/usr/include/vtk-5.8/vtkTriQuadraticHexahedron.h is in libvtk5-dev 5.8.0-5.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 | /*=========================================================================
Program: Visualization Toolkit
Module: vtkTriQuadraticHexahedron.h
Copyright (c) Ken Martin, Will Schroeder, Bill Lorensen
All rights reserved.
See Copyright.txt or http://www.kitware.com/Copyright.htm for details.
This software is distributed WITHOUT ANY WARRANTY; without even
the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE. See the above copyright notice for more information.
=========================================================================*/
// .NAME vtkTriQuadraticHexahedron - cell represents a parabolic, 27-node isoparametric hexahedron
// .SECTION Description
// vtkTriQuadraticHexahedron is a concrete implementation of vtkNonLinearCell to
// represent a three-dimensional, 27-node isoparametric triquadratic
// hexahedron. The interpolation is the standard finite element, triquadratic
// isoparametric shape function. The cell includes 8 edge nodes, 12 mid-edge nodes,
// 6 mid-face nodes and one mid-volume node. The ordering of the 27 points defining the
// cell is point ids (0-7,8-19, 20-25, 26)
// where point ids 0-7 are the eight corner vertices of the cube; followed by
// twelve midedge nodes (8-19); followed by 6 mid-face nodes (20-25) and the last node (26)
// is the mid-volume node. Note that these midedge nodes correspond lie
// on the edges defined by (0,1), (1,2), (2,3), (3,0), (4,5), (5,6), (6,7),
// (7,4), (0,4), (1,5), (2,6), (3,7). The mid-surface nodes lies on the faces
// defined by (first edge nodes id's, than mid-edge nodes id's):
// (0,1,5,4;8,17,12,16), (1,2,6,5;9,18,13,17), (2,3,7,6,10,19,14,18),
// (3,0,4,7;11,16,15,19), (0,1,2,3;8,9,10,11), (4,5,6,7;12,13,14,15).
// The last point lies in the center of the cell (0,1,2,3,4,5,6,7).
//
// \verbatim
//
// top
// 7--14--6
// | |
// 15 25 13
// | |
// 4--12--5
//
// middle
// 19--23--18
// | |
// 20 26 21
// | |
// 16--22--17
//
// bottom
// 3--10--2
// | |
// 11 24 9
// | |
// 0-- 8--1
//
// \endverbatim
//
// .SECTION See Also
// vtkQuadraticEdge vtkQuadraticTriangle vtkQuadraticTetra
// vtkQuadraticQuad vtkQuadraticPyramid vtkQuadraticWedge
// vtkBiQuadraticQuad
//
// .SECTION Thanks
// Thanks to Soeren Gebbert who developed this class and
// integrated it into VTK 5.0.
#ifndef __vtkTriQuadraticHexahedron_h
#define __vtkTriQuadraticHexahedron_h
#include "vtkNonLinearCell.h"
class vtkQuadraticEdge;
class vtkBiQuadraticQuad;
class vtkHexahedron;
class vtkDoubleArray;
class VTK_FILTERING_EXPORT vtkTriQuadraticHexahedron : public vtkNonLinearCell
{
public:
static vtkTriQuadraticHexahedron *New ();
vtkTypeMacro(vtkTriQuadraticHexahedron,vtkNonLinearCell);
void PrintSelf (ostream & os, vtkIndent indent);
// Description:
// Implement the vtkCell API. See the vtkCell API for descriptions
// of these methods.
int GetCellType () { return VTK_TRIQUADRATIC_HEXAHEDRON; }
int GetCellDimension () { return 3; }
int GetNumberOfEdges () { return 12; }
int GetNumberOfFaces () { return 6; }
vtkCell *GetEdge (int);
vtkCell *GetFace (int);
int CellBoundary (int subId, double pcoords[3], vtkIdList * pts);
void Contour (double value, vtkDataArray * cellScalars,
vtkIncrementalPointLocator * locator, vtkCellArray * verts,
vtkCellArray * lines, vtkCellArray * polys,
vtkPointData * inPd, vtkPointData * outPd, vtkCellData * inCd,
vtkIdType cellId, vtkCellData * outCd);
int EvaluatePosition (double x[3], double *closestPoint,
int &subId, double pcoords[3], double &dist2, double *weights);
void EvaluateLocation (int &subId, double pcoords[3], double x[3], double *weights);
int Triangulate (int index, vtkIdList * ptIds, vtkPoints * pts);
void Derivatives (int subId, double pcoords[3], double *values, int dim, double *derivs);
virtual double *GetParametricCoords ();
// Description:
// Clip this triquadratic hexahedron using scalar value provided. Like
// contouring, except that it cuts the hex to produce linear
// tetrahedron.
void Clip (double value, vtkDataArray * cellScalars,
vtkIncrementalPointLocator * locator, vtkCellArray * tetras,
vtkPointData * inPd, vtkPointData * outPd,
vtkCellData * inCd, vtkIdType cellId, vtkCellData * outCd, int insideOut);
// Description:
// Line-edge intersection. Intersection has to occur within [0,1] parametric
// coordinates and with specified tolerance.
int IntersectWithLine (double p1[3], double p2[3], double tol, double &t,
double x[3], double pcoords[3], int &subId);
// Description:
// @deprecated Replaced by vtkTriQuadraticHexahedron::InterpolateFunctions as of VTK 5.2
static void InterpolationFunctions (double pcoords[3], double weights[27]);
// Description:
// @deprecated Replaced by vtkTriQuadraticHexahedron::InterpolateDerivs as of VTK 5.2
static void InterpolationDerivs (double pcoords[3], double derivs[81]);
// Description:
// Compute the interpolation functions/derivatives
// (aka shape functions/derivatives)
virtual void InterpolateFunctions (double pcoords[3], double weights[27])
{
vtkTriQuadraticHexahedron::InterpolationFunctions(pcoords,weights);
}
virtual void InterpolateDerivs (double pcoords[3], double derivs[81])
{
vtkTriQuadraticHexahedron::InterpolationDerivs(pcoords,derivs);
}
// Description:
// Return the ids of the vertices defining edge/face (`edgeId`/`faceId').
// Ids are related to the cell, not to the dataset.
static int *GetEdgeArray(int edgeId);
static int *GetFaceArray(int faceId);
// Description:
// Given parametric coordinates compute inverse Jacobian transformation
// matrix. Returns 9 elements of 3x3 inverse Jacobian plus interpolation
// function derivatives.
void JacobianInverse (double pcoords[3], double **inverse, double derivs[81]);
protected:
vtkTriQuadraticHexahedron ();
~vtkTriQuadraticHexahedron ();
vtkQuadraticEdge *Edge;
vtkBiQuadraticQuad *Face;
vtkHexahedron *Hex;
vtkDoubleArray *Scalars;
private:
vtkTriQuadraticHexahedron (const vtkTriQuadraticHexahedron &); // Not implemented.
void operator = (const vtkTriQuadraticHexahedron &); // Not implemented.
};
#endif
|