################
# Copyright (C) 2004-2011 European Synchrotron Radiation Facility
#
# This file is part of the PyMCA X-ray Fluorescence Toolkit developed at
# the ESRF by the Beamline Instrumentation Software Support (BLISS) group.
#
# This toolkit is free software; you can redistribute it and/or modify it 
# under the terms of the GNU General Public License as published by the Free
# Software Foundation; either version 2 of the License, or (at your option) 
# any later version.
#
# PyMCA is distributed in the hope that it will be useful, but WITHOUT ANY
# WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
# FOR A PARTICULAR PURPOSE.  See the GNU General Public License for more
# details.
#
# You should have received a copy of the GNU General Public License along with
# PyMCA; if not, write to the Free Software Foundation, Inc., 59 Temple Place,
# Suite 330, Boston, MA 02111-1307, USA.
#
# PyMCA follows the dual licensing model of Trolltech's Qt and Riverbank's PyQt
# and cannot be used as a free plugin for a non-free program. 
#
# Please contact the ESRF industrial unit (industry@esrf.fr) if this license 
# is a problem for you.
#############################################################################*/
import numpy
import sys
import os
from PyMca import DataObject
HDF5 = False
try:
    import h5py
    HDF5 = True
except:
    pass
        
SOURCE_TYPE = "EdfFileStack"
DEBUG = 0

class TextImageStack(DataObject.DataObject):
    def __init__(self, filelist = None, imagestack=None, dtype=None):
        DataObject.DataObject.__init__(self)
        self.incrProgressBar=0
        self.__keyList = []
        if imagestack is None:
            self.__imageStack = True
        else:
            self.__imageStack = imagestack
        self.__dtype = dtype
        if filelist is not None:
            if type(filelist) != type([]):
                filelist = [filelist]
            if len(filelist) == 1:
                self.loadIndexedStack(filelist)
            else:
                self.loadFileList(filelist)

    def loadFileList(self, filelist, fileindex=0):
        if type(filelist) == type(''):
            filelist = [filelist]
        self.__keyList = []
        self.sourceName = filelist
        self.__indexedStack = True
        self.sourceType = SOURCE_TYPE
        self.info = {}
        self.__nFiles=len(filelist)
        #read first file
        arrRet = numpy.loadtxt(filelist[0])
        if self.__dtype is None:
            self.__dtype = arrRet.dtype
        self.__nImagesPerFile = 1
            
        #try to allocate the memory
        shape = self.__nFiles, arrRet.shape[0], arrRet.shape[1]
        samplingStep = 1
        hdf5done = False
        try:
            self.data = numpy.zeros(shape, self.__dtype)
        except (MemoryError, ValueError):
            hdf5done = False
            if HDF5 and ('PyMcaQt' in sys.modules):
                import PyMcaQt as qt
                import ArraySave
                msg=qt.QMessageBox.information( None,
                  "Memory error\n",
                  "Do you want to convert your data to HDF5?\n",
                  qt.QMessageBox.Yes,qt.QMessageBox.No)
                if msg != qt.QMessageBox.No:
                    hdf5file = qt.QFileDialog.getSaveFileName(None,
                                "Please select output file name",
                                os.path.dirname(filelist[0]),
                                "HDF5 files *.h5")
                    if not len(hdf5file):
                        raise IOError("Invalid output file")
            hdf5file = str(hdf5file)
            if not hdf5file.endswith(".h5"):
                hdf5file += ".h5"
            hdf, self.data =  ArraySave.getHDF5FileInstanceAndBuffer(hdf5file,
                              shape,
                              dtype=self.__dtype,
                              interpretation="image",
                              compression=None)
            if not hdf5done:
                for i in range(3):
                    print("\7")
                samplingStep = None
                i = 2
                while samplingStep is None:
                    print("**************************************************")
                    print(" Memory error!, attempting %dx%d sampling reduction ") % (i,i)
                    print("**************************************************")
                    s1, s2 = arrRet[::i, ::i].shape
                    try:
                        self.data = numpy.zeros((self.__nFiles, s1, s2),
                                             self.__dtype)
                        samplingStep = i
                    except (MemoryError, ValueError):
                        i += 1

