This file is indexed.

/usr/share/octave/packages/3.2/nan-2.4.4/test_sc.m is in octave-nan 2.4.4-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
function [R]=test_sc(CC,D,mode,classlabel)
% TEST_SC: apply statistical and SVM classifier to test data 
%
%  R = test_sc(CC,D,TYPE [,target_Classlabel]) 
%       R.output     	output: "signed" distance for each class. 
%		This represents the distances between sample D and the separating hyperplane
%		The "signed distance" is possitive if it matches the target class, and 
%		and negative if it lays on the opposite side of the separating hyperplane. 
%       R.classlabel 	class for output data
%  The target class is optional. If it is provided, the following values are returned. 
%       R.kappa 	Cohen's kappa coefficient
%       R.ACC   	Classification accuracy 
%       R.H     	Confusion matrix 
%
% The classifier CC is typically obtained by TRAIN_SC. If a statistical 
% classifier is used, TYPE can be used to modify the classifier. 
%    TYPE = 'MDA'    mahalanobis distance based classifier
%    TYPE = 'MD2'    mahalanobis distance based classifier
%    TYPE = 'MD3'    mahalanobis distance based classifier
%    TYPE = 'GRB'    Gaussian radial basis function 
%    TYPE = 'QDA'    quadratic discriminant analysis
%    TYPE = 'LD2'    linear discriminant analysis
%    TYPE = 'LD3', 'LDA', 'FDA, 'FLDA'   (Fisher's) linear discriminant analysis
%    TYPE = 'LD4'    linear discriminant analysis
%    TYPE = 'GDBC'   general distance based classifier
% 
% see also: TRAIN_SC
%
% References: 
% [1] R. Duda, P. Hart, and D. Stork, Pattern Classification, second ed. 
%       John Wiley & Sons, 2001.

%	$Id: test_sc.m 8223 2011-04-20 09:16:06Z schloegl $
%	Copyright (C) 2005,2006,2008,2009,2010 by Alois Schloegl <alois.schloegl@gmail.com>
%       This function is part of the NaN-toolbox
%       http://pub.ist.ac.at/~schloegl/matlab/NaN/

% This program is free software; you can redistribute it and/or
% modify it under the terms of the GNU General Public License
% as published by the Free Software Foundation; either version 3
% of the  License, or (at your option) any later version.
% 
% This program is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
% GNU General Public License for more details.
% 
% You should have received a copy of the GNU General Public License
% along with this program; if not, write to the Free Software
% Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA  02111-1307, USA.

if nargin<3,
        mode = [];
end;
[t1,t] = strtok(CC.datatype,':');
[t2,t] = strtok(t,':');
[t3] = strtok(t,':');
if ~strcmp(t1,'classifier'), return; end; 

if isfield(CC,'prewhite')
        D = D*CC.prewhite(2:end,:) + CC.prewhite(ones(size(D,1),1),:);
        CC = rmfield(CC,'prewhite');
end;

POS1 = [strfind(CC.datatype,'/gsvd'),strfind(CC.datatype,'/sparse'),strfind(CC.datatype,'/delet')];

if 0,


elseif strcmp(CC.datatype,'classifier:nbpw')
	error('NBPW not implemented yet')
	%%%% Naive Bayesian Parzen Window Classifier %%%%
	d = repmat(NaN,size(D,1),size(CC.MEAN,1));
	for k = 1:size(CC.MEAN,1)
		z = (D - CC.MEAN(repmat(k,size(D,1),1),:)).^2 ./ (CC.VAR(repmat(k,size(D,1),1),:));
		z = z + log(CC.VAR(repmat(k,size(D,1),1),:)); % + log(2*pi);
		d(:,k) = sum(-z/2, 2) + log(mean(CC.N(k,:)));
	end;
	d = exp(d-log(mean(sum(CC.N,1)))-log(2*pi)/2);


elseif strcmp(CC.datatype,'classifier:nbc')
	%%%% Naive Bayesian Classifier %%%%
	d = repmat(NaN,size(D,1),size(CC.MEAN,1));
	for k = 1:size(CC.MEAN,1)
		z = (D - CC.MEAN(repmat(k,size(D,1),1),:)).^2 ./ (CC.VAR(repmat(k,size(D,1),1),:));
		z = z + log(CC.VAR(repmat(k,size(D,1),1),:)); % + log(2*pi);
		d(:,k) = sum(-z/2, 2) + log(mean(CC.N(k,:)));
	end; 
	d = exp(d-log(mean(sum(CC.N,1)))-log(2*pi)/2);


elseif strcmp(CC.datatype,'classifier:anbc')
	%%%% Augmented Naive Bayesian Classifier %%%%
	d = repmat(NaN,size(D,1),size(CC.MEAN,1));
	for k = 1:size(CC.MEAN,1)
		z = (D*CC.V - CC.MEAN(repmat(k,size(D,1),1),:)).^2 ./ (CC.VAR(repmat(k,size(D,1),1),:));
		z = z + log(CC.VAR(repmat(k,size(D,1),1),:)); % + log(2*pi);
		d(:,k) = sum(-z/2, 2) + log(mean(CC.N(k,:)));
	end; 
	d = exp(d-log(mean(sum(CC.N,1)))-log(2*pi)/2);


