This file is indexed.

/usr/share/octave/packages/3.2/linear-algebra-2.1.0/doc-cache is in octave-linear-algebra 2.1.0-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
# Created by Octave 3.2.4, Mon Dec 05 13:38:35 2011 UTC <root@yellow>
# name: cache
# type: cell
# rows: 3
# columns: 10
# name: <cell-element>
# type: string
# elements: 1
# length: 8
cartprod
# name: <cell-element>
# type: string
# elements: 1
# length: 771
 -- Function File:  cartprod (VARARGIN )
     Computes the cartesian product of given column vectors ( row
     vectors ).  The vector elements are assumend to be numbers.

     Alternatively the vectors can be specified by as a matrix, by its
     columns.

     To calculate the cartesian product of vectors, P = A x B x C x D
     ... . Requires A, B, C, D be column vectors.  The algorithm is
     iteratively calcualte the products,  ( ( (A x B ) x C ) x D ) x
     etc.

            cartprod(1:2,3:4,0:1)
            ans =   1   3   0
                    2   3   0
                    1   4   0
                    2   4   0
                    1   3   1
                    2   3   1
                    1   4   1
                    2   4   1

   See also: kron


# name: <cell-element>
# type: string
# elements: 1
# length: 71
Computes the cartesian product of given column vectors ( row vectors ).

# name: <cell-element>
# type: string
# elements: 1
# length: 3
cod
# name: <cell-element>
# type: string
# elements: 1
# length: 885
 -- Function File: [Q, R, Z] = cod (A)
 -- Function File: [Q, R, Z, P] = cod (A)
 -- Function File: [...] = cod (A, '0')
     Computes the complete orthogonal decomposition (COD) of the matrix
     A:
            A = Q*R*Z'
     Let A be an M-by-N matrix, and let `K = min(M, N)'.  Then Q is
     M-by-M orthogonal, Z is N-by-N orthogonal, and R is M-by-N such
     that `R(:,1:K)' is upper trapezoidal and `R(:,K+1:N)' is zero.
     The additional P output argument specifies that pivoting should be
     used in the first step (QR decomposition). In this case,
            A*P = Q*R*Z'
     If a second argument of '0' is given, an economy-sized
     factorization is returned so that R is K-by-K.

     NOTE: This is currently implemented by double QR factorization
     plus some tricky manipulations, and is not as efficient as using
     xRZTZF from LAPACK.

     See also: qr



# name: <cell-element>
# type: string
# elements: 1
# length: 80
Computes the complete orthogonal decomposition (COD) of the matrix A:
       A =

# name: <cell-element>
# type: string
# elements: 1
# length: 7
condeig
# name: <cell-element>
# type: string
# elements: 1
# length: 784
 -- Function File: C = condeig (A)
 -- Function File: [V, LAMBDA, C] = condeig (A)
     Compute condition numbers of the eigenvalues of a matrix. The
     condition numbers are the reciprocals of the cosines of the angles
     between the left and right eigenvectors.

Arguments
---------

        * A must be a square numeric matrix.

Return values
-------------

        * C is a vector of condition numbers of the eigenvalue of A.

        * V is the matrix of right eigenvectors of A. The result is the
          same as for `[v, lambda] = eig (a)'.

        * LAMBDA is the diagonal matrix of eigenvalues of A. The result
          is the same as for `[v, lambda] = eig (a)'.

Example
-------

          a = [1, 2; 3, 4];
          c = condeig (a)
          => [1.0150; 1.0150]


# name: <cell-element>
# type: string
# elements: 1
# length: 57
Compute condition numbers of the eigenvalues of a matrix.

# name: <cell-element>
# type: string
# elements: 1
# length: 4
funm
# name: <cell-element>
# type: string
# elements: 1
# length: 1117
 -- Function File: B = funm (A, F)
     Compute matrix equivalent of function F; F can be a function name
     or a function handle.

