/usr/lib/perl5/PDL/FFT.pm is in pdl 1:2.4.7+dfsg-2ubuntu5.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 | #
# GENERATED WITH PDL::PP! Don't modify!
#
package PDL::FFT;
@EXPORT_OK = qw( PDL::PP _fft PDL::PP _ifft fft ifft fftnd ifftnd fftconvolve realfft realifft kernctr PDL::PP convmath PDL::PP cmul PDL::PP cdiv );
%EXPORT_TAGS = (Func=>[@EXPORT_OK]);
use PDL::Core;
use PDL::Exporter;
use DynaLoader;
@ISA = ( 'PDL::Exporter','DynaLoader' );
push @PDL::Core::PP, __PACKAGE__;
bootstrap PDL::FFT ;
=head1 NAME
PDL::FFT - FFTs for PDL
=head1 DESCRIPTION
FFTs for PDL. These work for arrays of any dimension, although ones
with small prime factors are likely to be the quickest.
For historical reasons, these routines work in-place and do not recognize
the in-place flag. That should be fixed.
=head1 SYNOPSIS
use PDL::FFT qw/:Func/;
fft($real, $imag);
ifft($real, $imag);
realfft($real);
realifft($real);
fftnd($real,$imag);
ifftnd($real,$imag);
$kernel = kernctr($image,$smallk);
fftconvolve($image,$kernel);
=head1 DATA TYPES
The underlying C library upon which this module is based performs FFTs
on both single precision and double precision floating point piddles.
Performing FFTs on integer data types is not reliable. Consider the
following FFT on piddles of type 'double':
$r = pdl(0,1,0,1);
$i = zeroes($r);
fft($r,$i);
print $r,$i;
[2 0 -2 0] [0 0 0 0]
But if $r and $i are unsigned short integers (ushorts):
$r = pdl(ushort,0,1,0,1);
$i = zeroes($r);
fft($r,$i);
print $r,$i;
[2 0 65534 0] [0 0 0 0]
This used to occur because L<PDL::PP|PDL::PP> converts the ushort
piddles to floats or doubles, performs the FFT on them, and then
converts them back to ushort, causing the overflow where the amplitude
of the frequency should be -2.
Therefore, if you pass in a piddle of integer datatype (byte, short,
ushort, long) to any of the routines in PDL::FFT, your data will be
promoted to a double-precision piddle. If you pass in a float, the
single-precision FFT will be performed.
=head1 FREQUENCIES
For even-sized input arrays, the frequencies are packed like normal
for FFTs (where N is the size of the array and D is the physical step
size between elements):
0, 1/ND, 2/ND, ..., (N/2-1)/ND, 1/2D, -(N/2-1)/ND, ..., -1/ND.
which can easily be obtained (taking the Nyquist frequency to be
positive) using
C<< $kx = $real->xlinvals(-($N/2-1)/$N/$D,1/2/$D)->rotate(-($N/2 -1)); >>
For odd-sized input arrays the Nyquist frequency is not directly
acessible, and the frequencies are
0, 1/ND, 2/ND, ..., (N/2-0.5)/ND, -(N/2-0.5)/ND, ..., -1/ND.
which can easily be obtained using
C<< $kx = $real->xlinvals(-($N/2-0.5)/$N/$D,($N/2-0.5)/$N/$D)->rotate(-($N-1)/2); >>
=head1 ALTERNATIVE FFT PACKAGES
Various other modules - such as
L<PDL::FFTW|PDL::FFTW> and L<PDL::Slatec|PDL::Slatec> -
contain FFT routines.
However, unlike PDL::FFT, these modules are optional,
and so may not be installed.
=cut
=head1 FUNCTIONS
=cut
*_fft = \&PDL::_fft;
*_ifft = \&PDL::_ifft;
use Carp;
use PDL::Core qw/:Func/;
use PDL::Basic qw/:Func/;
use PDL::Types;
use PDL::ImageND qw/kernctr/; # moved to ImageND since FFTW uses it too
END {
# tidying up required after using fftn
print "Freeing FFT space\n" if $PDL::verbose;
fft_free();
}
sub todecimal {
my ($arg) = @_;
$arg = $arg->double if (($arg->get_datatype != $PDL_F) &&
($arg->get_datatype != $PDL_D));
$_[0] = $arg;
1;}
=head2 fft()
=for ref
Complex FFT of the "real" and "imag" arrays [inplace].
