/usr/lib/perl5/PDL/Func.pm is in pdl 1:2.4.7+dfsg-2ubuntu5.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 | =head1 NAME
PDL::Func - useful functions
=head1 SYNOPSIS
use PDL::Func;
use PDL::Math;
# somewhat pointless way to estimate cos and sin,
# but is shows that you can thread if you want to
# (and the library lets you)
#
my $obj = PDL::Func->init( Interpolate => "Hermite" );
#
my $x = pdl( 0 .. 45 ) * 4 * 3.14159 / 180;
my $y = cat( sin($x), cos($x) );
$obj->set( x => $x, y => $y, bc => "simple" );
#
my $xi = pdl( 0.5, 1.5, 2.5 );
my $yi = $obj->interpolate( $xi );
#
print "sin( $xi ) equals ", $yi->slice(':,(0)'), "\n";
sin( [0.5 1.5 2.5] ) equals [0.87759844 0.070737667 -0.80115622]
#
print "cos( $xi ) equals ", $yi->slice(':,(1)'), "\n";
cos( [0.5 1.5 2.5] ) equals [ 0.4794191 0.99768655 0.59846449]
#
print sin($xi), "\n", cos($xi), "\n";
[0.47942554 0.99749499 0.59847214]
[0.87758256 0.070737202 -0.80114362]
=head1 DESCRIPTION
This module aims to contain useful functions. Honest.
=head1 INTERPOLATION AND MORE
This module aims to provide a relatively-uniform interface
to the various interpolation methods available to PDL.
The idea is that a different interpolation scheme
can be used just by changing an attribute of a C<PDL::Func>
object.
Some interpolation schemes (as exemplified by the SLATEC
library) also provide additional functionality, such as
integration and gradient estimation.
Throughout this documentation, C<$x> and C<$y> refer to the function
to be interpolated whilst C<$xi> and C<$yi> are the interpolated values.
The avaliable types, or I<schemes>, of interpolation are listed below.
Also given are the valid attributes for each scheme: the flag value
indicates whether it can be set (s), got (g), and if it is
required (r) for the method to work.
=over 4
=item Interpolate => Linear
An extravagent way of calling the linear interpolation routine
L<PDL::Primitive::interpolate|PDL::Primitive/interpolate>.
The valid attributes are:
Attribute Flag Description
x sgr x positions of data
y sgr function values at x positions
err g error flag
=item Interpolate => Hermite
Use the piecewice cubic Hermite interpolation routines
from the SLATEC library.
Only available if L<PDL::Slatec|PDL::Slatec> is installed.
The valid attributes are:
Attribute Flag Description
x sgr x positions of data
y sgr function values at x positions
bc sgr boundary conditions
g g estimated gradient at x positions
err g error flag
Given the initial set of points C<(x,y)>, an estimate of the
gradient is made at these points, using the given boundary
conditions. The gradients are stored in the C<g> attribute,
accessible via:
$gradient = $obj->get( 'g' );
However, as this gradient is only calculated 'at the last moment',
C<g> will only contain data I<after> one of
C<interpolate>, C<gradient>, or C<integrate> is used.
=back
=head2 Boundary conditions for the Hermite routines
If your data is monotonic, and you are not too bothered about
edge effects, then the default value of C<bc> of C<simple> is for you.
Otherwise, take a look at the description of
L<PDL::Slatec::chic|PDL::Slatec/chic> and use a hash reference
for the C<bc> attribute, with the following keys:
=over 3
=item monotonic
0 if the interpolant is to be monotonic in each interval (so
the gradient will be 0 at each switch point),
otherwise the gradient is calculated using a 3-point difference
formula at switch points.
If E<gt> 0 then the interpolant is forced to lie close to the
data, if E<lt> 0 no such control is imposed.
Default = B<0>.
=item start
A perl list of one or two elements. The first element defines how the
boundary condition for the start of the array is to be calculated;
it has a range of C<-5 .. 5>, as given for the C<ic> parameter
of L<chic|PDL::Slatec/chic>.