     For trigonometric and hyperbolic functions, `thfm' is automatically
     invoked as that is based on `expm' and diagonalization is avoided.
     For other functions diagonalization is invoked, which implies that
     -depending on the properties of input matrix A- the results can be
     very inaccurate _without any warning_. For easy diagonizable and
     stable matrices results of funm will be sufficiently accurate.

     Note that you should not use funm for 'sqrt', 'log' or 'exp';
     instead use sqrtm, logm and expm as these are more robust.

     Examples:

            B = funm (A, sin);
            (Compute matrix equivalent of sin() )

            function bk1 = besselk1 (x)
               bk1 = besselk(x, 1);
            endfunction
            B = funm (A, besselk1);
            (Compute matrix equivalent of bessel function K1(); a helper function
             is needed here to convey extra args for besselk() )

     See also: thfm, expm, logm, sqrtm



# name: <cell-element>
# type: string
# elements: 1
# length: 80
Compute matrix equivalent of function F; F can be a function name or a
function 

# name: <cell-element>
# type: string
# elements: 1
# length: 6
lobpcg
# name: <cell-element>
# type: string
# elements: 1
# length: 9717
 -- Function File: [BLOCKVECTORX, LAMBDA] = lobpcg (BLOCKVECTORX,
          OPERATORA)
 -- Function File: [BLOCKVECTORX, LAMBDA, FAILUREFLAG] = lobpcg
          (BLOCKVECTORX, OPERATORA)
 -- Function File: [BLOCKVECTORX, LAMBDA, FAILUREFLAG, LAMBDAHISTORY,
RESIDUALNORMSHISTORY] = lobpcg (BLOCKVECTORX, OPERATORA, OPERATORB,
          OPERATORT, BLOCKVECTORY, RESIDUALTOLERANCE, MAXITERATIONS,
          VERBOSITYLEVEL)
     Solves Hermitian partial eigenproblems using preconditioning.

     The first form outputs the array of algebraic smallest eigenvalues
     LAMBDA and corresponding matrix of orthonormalized eigenvectors
     BLOCKVECTORX of the Hermitian (full or sparse) operator OPERATORA
     using input matrix BLOCKVECTORX as an initial guess, without
     preconditioning, somewhat similar to:

          # for real symmetric operator operatorA
          opts.issym  = 1; opts.isreal = 1; K = size (blockVectorX, 2);
          [blockVectorX, lambda] = eigs (operatorA, K, 'SR', opts);

          # for Hermitian operator operatorA
          K = size (blockVectorX, 2);
          [blockVectorX, lambda] = eigs (operatorA, K, 'SR');

     The second form returns a convergence flag. If FAILUREFLAG is 0
     then all the eigenvalues converged; otherwise not all converged.

     The third form computes smallest eigenvalues LAMBDA and
     corresponding eigenvectors BLOCKVECTORX of the generalized
     eigenproblem Ax=lambda Bx, where Hermitian operators OPERATORA and
     OPERATORB are given as functions, as well as a preconditioner,
     OPERATORT. The operators OPERATORB and OPERATORT must be in
     addition _positive definite_. To compute the largest eigenpairs of
     OPERATORA, simply apply the code to OPERATORA multiplied by -1.
     The code does not involve _any_ matrix factorizations of OPERATORA
     and OPERATORB, thus, e.g., it preserves the sparsity and the
     structure of OPERATORA and OPERATORB.

     RESIDUALTOLERANCE and MAXITERATIONS control tolerance and max
     number of steps, and VERBOSITYLEVEL = 0, 1, or 2 controls the
     amount of printed info. LAMBDAHISTORY is a matrix with all
     iterative lambdas, and RESIDUALNORMSHISTORY are matrices of the
     history of 2-norms of residuals

     Required input:
        * BLOCKVECTORX (class numeric) - initial approximation to
          eigenvectors, full or sparse matrix n-by-blockSize.
          BLOCKVECTORX must be full rank.

        * OPERATORA (class numeric, char, or function_handle) - the
          main operator of the eigenproblem, can be a matrix, a
          function name, or handle

     Optional function input:
        * OPERATORB (class numeric, char, or function_handle) - the
          second operator, if solving a generalized eigenproblem, can
          be a matrix, a function name, or handle; by default if empty,
          `operatorB = I'.