=for usage
fft($real,$imag);
=cut
*fft = \&PDL::fft;
sub PDL::fft {
# Convert the first argument to decimal and check for trouble.
eval { todecimal($_[0]); };
if ($@) {
$@ =~ s/ at .*//s;
barf("Error in FFT with first argument: $@");
}
# Convert the second argument to decimal and check for trouble.
eval { todecimal($_[1]); };
if ($@) {
$@ =~ s/ at .*//s;
my $message = "Error in FFT with second argument: $@";
$message .= '. Did you forget to supply the second (imaginary) piddle?'
if ($message =~ /undefined value/);
barf($message);
}
_fft($_[0],$_[1]);
}
=head2 ifft()
=for ref
Complex inverse FFT of the "real" and "imag" arrays [inplace].
=for usage
ifft($real,$imag);
=cut
*ifft = \&PDL::ifft;
sub PDL::ifft {
# Convert the first argument to decimal and check for trouble.
eval { todecimal($_[0]); };
if ($@) {
$@ =~ s/ at .*//s;
barf("Error in FFT with first argument: $@");
}
# Convert the second argument to decimal and check for trouble.
eval { todecimal($_[1]); };
if ($@) {
$@ =~ s/ at .*//s;
my $message = "Error in FFT with second argument: $@";
$message .= '. Did you forget to supply the second (imaginary) piddle?'
if ($message =~ /undefined value/);
barf($message);
}
_ifft($_[0],$_[1]);
}
=head2 realfft()
=for ref
One-dimensional FFT of real function [inplace].
The real part of the transform ends up in the first half of the array
and the imaginary part of the transform ends up in the second half of
the array.
=for usage
realfft($real);
=cut
*realfft = \&PDL::realfft;
sub PDL::realfft {
barf("Usage: realfft(real(*)") if $#_ != 0;
my ($a) = @_;
todecimal($a);
# FIX: could eliminate $b
my ($b) = 0*$a;
fft($a,$b);
my ($n) = int((($a->dims)[0]-1)/2); my($t);
($t=$a->slice("-$n:-1")) .= $b->slice("1:$n");
undef;
}
=head2 realifft()
=for ref
Inverse of one-dimensional realfft routine [inplace].
=for usage
realifft($real);
=cut
*realifft = \&PDL::realifft;
sub PDL::realifft {
use PDL::Ufunc 'max';
barf("Usage: realifft(xfm(*)") if $#_ != 0;
my ($a) = @_;
todecimal($a);
my ($n) = int((($a->dims)[0]-1)/2); my($t);
# FIX: could eliminate $b
my ($b) = 0*$a;
($t=$b->slice("1:$n")) .= $a->slice("-$n:-1");
($t=$a->slice("-$n:-1")) .= $a->slice("$n:1");
($t=$b->slice("-$n:-1")) .= -$b->slice("$n:1");
ifft($a,$b);
# Sanity check -- shouldn't happen
carp "Bad inverse transform in realifft" if max(abs($b)) > 1e-6*max(abs($a));
undef;
}
=head2 fftnd()
=for ref
N-dimensional FFT (inplace)
=for example
fftnd($real,$imag);
=cut
*fftnd = \&PDL::fftnd;
sub PDL::fftnd {
barf "Must have real and imaginary parts for fftnd" if $#_ != 1;
my ($r,$i) = @_;
my ($n) = $r->getndims;
barf "Dimensions of real and imag must be the same for fft"
if ($n != $i->getndims);
$n--;
todecimal($r);
todecimal($i);
# need the copy in case $r and $i point to same memory
$i = $i->copy;
foreach (0..$n) {
fft($r,$i);
$r = $r->mv(0,$n);
$i = $i->mv(0,$n);
}
$_[0] = $r; $_[1] = $i;
undef;
}
=head2 ifftnd()
=for ref
N-dimensional inverse FFT
=for example
ifftnd($real,$imag);
=cut
*ifftnd = \&PDL::ifftnd;
sub PDL::ifftnd {
barf "Must have real and imaginary parts for ifftnd" if $#_ != 1;
my ($r,$i) = @_;
my ($n) = $r->getndims;
barf "Dimensions of real and imag must be the same for ifft"
if ($n != $i->getndims);
todecimal($r);
todecimal($i);
# need the copy in case $r and $i point to same memory
$i = $i->copy;
$n--;
foreach (0..$n) {
ifft($r,$i);
$r = $r->mv(0,$n);
$i = $i->mv(0,$n);
}
$_[0] = $r; $_[1] = $i;
undef;
}
=head2 fftconvolve()
=for ref
N-dimensional convolution with periodic boundaries (FFT method)
=for usage
$kernel = kernctr($image,$smallk);
fftconvolve($image,$kernel);
fftconvolve works inplace, and returns an error array in kernel as an
accuracy check -- all the values in it should be negligible.