        #fill the array
        self.onBegin(self.__nFiles)
        self.__imageStack = True
        self.incrProgressBar=0
        if samplingStep == 1:
            for tempFileName in filelist:
                self.data[self.incrProgressBar]=numpy.loadtxt(tempFileName,
                                                        dtype=self.__dtype)
                self.incrProgressBar += 1
                self.onProgress(self.incrProgressBar)
        else:
            for tempFileName in filelist:
                pieceOfStack=numpy.loadtxt(tempFileName, dtype=self.__dtype)
                self.data[self.incrProgressBar] = pieceOfStack[::samplingStep,
                                                               ::samplingStep]
                self.incrProgressBar += 1
                self.onProgress(self.incrProgressBar)
        self.onEnd()
        if not isinstance(self.data, numpy.ndarray):
            hdf.flush()
            self.info["SourceType"] = "HDF5Stack1D"
            if self.__imageStack:
                self.info["McaIndex"] = 0
                self.info["FileIndex"] = 1
            else:
                self.info["McaIndex"] = 2
                self.info["FileIndex"] = 0
            self.info["SourceName"] = [hdf5file]
            self.info["NumberOfFiles"] = 1
            self.info["Size"]       = 1
        else:
            if self.__imageStack:
                self.info["McaIndex"] = 0
                self.info["FileIndex"] = 1
            else:
                self.info["McaIndex"] = 2
                self.info["FileIndex"] = 0
            self.info["SourceType"] = SOURCE_TYPE
            self.info["SourceName"] = self.sourceName
            self.info["NumberOfFiles"] = self.__nFiles * 1
            self.info["Size"] = self.__nFiles * self.__nImagesPerFile

    def onBegin(self, n):
        pass

    def onProgress(self, n):
        pass

    def onEnd(self):
        pass

    def loadIndexedStack(self,filename,begin=None,end=None, skip = None, fileindex=0):
        #if begin is None: begin = 0
        if type(filename) == type([]):
            filename = filename[0]
        if not os.path.exists(filename):
            raise IOError("File %s does not exists" % filename)
        name = os.path.basename(filename)
        n = len(name)
        i = 1
        numbers = ['0', '1', '2', '3', '4', '5',
                   '6', '7', '8','9']
        while (i <= n):
            c = name[n-i:n-i+1]
            if c in ['0', '1', '2',
                                '3', '4', '5',
                                '6', '7', '8',
                                '9']:
                break
            i += 1
        suffix = name[n-i+1:]
        if len(name) == len(suffix):
            #just one file, one should use standard widget
            #and not this one.
            self.loadFileList(filename, fileindex=fileindex)
        else:
            nchain = []
            while (i<=n):
                c = name[n-i:n-i+1]
                if c not in ['0', '1', '2',
                                    '3', '4', '5',
                                    '6', '7', '8',
                                    '9']:
                    break
                else:
                    nchain.append(c)
                i += 1
            number = ""
            nchain.reverse()
            for c in nchain:
                number += c
            fformat = "%" + "0%dd" % len(number)
            if (len(number) + len(suffix)) == len(name):
                prefix = ""
            else:
                prefix = name[0:n-i+1]
            prefix = os.path.join(os.path.dirname(filename),prefix)
            if not os.path.exists(prefix + number + suffix):
                print("Internal error in EDFStack")
                print("file should exist: %s " % (prefix + number + suffix))
                return
            i = 0
            if begin is None:
                begin = 0
                testname = prefix+fformat % begin+suffix
                while not os.path.exists(prefix+fformat % begin+suffix):
                    begin += 1
                    testname = prefix+fformat % begin+suffix
                    if len(testname) > len(filename):break
                i = begin
            else:
                i = begin
            if not os.path.exists(prefix+fformat % i+suffix):
                raise ValueError("Invalid start index file = %s" % \
                      (prefix+fformat % i+suffix))
            f = prefix+fformat % i+suffix
            filelist = []
            while os.path.exists(f):
                filelist.append(f)
                i += 1
                if end is not None:
                    if i > end:
                        break
                f = prefix+fformat % i+suffix
            self.loadFileList(filelist, fileindex=fileindex)

    def getSourceInfo(self):
        sourceInfo = {}
        sourceInfo["SourceType"]=SOURCE_TYPE
        if self.__keyList == []:
            for i in range(1, self.__nFiles + 1):
                for j in range(1, self.__nImages + 1):
                    self.__keyList.append("%d.%d" % (i,j))
        sourceInfo["KeyList"]= self.__keyList

    def getKeyInfo(self, key):
        print("Not implemented")
        return {}

    def isIndexedStack(self):
        return self.__indexedStack
    
    def getZSelectionArray(self,z=0):
        return (self.data[:,:,z]).astype(numpy.float)
        
    def getXYSelectionArray(self,coord=(0,0)):
        x,y=coord    
        return (self.data[y,x,:]).astype(numpy.float)