elseif strcmp(CC.datatype,'classifier:statistical:rda')
	% Friedman (1989) Regularized Discriminant analysis
	if isfield(CC,'hyperparameter') && isfield(CC.hyperparameter,'lambda')  && isfield(CC.hyperparameter,'gamma')
		D = [ones(size(D,1),1),D];  % add 1-column
		lambda = CC.hyperparameter.lambda;
		gamma  = CC.hyperparameter.gamma;
		d = repmat(NaN,size(D,1),size(CC.MD,1));
                ECM = CC.MD./CC.NN; 
                NC = size(ECM); 
                ECM0 = squeeze(sum(ECM,3));  %decompose ECM
                [M0,sd,COV0] = decovm(ECM0);
                for k = 1:NC(3);
			[M,sd,s,xc,N] = decovm(squeeze(ECM(:,:,k)));
                	s = ((1-lambda)*N*s+lambda*COV0)/((1-lambda)*N+lambda);
                	s = (1-gamma)*s+gamma*(trace(s))/(NC(2)-1)*eye(NC(2)-1);
                        ir  = [-M;eye(NC(2)-1)]*inv(s)*[-M',eye(NC(2)-1)];  % inverse correlation matrix extended by mean
                        d(:,k) = -sum((D*ir).*D,2); % calculate distance of each data point to each class
                end;
	else 
		error('QDA: hyperparamters lambda and/or gamma not defined')
	end;


elseif strcmp(CC.datatype,'classifier:csp')
	d = filtfilt(CC.FiltB,CC.FiltA,(D*CC.csp_w).^2);
	R = test_sc(CC.CSP,log(d));	% LDA classifier of 
	d = R.output; 


elseif strcmp(CC.datatype,'classifier:svm:lib:1vs1') || strcmp(CC.datatype,'classifier:svm:lib:rbf');

        cl = svmpredict_mex(ones(size(D,1),1), D, CC.model);   %Use the classifier

        %Create a pseudo tsd matrix for bci4eval
        d = zeros(size(D,1), CC.model.nr_class);
        for i = 1:size(cl,1)
                d(i,cl(i)) = 1;
        end


elseif isfield(CC,'weights'); %strcmpi(t2,'svm') || (strcmpi(t2,'statistical') & strncmpi(t3,'ld',2)) ;

        % linear classifiers like: LDA, SVM, LPM 
        %d = [ones(size(D,1),1), D] * CC.weights;
        d = repmat(NaN,size(D,1),size(CC.weights,2));
        for k = 1:size(CC.weights,2),
                d(:,k) = D * CC.weights(2:end,k) + CC.weights(1,k);
        end;


elseif ~isempty(POS1)	% GSVD, sparse & DELETION
        CC.datatype = CC.datatype(1:POS1(1)-1);
        r = test_sc(CC, D*sparse(CC.G));
        d = r.output; 


elseif strcmp(t2,'statistical');
        if isempty(mode)
                mode.TYPE = upper(t3); 
        end;
        D = [ones(size(D,1),1),D];  % add 1-column
        W = repmat(NaN, size(D,2), size(CC.MD,3));