The second element, only used if options 2, 1, -1, or 2
are chosen, contains the value of the C<vc> parameter.
Default = B<[ 0 ]>.
=item end
As for C<start>, but for the end of the data.
=back
An example would be
$obj->set( bc => { start => [ 1, 0 ], end => [ 1, -1 ] } )
which sets the first derivative at the first point to 0,
and at the last point to -1.
=head2 Errors
The C<status> method provides a simple mechanism to check if
the previous method was successful.
If the function returns an error flag, then it is stored
in the C<err> attribute.
To find out which routine was used, use the
C<routine> method.
=cut
#' fool emacs
package PDL::Func;
use strict;
use Carp;
####################################################################
#
# what modules are available ?
#
my %modules;
BEGIN {
eval "use PDL::Slatec";
$modules{slatec} = ($@ ? 0 : 1);
}
####################################################################
## Public routines:
=head1 FUNCTIONS
=head2 PDL::Func::init
=for usage
$obj = PDL::Func->init( Interpolate => "Hermite", x => $x, y => $y );
$obj = PDL::Func->init( { x => $x, y => $y } );
=for ref
Create a PDL::Func object, which can interpolate, and possibly
integrate and calculate gradients of a dataset.
If not specified, the value of Interpolate is taken to be
C<Linear>, which means the interpolation is performed by
L<PDL::Primitive::interpolate|PDL::Primitive/interpolate>.
A value of C<Hermite> uses piecewise cubic Hermite functions,
which also allows the integral and gradient of the data
to be estimated.
Options can either be provided directly to the method, as in the
first example, or within a hash reference, as shown in the second
example.
=cut
# meaning of types:
# required - required, if this attr is changed, we need to re-initialise
# settable - can be changed with a init() or set() command
# gettable - can be read with a get() command
#
# do we really need gettable? Not currently, that's for sure,
# as everything is gettable
my %attr =
(
Default => {
x => { required => 1, settable => 1, gettable => 1 },
y => { required => 1, settable => 1, gettable => 1 },
err => { gettable => 1 },
},
Linear => {},
Hermite => {
bc => { settable => 1, gettable => 1, required => 1, default => "simple" },
g => { gettable => 1 },
},
);
sub init {
my $this = shift;
my $class = ref($this) || $this;
# class structure
my $self = { };
# make $self into an object
bless $self, $class;
# set up default attributes
#
my ( %opt ) = @_;
$opt{Interpolate} = "Linear" unless exists $opt{Interpolate};
# set variables
$self->set( %opt );
# return the object
return $self;
} # sub: init()
#####################################################################
# $self->_init_attr( $interpolate )
#
# set up the object for the given interpolation method
# - uses the values stored in %attr to fill in the
# fields in $self AFTER clearing the object
#
# NOTE: called by set()
#
sub _init_attr {
my $self = shift;
my $interpolate = shift;
croak "ERROR: Unknown interpolation scheme <$interpolate>.\n"
unless defined $attr{$interpolate};
# fall over if slatec library isn't present
# and asking for Hermite interpolation
croak "ERROR: Hermite interpolation is not available without PDL::Slatec.\n"
if $interpolate eq "Interpolate" and $modules{slatec} == 0;
# clear out the old data (if it's not the first time through)
$self->{attributes} = {};
$self->{values} = {};
$self->{types} = { required => 0, settable => 0, gettable => 0 };
$self->{flags} = { scheme => $interpolate, status => 1, routine => "none", changed => 1 };
# set up default values
my $ref = $attr{Default};
foreach my $attr ( keys %{$ref} ) {
# set default values
foreach my $type ( keys %{$self->{types}} ) {
$self->{attributes}{$attr}{$type} = $self->{types}{$type};
}
# change the values to those supplied
foreach my $type ( keys %{$ref->{$attr}} ) {
$self->{attributes}{$attr}{$type} = $ref->{$attr}{$type}
if exists $self->{types}{$type};
}
# set value to undef
$self->{values}{$attr} = undef;
}
# now set up for the particular interpolation scheme
$ref = $attr{$interpolate};
foreach my $attr ( keys %{$ref} ) {
# set default values, if not known
unless ( defined $self->{attributes}{$attr} ) {
foreach my $type ( keys %{$self->{types}} ) {
$self->{attributes}{$attr}{$type} = $self->{types}{$type};
}
}
# change the values to those supplied
foreach my $type ( keys %{$ref->{$attr}} ) {
next if $type eq "default";
$self->{attributes}{$attr}{$type} = $ref->{$attr}{$type}
if exists $self->{types}{$type};
}
# set value to default value/undef
$self->{values}{$attr} =
exists $ref->{$attr}{default} ? $ref->{$attr}{default} : undef;
}
} # sub: _init_attr()
