This file is indexed.

/usr/share/pyshared/PyMca/SNIPModule.py is in pymca 4.5.0-4.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
#/*##########################################################################
# Copyright (C) 2004-2010 European Synchrotron Radiation Facility
#
# This file is part of the PyMCA X-ray Fluorescence Toolkit developed at
# the ESRF by the Beamline Instrumentation Software Support (BLISS) group.
#
# This toolkit is free software; you can redistribute it and/or modify it 
# under the terms of the GNU General Public License as published by the Free
# Software Foundation; either version 2 of the License, or (at your option) 
# any later version.
#
# PyMCA is distributed in the hope that it will be useful, but WITHOUT ANY
# WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
# FOR A PARTICULAR PURPOSE.  See the GNU General Public License for more
# details.
#
# You should have received a copy of the GNU General Public License along with
# PyMCA; if not, write to the Free Software Foundation, Inc., 59 Temple Place,
# Suite 330, Boston, MA 02111-1307, USA.
#
# PyMCA follows the dual licensing model of Trolltech's Qt and Riverbank's PyQt
# and cannot be used as a free plugin for a non-free program. 
#
# Please contact the ESRF industrial unit (industry@esrf.fr) if this license 
# is a problem for you.
#############################################################################*/
__author__ = "V.A. Sole - ESRF Data Analysis"
import numpy
try:
    import PyMca.SpecfitFuns as SpecfitFuns
except ImportError:
    import SpecfitFuns

snip1d = SpecfitFuns.snip1d
snip2d = SpecfitFuns.snip2d


def getSpectrumBackground(spectrum, width, roi_min=None, roi_max=None, smoothing=1):
    if roi_min is None:
        roi_min = 0
    if roi_max is None:
        roi_max = len(spectrum)
    background = spectrum * 1
    background[roi_min:roi_max] = snip1d(spectrum[roi_min:roi_max], width, smoothing)
    return background

getSnip1DBackground = getSpectrumBackground

def subtractSnip1DBackgroundFromStack(stack, width, roi_min=None, roi_max=None,  smoothing=1):
    if roi_min is None:
        roi_min = 0
    if roi_max is None:
        roi_max = len(spectrum)
    mcaIndex = -1
    if hasattr(stack, "info") and hasattr(stack, "data"):
        data = stack.data
        mcaIndex = stack.info.get('McaIndex', -1)
    else:
        data = stack
    if not isinstance(data, numpy.ndarray):
        raise TypeError("This Plugin only supports numpy arrays")
    oldShape = data.shape
    if mcaIndex in [-1, len(data.shape)-1]:
        data.shape = -1, oldShape[-1]
        if roi_min > 0:
            data[:, 0:roi_min] = 0
        if roi_max < oldShape[-1]:
            data[:, roi_max:] = 0
        for i in range(data.shape[0]):
            data[i,roi_min:roi_max] -= snip1d(data[i,roi_min:roi_max],
                                              width, smoothing)
        data.shape = oldShape

    elif mcaIndex == 0:
        data.shape = oldShape[0], -1
        for i in range(data.shape[-1]):
            data[roi_min:roi_max, i] -= snip1d(data[roi_min:roi_max, i],
                                               width, smoothing)
        data.shape = oldShape
    else:
        raise ValueError("Invalid 1D index %d" % mcaIndex)
    return

def replaceStackWithSnip1DBackground(stack, width, roi_min=None, roi_max=None,  smoothing=1):
    if roi_min is None:
        roi_min = 0
    if roi_max is None:
        roi_max = len(spectrum)
    mcaIndex = -1
    if hasattr(stack, "info") and hasattr(stack, "data"):
        data = stack.data
        mcaIndex = stack.info.get('McaIndex', -1)
    else:
        data = stack
    if not isinstance(data, numpy.ndarray):
        raise TypeError("This Plugin only supports numpy arrays")
    oldShape = data.shape
    if mcaIndex in [-1, len(data.shape)-1]:
        data.shape = -1, oldShape[-1]
        if roi_min > 0:
            data[:, 0:roi_min] = 0
        if roi_max < oldShape[-1]:
            data[:, roi_max:] = 0
        for i in range(data.shape[0]):
            data[i,roi_min:roi_max] = snip1d(data[i,roi_min:roi_max],
                                              width, smoothing)
        data.shape = oldShape