        * OPERATORT (class char or function_handle) - the
          preconditioner, by default `operatorT(blockVectorX) =
          blockVectorX'.

     Optional constraints input:
        * BLOCKVECTORY (class numeric) - a full or sparse n-by-sizeY
          matrix of constraints, where sizeY < n. BLOCKVECTORY must be
          full rank. The iterations will be performed in the
          (operatorB-) orthogonal complement of the column-space of
          BLOCKVECTORY.

     Optional scalar input parameters:
        * RESIDUALTOLERANCE (class numeric) - tolerance, by default,
          `residualTolerance = n * sqrt (eps)'

        * MAXITERATIONS - max number of iterations, by default,
          `maxIterations = min (n, 20)'

        * VERBOSITYLEVEL - either 0 (no info), 1, or 2 (with pictures);
          by default, `verbosityLevel = 0'.

     Required output:
        * BLOCKVECTORX and LAMBDA (class numeric) both are computed
          blockSize eigenpairs, where `blockSize = size (blockVectorX,
          2)' for the initial guess BLOCKVECTORX if it is full rank.

     Optional output:
        * FAILUREFLAG (class integer) as described above.

        * LAMBDAHISTORY (class numeric) as described above.

        * RESIDUALNORMSHISTORY (class numeric) as described above.

     Functions `operatorA(blockVectorX)', `operatorB(blockVectorX)' and
     `operatorT(blockVectorX)' must support BLOCKVECTORX being a
     matrix, not just a column vector.

     Every iteration involves one application of OPERATORA and
     OPERATORB, and one of OPERATORT.

     Main memory requirements: 6 (9 if `isempty(operatorB)=0') matrices
     of the same size as BLOCKVECTORX, 2 matrices of the same size as
     BLOCKVECTORY (if present), and two square matrices of the size
     3*blockSize.

     In all examples below, we use the Laplacian operator in a 20x20
     square with the mesh size 1 which can be generated in MATLAB by
     running:
          A = delsq (numgrid ('S', 21));
          n = size (A, 1);

     or in MATLAB and Octave by:
          [~,~,A] = laplacian ([19, 19]);
          n = size (A, 1);

     Note that `laplacian' is a function of the specfun octave-forge
     package.

     The following Example:
          [blockVectorX, lambda, failureFlag] = lobpcg (randn (n, 8), A, 1e-5, 50, 2);

     attempts to compute 8 first eigenpairs without preconditioning,
     but not all eigenpairs converge after 50 steps, so failureFlag=1.

     The next Example:
          blockVectorY = [];
          lambda_all = [];
          for j = 1:4
            [blockVectorX, lambda] = lobpcg (randn (n, 2), A, blockVectorY, 1e-5, 200, 2);
            blockVectorY           = [blockVectorY, blockVectorX];
            lambda_all             = [lambda_all' lambda']';
            pause;
          end

     attemps to compute the same 8 eigenpairs by calling the code 4
     times with blockSize=2 using orthogonalization to the previously
     founded eigenvectors.

     The following Example:
          R       = ichol (A, struct('michol', 'on'));
          precfun = @(x)R\(R'\x);
          [blockVectorX, lambda, failureFlag] = lobpcg (randn (n, 8), A, [], @(x)precfun(x), 1e-5, 60, 2);

     computes the same eigenpairs in less then 25 steps, so that
     failureFlag=0 using the preconditioner function `precfun', defined
     inline. If `precfun' is defined as an octave function in a file,
     the function handle `@(x)precfun(x)' can be equivalently replaced
     by the function name `precfun'. Running:

          [blockVectorX, lambda, failureFlag] = lobpcg (randn (n, 8), A, speye (n), @(x)precfun(x), 1e-5, 50, 2);

     produces similar answers, but is somewhat slower and needs more
     memory as technically a generalized eigenproblem with B=I is
     solved here.