        if 0,
        elseif strcmpi(mode.TYPE,'LD2'),
                %d = ldbc2(CC,D);
                ECM = CC.MD./CC.NN; 
                NC = size(ECM); 
                ECM0 = squeeze(sum(ECM,3));  %decompose ECM
                [M0] = decovm(ECM0);
                for k = 1:NC(3);
                        ecm = squeeze(ECM(:,:,k));
                        [M1,sd,COV1] = decovm(ECM0-ecm);
                        [M2,sd,COV2] = decovm(ecm);
                        w     = (COV1+COV2)\(M2'-M1')*2;
                        w0    = -M0*w;
                        W(:,k) = [w0; w];
                end;
                d = D*W;
        elseif strcmpi(mode.TYPE,'LD3') || strcmpi(mode.TYPE,'FLDA');
                %d = ldbc3(CC,D);
                ECM = CC.MD./CC.NN; 
                NC = size(ECM); 
                ECM0 = squeeze(sum(ECM,3));  %decompose ECM
                [M0,sd,COV0] = decovm(ECM0);
                for k = 1:NC(3);
                        ecm = squeeze(ECM(:,:,k));
                        [M1] = decovm(ECM0-ecm);
                        [M2] = decovm(ecm);
                        w     = COV0\(M2'-M1')*2;
                        w0    = -M0*w;
                        W(:,k) = [w0; w];
                end;
                d = D*W;
        elseif strcmpi(mode.TYPE,'LD4');
                %d = ldbc4(CC,D);
                ECM = CC.MD./CC.NN; 
                NC = size(ECM); 
                ECM0 = squeeze(sum(ECM,3));  %decompose ECM
                M0 = decovm(ECM0);
                for k = 1:NC(3);
                        ecm = squeeze(ECM(:,:,k));
                        [M1,sd,COV1,xc,N1] = decovm(ECM0-ecm);
                        [M2,sd,COV2,xc,N2] = decovm(ecm);
                        w     = (COV1*N1+COV2*N2)\((M2'-M1')*(N1+N2));
                        w0    = -M0*w;
                        W(:,k) = [w0; w];
                end;
                d = D*W;
        elseif strcmpi(mode.TYPE,'MDA');
                d = repmat(NaN,size(D,1),length(CC.IR)); 
                for k = 1:length(CC.IR);
                        d(:,k) = -sum((D*CC.IR{k}).*D,2); % calculate distance of each data point to each class
                end;
        elseif strcmpi(mode.TYPE,'MD2');
                d = repmat(NaN,size(D,1),length(CC.IR)); 
                for k = 1:length(CC.IR);
                        d(:,k) = sum((D*CC.IR{k}).*D,2); % calculate distance of each data point to each class
                end;
                d = -sqrt(d);
        elseif strcmpi(mode.TYPE,'GDBC');
                d = repmat(NaN,size(D,1),length(CC.IR)); 
                for k = 1:length(CC.IR);
                        d(:,k) = sum((D*CC.IR{k}).*D,2) + CC.logSF7(k); % calculate distance of each data point to each class
                end;
                d = exp(-d/2);
        elseif strcmpi(mode.TYPE,'MD3');
                d = repmat(NaN,size(D,1),length(CC.IR)); 
                for k = 1:length(CC.IR);
                        d(:,k) = sum((D*CC.IR{k}).*D,2) + CC.logSF7(k); % calculate distance of each data point to each class
                end;
                d = exp(-d/2);
                d = d./repmat(sum(d,2),1,size(d,2));  % Zuordungswahrscheinlichkeit [1], p.601, equ (18.39)
        elseif strcmpi(mode.TYPE,'QDA');
                d = repmat(NaN,size(D,1),length(CC.IR)); 
                for k = 1:length(CC.IR);
                        % [1] (18.33) QCF - quadratic classification function  
                        d(:,k) = -(sum((D*CC.IR{k}).*D,2) - CC.logSF5(k)); 
                end;
        elseif strcmpi(mode.TYPE,'QDA2');
                d = repmat(NaN,size(D,1),length(CC.IR)); 
                for k = 1:length(CC.IR);
                        % [1] (18.33) QCF - quadratic classification function  
                        d(:,k) = -(sum((D*(CC.IR{k})).*D,2) + CC.logSF4(k)); 
                end;
        elseif strcmpi(mode.TYPE,'GRB');     % Gaussian RBF
                d = repmat(NaN,size(D,1),length(CC.IR)); 
                for k = 1:length(CC.IR);
                        d(:,k) = sum((D*CC.IR{k}).*D,2); % calculate distance of each data point to each class
                end;
                d = exp(-sqrt(d)/2);
        elseif strcmpi(mode.TYPE,'GRB2');     % Gaussian RBF
                d = repmat(NaN,size(D,1),length(CC.IR)); 
                for k = 1:length(CC.IR);
                        d(:,k) = sum((D*CC.IR{k}).*D,2); % calculate distance of each data point to each class
                end;
                d = exp(-d);
        elseif strcmpi(mode.TYPE,'MQU');     % Multiquadratic 
                d = repmat(NaN,size(D,1),length(CC.IR)); 
                for k = 1:length(CC.IR);
                        d(:,k) = sum((D*CC.IR{k}).*D,2); % calculate distance of each data point to each class
                end;
                d = -sqrt(1+d);
        elseif strcmpi(mode.TYPE,'IMQ');     % Inverse Multiquadratic 
                d = repmat(NaN,size(D,1),length(CC.IR)); 
                for k = 1:length(CC.IR);
                        d(:,k) = sum((D*CC.IR{k}).*D,2); % calculate distance of each data point to each class
                end;
                d = (1+d).^(-1/2);
        elseif strcmpi(mode.TYPE,'Cauchy');     % Cauchy RBF
                d = repmat(NaN,size(D,1),length(CC.IR)); 
                for k = 1:length(CC.IR);
                        d(:,k) = sum((D*CC.IR{k}).*D,2); % calculate distance of each data point to each class
                end;
                d = 1./(1+d);
        else 
                error('Classifier %s not supported. see HELP TRAIN_SC for supported classifiers.',mode.TYPE);
        end;
else
        fprintf(2,'Error TEST_SC: unknown classifier\n');
        return;
end;

if size(d,2)>1,
	[tmp,cl] = max(d,[],2);
	cl = CC.Labels(cl); 
	cl(isnan(tmp)) = NaN; 
elseif size(d,2)==1,
	cl = (d<0) + 2*(d>0);
	cl(isnan(d)) = NaN; 
end; 	

R.output = d; 
R.classlabel = cl; 

if nargin>3,
        [R.kappa,R.sd,R.H,z,R.ACC] = kappa(classlabel(:),cl(:));
end;