####################################################################
# call this at the start of each method that needs data
# stored in the object. This function ensures that all required
# attributes exist and, if necessary, re-initialises the object
# - ie if the data has changed.
#
sub _check_attr {
my $self = shift;
return unless $self->{flags}{changed};
my @emsg;
foreach my $name ( keys %{ $self->{attributes} } ) {
if( $self->{attributes}{$name}{required} ) {
push @emsg, $name unless defined($self->{values}{$name});
}
}
croak "ERROR - the following attributes must be supplied:\n [ @emsg ]\n"
unless $#emsg == -1;
$self->{flags}{routine} = "none";
$self->{flags}{status} = 1;
$self->_initialise;
$self->{flags}{changed} = 0;
} # sub: _check_attr()
####################################################################
# for a given scheme, it may be necessary to perform certain
# operations before the main routine of a method is called.
# It's done here.
#
# Due to lazy evaluation we try to do this as late as possible -
# _initialise() should only be called by _check_attr()
# [ at least at the moment ]
#
sub _initialise {
my $self = shift;
my $iflag = $self->scheme();
if ( $iflag eq "Hermite" ) {
_init_hermite( $self );
}
} # sub: _initialise()
# something has changed, so we need to recalculate the gradient
# - actually, some changes don't invalidate the gradient,
# however, with the current design, it's impossible to know
# this. (poor design)
#
sub _init_hermite {
my $self = shift;
# set up error flags
$self->{flags}{status} = 0;
$self->{flags}{routine} = "none";
# get values in one go
my ( $x, $y, $bc ) = $self->_get_value( qw( x y bc ) );
# check 1st dimention of x and y are the same
# ie allow the possibility of threading
my $xdim = $x->getdim( 0 );
my $ydim = $y->getdim( 0 );
croak "ERROR: x and y piddles must have the same first dimension.\n"
unless $xdim == $ydim;
my ( $g, $ierr );
if ( ref($bc) eq "HASH" ) {
my $monotonic = $bc->{monotonic} || 0;
my $start = $bc->{start} || [ 0 ];
my $end = $bc->{end} || [ 0 ];
my $ic = $x->short( $start->[0], $end->[0] );
my $vc = $x->float( 0, 0 );
if ( $#$start == 1 ) { $vc->set( 0, $start->[1] ); }
if ( $#$end == 1 ) { $vc->set( 1, $end->[1] ); }
my $wk = $x->zeroes( $x->float, 2*$xdim );
croak "ERROR: Hermite interpolation is not available without PDL::Slatec.\n"
if $modules{slatec} == 0;
( $g, $ierr ) = chic( $ic, $vc, $monotonic, $x, $y, $wk );
$self->{flags}{routine} = "chic";
} elsif ( $bc eq "simple" ) {
# chim
croak "ERROR: Hermite interpolation is not available without PDL::Slatec.\n"
if $modules{slatec} == 0;
( $g, $ierr ) = chim( $x, $y );
$self->{flags}{routine} = "chim";
} else {
# Unknown boundary condition
croak "ERROR: unknown boundary condition <$bc>.\n";
# return;
}
$self->_set_value( g => $g, err => $ierr );
if ( all $ierr == 0 ) {
# everything okay
$self->{flags}{status} = 1;
} elsif ( any $ierr < 0 ) {
# a problem
$self->{flags}{status} = 0;
} else {
# there were switches in monotonicity
$self->{flags}{status} = -1;
