This file is indexed.

/usr/share/doc/libplplot11/examples/octave/x21c.m is in octave-plplot 5.9.9-2ubuntu2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
## $Id: x21c.m 11680 2011-03-27 17:57:51Z airwin $
##	Grid data demo
##
##  Copyright (C) 2004  Joao Cardoso
##  Copyright (C) 2006  Andrew Ross
##
##  This file is part of PLplot.
##
##  PLplot is free software; you can redistribute it and/or modify
##  it under the terms of the GNU Library General Public License as published
##  by the Free Software Foundation; either version 2 of the License, or
##  (at your option) any later version.
##
##  PLplot is distributed in the hope that it will be useful,
##  but WITHOUT ANY WARRANTY; without even the implied warranty of
##  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
##  GNU Library General Public License for more details.
## 
##  You should have received a copy of the GNU Library General Public License 
##  along with PLplot; if not, write to the Free Software 
##  Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
##

1;

function cmap1_init

  i(1) = 0.0;		## left boundary
  i(2) = 1.0;		## right boundary

  h(1) = 240; ## blue -> green -> yellow ->
  h(2) = 0;   ## -> red 

  l(1) = 0.6;
  l(2) = 0.6;

  s(1) = 0.8;
  s(2) = 0.8;

  plscmap1n(256);
  plscmap1l(0, i', h', l', s', zeros(2,1));
endfunction

function ix21c

  ## Global plplot constants used here
  global GRID_CSA GRID_DTLI GRID_NNLI GRID_NNI;
  global DRAW_LINEXY  MAG_COLOR  BASE_CONT;

  pts = 500;
  xp = 25;
  yp = 20;
  nl = 16;
  knn_order = 20;
  threshold = 1.001;
  wmin = -1e3;
  randn = 0;
  rosen = 0;


  title = ["Cubic Spline Approximation";
		   "Delaunay Linear Interpolation";
		   "Natural Neighbors Interpolation";
		   "KNN Inv. Distance Weighted";
		   "3NN Linear Interpolation";
		   "4NN Around Inv. Dist. Weighted"];

  opt = zeros(6,1);

  xm = -0.2; ym = -0.2;
  xM = 0.6; yM = 0.6;

  ##plMergeOpts(options, "x21c options", NULL);
  ##plparseopts(&argc, argv, PL_PARSE_FULL);

  opt(3) = wmin;
  opt(4) = knn_order;
  opt(5) = threshold;

  ## Initialize plplot

  plinit;

  plseed(5489);

  [x, y, z] = create_data(pts, xm, xM, ym, yM, randn, rosen); ## the sampled data
  zmax = max(z);
  zmin = min(z);

  [xg, yg] = create_grid(xp, yp, xm, xM, ym, yM); ## grid the data at

  plcol0(1);
  plenv(xm, xM, ym, yM, 2, 0);
  plcol0(15);
  pllab("X", "Y", "The original data sampling");
  plcol0(2);
  plpoin(x, y, 5);
  pladv(0);

  plssub(3,2);

  for k=0:1
    pladv(0);
    for alg=1:6

      zg = plgriddata(x, y, z, xg, yg, alg, opt(alg));

      ## - CSA can generate NaNs (only interpolates?!).
      ## - DTLI and NNI can generate NaNs for points outside the convex hull
      ##      of the data points.
      ## - NNLI can generate NaNs if a sufficiently thick triangle is not found
      ##
      ## PLplot should be NaN/Inf aware, but changing it now is quite a job...
      ## so, instead of not plotting the NaN regions, a weighted average over
      ## the neighbors is done.
      ##

      if (alg == GRID_CSA || alg == GRID_DTLI || alg == GRID_NNLI || alg == GRID_NNI) 
	for i=1:xp
	  for j=1:yp
	    ## average (IDW) over the 8 neighbors for NaN's
	    if isnan(zg(i,j))
	      zg(i,j) = 0.; 
	      dist = 0.;
		
	      for ii=i-1:i+1
		for jj=j-1:j+1
		  if (ii >= 1 && jj >= 1 && ii<=xp && jj <=yp && !isnan(zg(ii,jj)))
		    if ((abs(ii-i) + abs(jj-j)) == 1)
		      d = 1.;
		    else
		      d = 1.4142;
		    endif
		    zg(i,j) += zg(ii,jj)/(d*d);
		    dist += d;
		  endif
		endfor
	      endfor
	      if (dist != 0.)
		zg(i,j) /= dist;
	      else
		zg(i,j) = zmin;
	      endif
	    endif
	  endfor
	endfor
      endif

      lzM = max(max(zg));
      lzm = min(min(zg));

      lzm = min(lzm, zmin)-0.01;
      lzM = max(lzM, zmax)+0.01;
      
      plcol0(1);
      pladv(alg);

      if (k == 0)

	i = (0:nl-1)';
	clev = lzm + (lzM-lzm)/(nl-1)*i;

	plenv0(xm, xM, ym, yM, 2, 0);
	plcol0(15);
	pllab("X", "Y", deblank(title(alg,:)));
	plshades(zg, xm, xM, ym, yM, clev, 1, 0, 1, 1);
	plcol0(2);
      else 

	i=(0:nl-1)';
	clev = lzm + (lzM-lzm)/(nl-1)*i;

	cmap1_init;
	plvpor(0.0, 1.0, 0.0, 0.9);
	plwind(-1.1, 0.75, -0.65, 1.20);
	##
	## For the comparition to be fair, all plots should have the
	## same z values, but to get the max/min of the data generated
	## by all algorithms would imply two passes. Keep it simple.
	##
	## plw3d(1., 1., 1., xm, xM, ym, yM, zmin, zmax, 30, -60);
	##

	plw3d(1., 1., 1., xm, xM, ym, yM, lzm, lzM, 30., -40.);
	plbox3("bntu", "X", 0.0, 0,
	       "bntu", "Y", 0.0, 0,
	       "bcdfntu", "Z", 0.5, 0);
	plcol0(15);
	pllab("", "", deblank(title(alg,:)));
	plot3dc(xg, yg, zg, bitor(DRAW_LINEXY,bitor(MAG_COLOR,BASE_CONT)), clev);
      endif
    endfor
  endfor

  plend1;

endfunction


function [x, y] = create_grid(px, py, xm, xM, ym, yM)

  i = (0:px-1)';
  x = xm + (xM-xm)*i/(px-1.0);

  i = (0:py-1)';
  y = ym + (yM-ym)*i/(py-1.0);

endfunction

function [x, y, z] = create_data(pts, xm, xM, ym, yM, randn, rosen)
  
  ## This would be a much more efficient way of generating an array of 
  ## random numbers, but we stick with plrandd for compatibility between
  ## examples.
  ## x = rand(pts,1);
  ## y = rand(pts,1);
  x = zeros(pts,1);
  y = zeros(pts,1);
  for i=1:pts
    x(i) = (xM-xm)*plrandd();
    y(i) = (yM-ym)*plrandd();
  endfor

  if (!randn)
    x = x + xm;
    y = y + ym;
  else ## std=1, meaning that many points are outside the plot range
    x = sqrt(-2.*log(x)) * cos(2.*pi*y) + xm;
    y = sqrt(-2.*log(x)) * sin(2.*pi*y) + ym;
  endif
  if (!rosen) 
    r = sqrt(x.*x + y.*y);
    z = exp(-r .* r) .* cos(2.0 * pi * r);
  else
    z = log((1. - x).^2 + 100. * (y - x.^2).^2);
  endif
endfunction


ix21c;