This file is indexed.

/usr/share/pyshared/PyMca/SGModule.py is in pymca 4.5.0-4.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
#
# The code to calculate the Savitzky-Golay filter coefficients
# is a shameless copy of the sg_filter.py module from Uwe Schmitt
# available from http://public.procoders.net/sg_filter
#
# Therefore PyMca author(s) do not claim any ownership of that code
# and are very grateful to Uwe for making his code available to the
# community.
#
#

import numpy
from numpy.linalg import solve

ODD_SIGN = 1.0

def calc_coeff(num_points, pol_degree, diff_order=0):

    """ calculates filter coefficients for symmetric savitzky-golay filter.
        see: http://www.nrbook.com/a/bookcpdf/c14-8.pdf

        num_points   means that 2*num_points+1 values contribute to the
                     smoother.

        pol_degree   is degree of fitting polynomial

        diff_order   is degree of implicit differentiation.
                     0 means that filter results in smoothing of function
                     1 means that filter results in smoothing the first 
                                                 derivative of function.
                     and so on ...

    """

    # setup interpolation matrix
    # ... you might use other interpolation points
    # and maybe other functions than monomials ....

    x = numpy.arange(-num_points, num_points+1, dtype=numpy.int)
    monom = lambda x, deg : pow(x, deg)

    A = numpy.zeros((2*num_points+1, pol_degree+1), numpy.float)
    for i in range(2*num_points+1):
        for j in range(pol_degree+1):
            A[i,j] = monom(x[i], j)
        
    # calculate diff_order-th row of inv(A^T A)
    ATA = numpy.dot(A.transpose(), A)
    rhs = numpy.zeros((pol_degree+1,), numpy.float)
    rhs[diff_order] = 1
    wvec = solve(ATA, rhs)

    # calculate filter-coefficients
    coeff = numpy.dot(A, wvec)
    if (ODD_SIGN < 0) and (diff_order %2):
        coeff *= ODD_SIGN

    return coeff

def smooth(signal, coeff):
    
    """ applies coefficients calculated by calc_coeff()
        to signal """
    N = numpy.size(coeff-1)/2
    res = numpy.convolve(signal, coeff)
    return res[N:-N]

def getSavitzkyGolay(spectrum, npoints=3, degree=1, order=0):
    coeff = calc_coeff(npoints, degree, order)
    N = numpy.size(coeff-1)/2
    if order < 1:
        result = 1.0 * spectrum
    else:
        result = 0.0 * spectrum
    result[N:-N] = numpy.convolve(spectrum, coeff, mode='valid')
    return result

def replaceStackWithSavitzkyGolay(stack, npoints=3, degree=1, order=0):
    #Warning: Not checked if the last dimension is the one containing the
    #spectra as it is assuming!!!!
    coeff = calc_coeff(npoints, degree, order)
    N = numpy.size(coeff-1)/2
    convolve = numpy.convolve
    mcaIndex = -1
    if hasattr(stack, "info") and hasattr(stack, "data"):
        data = stack.data
        mcaIndex = stack.info.get('McaIndex', -1)
    else:
        data = stack
    if not isinstance(data, numpy.ndarray):
        raise TypeError("This Plugin only supports numpy arrays")
    oldShape = data.shape
    if mcaIndex in [-1, len(data.shape)-1]:
        data.shape = -1, oldShape[-1]
        for i in range(data.shape[0]):
            data[i,N:-N] = convolve(data[i,:],coeff, mode='valid')
            if order > 0:
                data[i, :N]  = data[i, N]
                data[i, -N:] = data[i,-(N+1)]            
        data.shape = oldShape
    elif mcaIndex == 0:
        data.shape = oldShape[0], -1
        for i in range(data.shape[-1]):
            data[N:-N, i] = convolve(data[i,:],coeff, mode='valid')
            if order > 0:
                data[:N, i] = data[N, i]
                data[-N:, i] = data[-(N+1), i]            
        data.shape = oldShape
    else:
        raise ValueError("Invalid 1D index %d" % mcaIndex)
    return

if getSavitzkyGolay(10*numpy.arange(10.), npoints=3, degree=1,order=1)[5] < 0:
    ODD_SIGN = -1

if __name__ == "__main__":
    x=numpy.arange(100.)
    y=100*x
    print("Testing first derivative")
    yPrime=getSavitzkyGolay(y, npoints=3, degree=1,order=1)
    if abs(yPrime[50]-100.) > 1.0e-5:
        print("ERROR, got %f instead of 100." % yPrime[50])
    else:
        print("OK")
    print("Testing second derivative")
    y=100*x*x
    yPrime=getSavitzkyGolay(y, npoints=3, degree=2,order=2)
    if abs(yPrime[50]-100.) > 1.0e-5:
        print("ERROR, got %f instead of 100." % yPrime[50])
    else:
        print("OK")
    print("Testing third order derivative")
    y=100*x*x*x
    yPrime=getSavitzkyGolay(y, npoints=5, degree=3,order=3)
    if abs(yPrime[50]-100.) > 1.0e-5:
        print("ERROR, got %f instead of 100." % yPrime[50])
    else:
        print("OK")