}
}
####################################################################
####################################################################
# a version of set that ignores the settable flag
# and doesn't bother about the presence of an Interpolate
# value.
#
# - for use by the class, not by the public
#
# it still ignores unknown attributes
#
sub _set_value {
my $self = shift;
my %attrs = ( @_ );
foreach my $attr ( keys %attrs ) {
if ( exists($self->{values}{$attr}) ) {
$self->{values}{$attr} = $attrs{$attr};
$self->{flags}{changed} = 1;
}
}
} # sub: _set_value()
# a version of get that ignores the gettable flag
# - for use by the class, not by the public
#
# an unknown attribute returns an undef
#
sub _get_value {
my $self = shift;
my @ret;
foreach my $name ( @_ ) {
if ( exists $self->{values}{$name} ) {
push @ret, $self->{values}{$name};
} else {
push @ret, undef;
}
}
return wantarray ? @ret : $ret[0];
} # sub: _get_value()
####################################################################
=head2 PDL::Func::set
=for usage
my $nset = $obj->set( x => $newx, $y => $newy );
my $nset = $obj->set( { x => $newx, $y => $newy } );
=for ref
Set attributes for a PDL::Func object.
The return value gives the number of the supplied attributes
which were actually set.
=cut
sub set {
my $self = shift;
return if $#_ == -1;
my $vref;
if ( $#_ == 0 and ref($_[0]) eq "HASH" ) {
$vref = shift;
} else {
my %vals = ( @_ );
$vref = \%vals;
}
# initialise attributes IFF Interpolate
# is specified
#
$self->_init_attr( $vref->{Interpolate} )
if exists $vref->{Interpolate};
my $ctr = 0;
foreach my $name ( keys %{$vref} ) {
next if $name eq "Interpolate";
if ( exists $self->{attributes}{$name}{settable} ) {
$self->{values}{$name} = $vref->{$name};
$ctr++;
}
}
$self->{flags}{changed} = 1 if $ctr;
$self->{flags}{status} = 1;
return $ctr;
} # sub: set()
####################################################################
=head2 PDL::Func::get
=for usage
my $x = $obj->get( x );
my ( $x, $y ) = $obj->get( qw( x y ) );
=for ref
Get attributes from a PDL::Func object.
Given a list of attribute names, return a list of
their values; in scalar mode return a scalar value.
If the supplied list contains an unknown attribute,
C<get> returns a value of C<undef> for that
attribute.
=cut
sub get {
my $self = shift;
my @ret;
foreach my $name ( @_ ) {
if ( exists $self->{attributes}{$name}{gettable} ) {
push @ret, $self->{values}{$name};
} else {
push @ret, undef;
}
}
return wantarray ? @ret : $ret[0];
} # sub: get()
####################################################################
#
# access to flags - have individual methods for these
=head2 PDL::Func::scheme
=for usage
my $scheme = $obj->scheme;
=for ref
Return the type of interpolation of a PDL::Func object.
Returns either C<Linear> or C<Hermite>.
=cut
sub scheme { return $_[0]->{flags}{scheme}; }
=head2 PDL::Func::status
=for usage
my $status = $obj->status;
=for ref
Returns the status of a PDL::Func object.
This method provides a high-level indication of
the success of the last method called
(except for C<get> which is ignored).
Returns B<1> if everything is okay, B<0> if
there has been a serious error,
and B<-1> if there
was a problem which was not serious.
In the latter case, C<$obj-E<gt>get("err")> may
provide more information, depending on the
particular scheme in use.
=cut
sub status { return $_[0]->{flags}{status}; }
=head2 PDL::Func::routine
=for usage
my $name = $obj->routine;
=for ref
Returns the name of the last routine called by a PDL::Func object.
This is mainly useful for decoding the value stored in the
C<err> attribute.