     The following example for a mostly diagonally dominant sparse
     matrix A demonstrates different types of preconditioning, compared
     to the standard use of the main diagonal of A:

          clear all; close all;
          n       = 1000;
          M       = spdiags ([1:n]', 0, n, n);
          precfun = @(x)M\x;
          A       = M + sprandsym (n, .1);
          Xini    = randn (n, 5);
          maxiter = 15;
          tol     = 1e-5;
          [~,~,~,~,rnp] = lobpcg (Xini, A, tol, maxiter, 1);
          [~,~,~,~,r]   = lobpcg (Xini, A, [], @(x)precfun(x), tol, maxiter, 1);
          subplot (2,2,1), semilogy (r'); hold on;
          semilogy (rnp', ':>');
          title ('No preconditioning (top)'); axis tight;
          M(1,2)  = 2;
          precfun = @(x)M\x; % M is no longer symmetric
          [~,~,~,~,rns] = lobpcg (Xini, A, [], @(x)precfun(x), tol, maxiter, 1);
          subplot (2,2,2), semilogy (r'); hold on;
          semilogy (rns', '--s');
          title ('Nonsymmetric preconditioning (square)'); axis tight;
          M(1,2)  = 0;
          precfun = @(x)M\(x+10*sin(x)); % nonlinear preconditioning
          [~,~,~,~,rnl] = lobpcg (Xini, A, [], @(x)precfun(x), tol, maxiter, 1);
          subplot (2,2,3),  semilogy (r'); hold on;
          semilogy (rnl', '-.*');
          title ('Nonlinear preconditioning (star)'); axis tight;
          M       = abs (M - 3.5 * speye (n, n));
          precfun = @(x)M\x;
          [~,~,~,~,rs] = lobpcg (Xini, A, [], @(x)precfun(x), tol, maxiter, 1);
          subplot (2,2,4),  semilogy (r'); hold on;
          semilogy (rs', '-d');
          title ('Selective preconditioning (diamond)'); axis tight;

References
==========

     This main function `lobpcg' is a version of the preconditioned
conjugate gradient method (Algorithm 5.1) described in A. V. Knyazev,
Toward the Optimal Preconditioned Eigensolver: Locally Optimal Block
Preconditioned Conjugate Gradient Method, SIAM Journal on Scientific
Computing 23 (2001), no. 2, pp. 517-541.
`http://dx.doi.org/10.1137/S1064827500366124'

Known bugs/features
===================

        * an excessively small requested tolerance may result in often
          restarts and instability. The code is not written to produce
          an eps-level accuracy! Use common sense.

        * the code may be very sensitive to the number of eigenpairs
          computed, if there is a cluster of eigenvalues not completely
          included, cf.
               operatorA = diag ([1 1.99 2:99]);
               [blockVectorX, lambda] = lobpcg (randn (100, 1),operatorA, 1e-10, 80, 2);
               [blockVectorX, lambda] = lobpcg (randn (100, 2),operatorA, 1e-10, 80, 2);
               [blockVectorX, lambda] = lobpcg (randn (100, 3),operatorA, 1e-10, 80, 2);

Distribution
============

     The main distribution site: `http://math.ucdenver.edu/~aknyazev/'

     A C-version of this code is a part of the
`http://code.google.com/p/blopex/' package and is directly available,
e.g., in PETSc and HYPRE.


# name: <cell-element>
# type: string
# elements: 1
# length: 61
Solves Hermitian partial eigenproblems using preconditioning.

# name: <cell-element>
# type: string
# elements: 1
# length: 7
ndcovlt
# name: <cell-element>
# type: string
# elements: 1
# length: 771
 -- Function File: Y = ndcovlt (X, T1, T2, ...)
     Computes an n-dimensional covariant linear transform of an n-d
     tensor, given a transformation matrix for each dimension. The
     number of columns of each transformation matrix must match the
     corresponding extent of X, and the number of rows determines the
     corresponding extent of Y. For example:

            size (X, 2) == columns (T2)
            size (Y, 2) == rows (T2)

     The element `Y(i1, i2, ...)' is defined as a sum of

            X(j1, j2, ...) * T1(i1, j1) * T2(i2, j2) * ...

     over all j1, j2, .... For two dimensions, this reduces to
            Y = T1 * X * T2.'