See also L<PDL::ImageND::convolveND|PDL::ImageND/convolveND>, which
performs speed-optimized convolution with a variety of boundary conditions.
The sizes of the image and the kernel must be the same.
L<kernctr|PDL::ImageND/kernctr> centres a small kernel to emulate the
behaviour of the direct convolution routines.
The speed cross-over between using straight convolution
(L<PDL::Image2D::conv2d()|PDL::Image2D/conv2d>) and
these fft routines is for kernel sizes roughly 7x7.
=cut
*fftconvolve = \&PDL::fftconvolve;
sub PDL::fftconvolve {
barf "Must have image & kernel for fftconvolve" if $#_ != 1;
my ($a, $k) = @_;
my ($ar,$ai,$kr,$ki,$cr,$ci);
$ar = $a->copy;
$ai = $ar->zeros;
fftnd($ar, $ai);
$kr = $k->copy;
$ki = $kr->zeroes;
fftnd($kr,$ki);
$cr = $ar->zeroes;
$ci = $ai->zeroes;
cmul($ar,$ai,$kr,$ki,$cr,$ci);
ifftnd($cr,$ci);
$_[0] = $cr;
$_[1] = $ci;
($cr,$ci);
}
sub PDL::fftconvolve_inplace {
barf "Must have image & kernel for fftconvolve" if $#_ != 1;
my ($hr, $hi) = @_;
my ($n) = $hr->getndims;
todecimal($hr); # Convert to double unless already float or double
todecimal($hi); # Convert to double unless already float or double
# need the copy in case $r and $i point to same memory
$hi = $hi->copy;
$hr = $hr->copy;
fftnd($hr,$hi);
convmath($hr->clump(-1),$hi->clump(-1));
my ($str1, $str2, $tmp, $i);
chop($str1 = '-1:1,' x $n);
chop($str2 = '1:-1,' x $n);
# FIX: do these inplace -- cuts the arithmetic by a factor 2 as well.
($tmp = $hr->slice($str2)) += $hr->slice($str1)->copy;
($tmp = $hi->slice($str2)) -= $hi->slice($str1)->copy;
for ($i = 0; $i<$n; $i++) {
chop ($str1 = ('(0),' x $i).'-1:1,'.('(0),'x($n-$i-1)));
chop ($str2 = ('(0),' x $i).'1:-1,'.('(0),'x($n-$i-1)));
($tmp = $hr->slice($str2)) += $hr->slice($str1)->copy;
($tmp = $hi->slice($str2)) -= $hi->slice($str1)->copy;
}
$hr->clump(-1)->set(0,$hr->clump(-1)->at(0)*2);
$hi->clump(-1)->set(0,0.);
ifftnd($hr,$hi);
$_[0] = $hr; $_[1] = $hi;
($hr,$hi);
}
=head2 convmath
=for sig
Signature: ([o,nc]a(m); [o,nc]b(m))
=for ref
Internal routine doing maths for convolution
=for bad
convmath does not process bad values.
It will set the bad-value flag of all output piddles if the flag is set for any of the input piddles.
=cut
*convmath = \&PDL::convmath;
=head2 cmul
=for sig
Signature: (ar(); ai(); br(); bi(); [o]cr(); [o]ci())
=for ref
Complex multiplication
=for bad
cmul does not process bad values.
It will set the bad-value flag of all output piddles if the flag is set for any of the input piddles.
=cut
*cmul = \&PDL::cmul;
=head2 cdiv
=for sig
Signature: (ar(); ai(); br(); bi(); [o]cr(); [o]ci())
=for ref
Complex division
=for bad
cdiv does not process bad values.
It will set the bad-value flag of all output piddles if the flag is set for any of the input piddles.
=cut
*cdiv = \&PDL::cdiv;
1; # OK
=head1 BUGS
Where the source is marked `FIX', could re-implement using phase-shift
factors on the transforms and some real-space bookkeeping, to save
some temporary space and redundant transforms.
=head1 AUTHOR
This file copyright (C) 1997, 1998 R.J.R. Williams
(rjrw@ast.leeds.ac.uk), Karl Glazebrook (kgb@aaoepp.aao.gov.au),
Tuomas J. Lukka, (lukka@husc.harvard.edu). All rights reserved. There
is no warranty. You are allowed to redistribute this software /
documentation under certain conditions. For details, see the file
COPYING in the PDL distribution. If this file is separated from the
PDL distribution, the copyright notice should be included in the file.
=cut
;
# Exit with OK status
1;
|