=cut
sub routine { return $_[0]->{flags}{routine}; }
=head2 PDL::Func::attributes
=for usage
$obj->attributes;
PDL::Func->attributes;
=for ref
Print out the flags for the attributes of a PDL::Func object.
Useful in case the documentation is just too opaque!
=for example
PDL::Func->attributes;
Flags Attribute
SGR x
SGR y
G err
=cut
# note, can be called with the class, rather than just
# an object. However, not of great use, as this will only
# ever return the values for Interpolate => Linear
#
# to allow this, I've used a horrible hack - we actually
# create an object and then print out the attributes from that
# Ugh!
#
# It would have been useful if I'd stuck to sub-classes
# for different schemes
#
sub attributes {
my $self = shift;
# ugh
$self = $self->init unless ref($self);
print "Flags Attribute\n";
while ( my ( $attr, $hashref ) = each %{$self->{attributes}} ) {
my $flag = "";
$flag .= "S" if $hashref->{settable};
$flag .= "G" if $hashref->{gettable};
$flag .= "R" if $hashref->{required};
printf " %-3s %s\n", $flag, $attr;
}
return;
} # sub: attributes()
####################################################################
=head2 PDL::Func::interpolate
=for usage
my $yi = $obj->interpolate( $xi );
=for ref
Returns the interpolated function at a given set of points
(PDL::Func).
A status value of -1, as returned by the C<status> method,
means that some of the C<$xi> points lay outside the
range of the data. The values for these points
were calculated by extrapolation (the details depend on the
scheme being used).
=cut
sub interpolate {
my $self = shift;
my $xi = shift;
croak 'Usage: $obj->interpolate( $xi )' . "\n"
unless defined $xi;
# check everything is fine
$self->_check_attr();
# get values in one go
my ( $x, $y ) = $self->_get_value( qw( x y ) );
# farm off to routines
my $iflag = $self->scheme;
if ( $iflag eq "Linear" ) {
return _interp_linear( $self, $xi, $x, $y );
} elsif ( $iflag eq "Hermite" ) {
return _interp_hermite( $self, $xi, $x, $y );
}
} # sub: interpolate()
sub _interp_linear {
my ( $self, $xi, $x, $y ) = ( @_ );
my ( $yi, $err ) = PDL::Primitive::interpolate( $xi, $x, $y );
$self->{flags}{status} = (any $err) ? -1 : 1;
$self->_set_value( err => $err );
$self->{flags}{routine} = "interpolate";
return $yi;
} # sub: _interp_linear()
sub _interp_hermite {
my ( $self, $xi, $x, $y ) = ( @_ );
# get gradient
my $g = $self->_get_value( 'g' );
my ( $yi, $ierr ) = chfe( $x, $y, $g, 0, $xi );
$self->{flags}{routine} = "chfe";
$self->_set_value( err => $ierr );
if ( all $ierr == 0 ) {
# everything okay
$self->{flags}{status} = 1;
} elsif ( all $ierr > 0 ) {
# extrapolation was required
$self->{flags}{status} = -1;
} else {
# a problem
$self->{flags}{status} = 0;
}
return $yi;
} # sub: _interp_linear()
=head2 PDL::Func::gradient
=for usage
my $gi = $obj->gradient( $xi );
my ( $yi, $gi ) = $obj->gradient( $xi );
=for ref
Returns the derivative and, optionally,
the interpolated function for the C<Hermite>
scheme (PDL::Func).
=cut
sub gradient {
my $self = shift;
my $xi = shift;
croak 'Usage: $obj->gradient( $xi )' . "\n"
unless defined $xi;
croak 'Error: can not call gradient for Interpolate => "Linear".' ."\n"
unless $self->scheme eq "Hermite";
# check everything is fine
$self->_check_attr();
# get values in one go
my ( $x, $y, $g ) = $self->_get_value( qw( x y g ) );
my ( $yi, $gi, $ierr ) = chfd( $x, $y, $g, 0, $xi );
$self->{flags}{routine} = "chfd";
$self->_set_value( err => $ierr );
if ( all $ierr == 0 ) {
# everything okay
$self->{flags}{status} = 1;
} elsif ( all $ierr > 0 ) {
# extrapolation was required
$self->{flags}{status} = -1;
} else {
# a problem
$self->{flags}{status} = 0;
}
# note order of values
return wantarray ? ( $yi, $gi ) : $gi;
} # sub: gradient
=head2 PDL::Func::integrate
=for usage
my $ans = $obj->integrate( index => pdl( 2, 5 ) );
my $ans = $obj->integrate( x => pdl( 2.3, 4.5 ) );
=for ref
Integrate the function stored in the PDL::Func
object, if the scheme is C<Hermite>.
