This file is indexed.

/usr/share/octave/packages/3.2/optim-1.0.17/jacobs.m is in octave-optim 1.0.17-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
## Copyright (C) 2011 Fotios Kasolis <fotios.kasolis@gmail.com>
##
## This program is free software; you can redistribute it and/or modify
## it under the terms of the GNU General Public License as published by
## the Free Software Foundation; either version 3 of the License, or
## (at your option) any later version.
##
## This program is distributed in the hope that it will be useful,
## but WITHOUT ANY WARRANTY; without even the implied warranty of
## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
## GNU General Public License for more details.
##
## You should have received a copy of the GNU General Public License
## along with this program; if not, see <http://www.gnu.org/licenses/>.

## -*- texinfo -*-
## @deftypefn {Function File} {Df =} jacobs (@var{x}, @var{f})
## @deftypefnx {Function File} {Df =} jacobs (@var{x}, @var{f}, @var{hook})
## Calculate the jacobian of a function using the complex step method.
##
## Let @var{f} be a user-supplied function. Given a point @var{x} at
## which we seek for the Jacobian, the function @command{jacobs} returns
## the Jacobian matrix @code{d(f(1), @dots{}, df(end))/d(x(1), @dots{},
## x(n))}. The function uses the complex step method and thus can be
## applied to real analytic functions.
##
## The optional argument @var{hook} is a structure with additional options. @var{hook}
## can have the following fields:
## @itemize @bullet
## @item
## @code{h} - can be used to define the magnitude of the complex step and defaults
## to 1e-20; steps larger than 1e-3 are not allowed.
## @item
## @code{fixed} - is a logical vector internally usable by some optimization
## functions; it indicates for which elements of @var{x} no gradient should be
## computed, but zero should be returned.
## @end itemize
##
## For example:
## 
## @example
## @group
## f = @@(x) [x(1)^2 + x(2); x(2)*exp(x(1))];
## Df = jacobs ([1, 2], f)
## @end group
## @end example
## @end deftypefn

function Df = jacobs (x, f, hook)

  if ( (nargin < 2) || (nargin > 3) )
    print_usage ();
  endif

  if (ischar (f))
    f = str2func (f, "global");
  endif

  n  = numel (x);

  default_h = 1e-20;
  max_h = 1e-3; # must be positive

  if (nargin > 2)

    if (isfield (hook, "h"))
      if (! (isscalar (hook.h)))
        error ("complex step magnitude must be a scalar");
      endif
      if (abs (hook.h) > max_h)
        warning ("complex step magnitude larger than allowed, set to %e", ...
                 max_h)
        h = max_h;
      else
        h = hook.h;
      endif
    else
      h = default_h;
    endif

    if (isfield (hook, "fixed"))
      if (numel (hook.fixed) != n)
        error ("index of fixed parameters has wrong dimensions");
      endif
      fixed = hook.fixed;
    else
      fixed = false (n, 1);
    endif

  else

    h = default_h;
    fixed = false (n, 1);

  endif

  if (all (fixed))
    error ("all elements of 'x' are fixed");
  endif

  x = repmat (x(:), 1, n) + h * 1i * eye (n);

  idx = find (! fixed);

  ## after first evaluation, dimensionness of 'f' is known
  t_Df = imag (f (x(:, idx(1)))(:));
  dim = numel (t_Df);

  Df = zeros (dim, n);

  Df(:, idx(1)) = t_Df;

  for count = idx(2:end)
    Df(:, count) = imag (f (x(:, count))(:));
  endfor

  Df /=  h;

endfunction

%!assert (jacobs (1, @(x) x), 1)
%!assert (jacobs (6, @(x) x^2), 12)
%!assert (jacobs ([1; 1], @(x) [x(1)^2; x(1)*x(2)]), [2, 0; 1, 1])
%!assert (jacobs ([1; 2], @(x) [x(1)^2 + x(2); x(2)*exp(x(1))]), [2, 1; 2*exp(1), exp(1)])

%% Test input validation
%!error jacobs ()
%!error jacobs (1)
%!error jacobs (1, 2, 3, 4)
%!error jacobs (@sin, 1, [1, 1])
%!error jacobs (@sin, 1, ones(2, 2))

%!demo
%! # Relative error against several h-values
%! k = 3:20; h = 10 .^ (-k); x = 0.3*pi;
%! err = zeros (1, numel (k));
%! for count = 1 : numel (k)
%!   err(count) = abs (jacobs (x, @sin,	struct ("h", h(count))) - cos (x)) / abs (cos (x)) + eps;
%! endfor
%! loglog (h, err); grid minor;
%! xlabel ("h"); ylabel ("|Df(x) - cos(x)| / |cos(x)|")
%! title ("f(x)=sin(x), f'(x)=cos(x) at x = 0.3pi")