     [] passed as a transformation matrix is converted to identity
     matrix for the corresponding dimension.



# name: <cell-element>
# type: string
# elements: 1
# length: 80
Computes an n-dimensional covariant linear transform of an n-d tensor,
given a t

# name: <cell-element>
# type: string
# elements: 1
# length: 9
rotparams
# name: <cell-element>
# type: string
# elements: 1
# length: 466
 -- Function File: [VSTACKED, ASTACKED] =  rotparams ( rstacked )
     The function w = rotparams (r)            - Inverse to rotv().
     Using, W    = rotparams(R)  is such that  rotv(w)*r' == eye(3).

     If used as, [v,a]=rotparams(r) ,  idem, with v (1 x 3) s.t. w ==
     a*v.

     0 <= norm(w)==a <= pi

     :-O !!  Does not check if 'r' is a rotation matrix.

     Ignores matrices with zero rows or with NaNs. (returns 0 for them)

     See also: rotv



# name: <cell-element>
# type: string
# elements: 1
# length: 62
The function w = rotparams (r)            - Inverse to rotv().

# name: <cell-element>
# type: string
# elements: 1
# length: 4
rotv
# name: <cell-element>
# type: string
# elements: 1
# length: 500
 -- Function File: R =  rotv ( v, ang )
     The functionrotv calculates a Matrix of rotation about V w/ angle
     |v| r = rotv(v [,ang])

     Returns the rotation matrix w/ axis v, and angle, in radians,
     norm(v) or ang (if present).

     rotv(v) == w'*w + cos(a) * (eye(3)-w'*w) - sin(a) * crossmat(w)

     where a = norm (v) and w = v/a.

     v and ang may be vertically stacked : If 'v' is 2x3, then rotv( v
     ) == [rotv(v(1,:)); rotv(v(2,:))]


     See also: rotparams, rota, rot



# name: <cell-element>
# type: string
# elements: 1
# length: 80
The functionrotv calculates a Matrix of rotation about V w/ angle |v| r
= rotv(v

# name: <cell-element>
# type: string
# elements: 1
# length: 8
smwsolve
# name: <cell-element>
# type: string
# elements: 1
# length: 614
 -- Function File: X = smwsolve (A, U, V, B)
 -- Function File:  smwsolve (SOLVER, U, V, B)
     Solves the square system `(A + U*V')*X == B', where U and V are
     matrices with several columns, using the Sherman-Morrison-Woodbury
     formula, so that a system with A as left-hand side is actually
     solved. This is especially advantageous if A is diagonal, sparse,
     triangular or positive definite.  A can be sparse or full, the
     other matrices are expected to be full.  Instead of a matrix A, a
     user may alternatively provide a function SOLVER that performs the
     left division operation.


# name: <cell-element>
# type: string
# elements: 1
# length: 80
Solves the square system `(A + U*V')*X == B', where U and V are
matrices with se

# name: <cell-element>
# type: string
# elements: 1
# length: 4
thfm
# name: <cell-element>
# type: string
# elements: 1
# length: 692
 -- Function File: Y = thfm (X, MODE)
     Trigonometric/hyperbolic functions of square matrix X.

     MODE must be the name of a function. Valid functions are 'sin',
     'cos', 'tan', 'sec', 'csc', 'cot' and all their inverses and/or
     hyperbolic variants, and 'sqrt', 'log' and 'exp'.

     The code `thfm (x, 'cos')' calculates matrix cosinus _even if_
     input matrix X is _not_ diagonalizable.

     _Important note_: This algorithm does _not_ use an eigensystem
     similarity transformation. It maps the MODE functions to functions
     of `expm', `logm' and `sqrtm', which are known to be robust with
     respect to non-diagonalizable ('defective') X.

     See also: funm



# name: <cell-element>
# type: string
# elements: 1
# length: 54
Trigonometric/hyperbolic functions of square matrix X.