The integration can either be between points of
the original C<x> array (C<index>), or arbitrary x values
(C<x>). For both cases, a two element piddle
should be given,
to specify the start and end points of the integration.
=over 7
=item index
The values given refer to the indices of the points
in the C<x> array.
=item x
The array contains the actual values to integrate between.
=back
If the C<status> method returns a value of -1, then
one or both of the integration limits did not
lie inside the C<x> array. I<Caveat emptor> with the
result in such a case.
=cut
sub integrate {
my $self = shift;
croak 'Usage: $obj->integrate( $type => $limits )' . "\n"
unless $#_ == 1;
croak 'Error: can not call integrate for Interpolate => "Linear".' ."\n"
unless $self->{flags}{scheme} eq "Hermite";
# check everything is fine
$self->_check_attr();
$self->{flags}{status} = 0;
$self->{flags}{routine} = "none";
my ( $type, $indices ) = ( @_ );
croak "Unknown type ($type) sent to integrate method.\n"
unless $type eq "x" or $type eq "index";
my $fdim = $indices->getdim(0);
croak "Indices must have a first dimension of 2, not $fdim.\n"
unless $fdim == 2;
my $lo = $indices->slice('(0)');
my $hi = $indices->slice('(1)');
my ( $x, $y, $g ) = $self->_get_value( qw( x y g ) );
my ( $ans, $ierr );
if ( $type eq "x" ) {
( $ans, $ierr ) = chia( $x, $y, $g, 0, $lo, $hi );
$self->{flags}{routine} = "chia";
if ( all $ierr == 0 ) {
# everything okay
$self->{flags}{status} = 1;
} elsif ( any $ierr < 0 ) {
# a problem
$self->{flags}{status} = 0;
} else {
# out of range
$self->{flags}->{status} = -1;
}
} else {
( $ans, $ierr ) = chid( $x, $y, $g, 0, $lo, $hi );
$self->{flags}->{routine} = "chid";
if ( all $ierr == 0 ) {
# everything okay
$self->{flags}{status} = 1;
} elsif ( all $ierr != -4 ) {
# a problem
$self->{flags}{status} = 0;
} else {
# out of range (ierr == -4)
$self->{flags}{status} = -1;
}
}
$self->_set_value( err => $ierr );
return $ans;
} # sub: integrate()
####################################################################
=head1 TODO
It should be relatively easy to provide an interface to other
interpolation routines, such as those provided by the
Gnu Scientific Library (GSL), or the B-spline routines
in the SLATEC library.
In the documentation, the methods are preceeded by C<PDL::Func::>
to avoid clashes with functions such as C<set> when using
the C<help> or C<apropos> commands within I<perldl> or I<pdl2>.
=head1 HISTORY
Amalgamated C<PDL::Interpolate> and C<PDL::Interpolate::Slatec>
to form C<PDL::Func>. Comments greatly appreciated on the
current implementation, as it is not too sensible.
Thanks to Robin Williams, Halldór Olafsson, and Vince McIntyre.
=head1 THE FUTURE
Robin is working on a new version, that improves on the current version
a lot. No time scale though!
=head1 AUTHOR
Copyright (C) 2000,2001 Doug Burke (dburke@cfa.harvard.edu).
All rights reserved. There is no warranty.
You are allowed to redistribute this software / documentation as
described in the file COPYING in the PDL distribution.
=cut
####################################################################
# End with a true
1;
|