    elif mcaIndex == 0:
        data.shape = oldShape[0], -1
        for i in range(data.shape[-1]):
            data[roi_min:roi_max, i] = snip1d(data[roi_min:roi_max, i],
                                               width, smoothing)
        data.shape = oldShape
    else:
        raise ValueError("Invalid 1D index %d" % mcaIndex)
    return


def getImageBackground(image, width, roi_min=None, roi_max=None, smoothing=1):
    if roi_min is None:
        roi_min = (0, 0)
    if roi_max is None:
        roi_max = image.shape
    background = image * 1
    background[roi_min[0]:roi_max[0],roi_min[1]:roi_max[1]]=\
             snip2d(image[roi_min[0]:roi_max[0],roi_min[1]:roi_max[1]],
                    width,
                    smoothing)
    return background

getSnip2DBackground = getImageBackground

def subtractSnip2DBackgroundFromStack(stack, width, roi_min=None, roi_max=None,  smoothing=1, index=None):
    """
    index is the dimension used to index the images
    """
    if roi_min is None:
        roi_min = (0, 0)
    if roi_max is None:
        roi_max = image.shape
    if hasattr(stack, "info") and hasattr(stack, "data"):
        data = stack.data
        if index is None:
            index = stack.info.get('McaIndex', 0)
    else:
        data = stack
    if index is None:
        index = 2
    if not isinstance(data, numpy.ndarray):
        raise TypeError("This Plugin only supports numpy arrays")
    shape = data.shape
    if index == 0:
        if (roi_min[0] > 0) or (roi_min[1] > 0):
            data[:, 0:roi_min[0], 0:roi_min[1]] = 0
        if roi_max[0] < (shape[1]-1):
            if roi_max[1] < (shape[2]-1):
                data[:, roi_max[0]:, roi_max[1]:] = 0
            else:
                data[:, roi_max[0]:, :] = 0
        else:
            if roi_max[1] < (shape[2]-1):
                data[:, :, roi_max[1]:] = 0
        for i in range(shape[index]):
            data[i,roi_min[0]:roi_max[0],roi_min[1]:roi_max[1]] -=\
                snip2d(data[i,roi_min[0]:roi_max[0],roi_min[1]:roi_max[1]], width, smoothing)
        return
    if index == 1:
        if (roi_min[0] > 0) or (roi_min[1] > 0):
            data[0:roi_min[0], :, 0:roi_min[1]] = 0
        if roi_max[0] < (shape[0]-1):
            if roi_max[1] < (shape[2]-1):
                data[roi_max[0]:, :, roi_max[1]:] = 0
            else:
                data[roi_max[0]:, :, :] = 0
        else:
            if roi_max[1] < (shape[2]-1):
                data[:, :, roi_max[1]:] = 0
        for i in range(shape[index]):
            data[roi_min[0]:roi_max[0], i, roi_min[1]:roi_max[1]] -=\
                snip2d(data[roi_min[0]:roi_max[0], i, roi_min[1]:roi_max[1]], width, smoothing)
        return
    if index == 2:
        if (roi_min[0] > 0) or (roi_min[1] > 0):
            data[0:roi_min[0], 0:roi_min[1],:] = 0
        if roi_max[0] < (shape[0]-1):
            if roi_max[1] < (shape[1]-1):
                data[roi_max[0]:, roi_max[1]:, :] = 0
            else:
                data[roi_max[0]:, :, :] = 0
        else:
            if roi_max[1] < (shape[2]-1):
                data[:, roi_max[1]:, :] = 0
        for i in range(shape[index]):
            data[roi_min[0]:roi_max[0],roi_min[1]:roi_max[1], i] -=\
                snip2d(data[roi_min[0]:roi_max[0],roi_min[1]:roi_max[1], i], width, smoothing)
        return