This file is indexed.

/usr/include/vtk-5.8/vtkTetra.h is in libvtk5-dev 5.8.0-5.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
/*=========================================================================

  Program:   Visualization Toolkit
  Module:    vtkTetra.h

  Copyright (c) Ken Martin, Will Schroeder, Bill Lorensen
  All rights reserved.
  See Copyright.txt or http://www.kitware.com/Copyright.htm for details.

     This software is distributed WITHOUT ANY WARRANTY; without even
     the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
     PURPOSE.  See the above copyright notice for more information.

=========================================================================*/
// .NAME vtkTetra - a 3D cell that represents a tetrahedron
// .SECTION Description
// vtkTetra is a concrete implementation of vtkCell to represent a 3D
// tetrahedron. vtkTetra uses the standard isoparametric shape functions
// for a linear tetrahedron. The tetrahedron is defined by the four points
// (0-3); where (0,1,2) is the base of the tetrahedron which, using the
// right hand rule, forms a triangle whose normal points in the direction
// of the fourth point.

// .SECTION See Also
// vtkConvexPointSet vtkHexahedron vtkPyramid vtkVoxel vtkWedge

#ifndef __vtkTetra_h
#define __vtkTetra_h

#include "vtkCell3D.h"

class vtkLine;
class vtkTriangle;
class vtkUnstructuredGrid;
class vtkIncrementalPointLocator;

class VTK_FILTERING_EXPORT vtkTetra : public vtkCell3D
{
public:
  static vtkTetra *New();
  vtkTypeMacro(vtkTetra,vtkCell3D);
  void PrintSelf(ostream& os, vtkIndent indent);

  // Description:
  // See vtkCell3D API for description of these methods.
  virtual void GetEdgePoints(int edgeId, int* &pts);
  virtual void GetFacePoints(int faceId, int* &pts);

  // Description:
  // See the vtkCell API for descriptions of these methods.
  int GetCellType() {return VTK_TETRA;}
  int GetNumberOfEdges() {return 6;}
  int GetNumberOfFaces() {return 4;}
  vtkCell *GetEdge(int edgeId);
  vtkCell *GetFace(int faceId);
  void Contour(double value, vtkDataArray *cellScalars,
               vtkIncrementalPointLocator *locator, vtkCellArray *verts,
               vtkCellArray *lines, vtkCellArray *polys,
               vtkPointData *inPd, vtkPointData *outPd,
               vtkCellData *inCd, vtkIdType cellId, vtkCellData *outCd);
  void Clip(double value, vtkDataArray *cellScalars,
            vtkIncrementalPointLocator *locator, vtkCellArray *connectivity,
            vtkPointData *inPd, vtkPointData *outPd,
            vtkCellData *inCd, vtkIdType cellId, vtkCellData *outCd,
            int insideOut);
  int EvaluatePosition(double x[3], double* closestPoint,
                       int& subId, double pcoords[3],
                       double& dist2, double *weights);
  void EvaluateLocation(int& subId, double pcoords[3], double x[3],
                        double *weights);
  int IntersectWithLine(double p1[3], double p2[3], double tol, double& t,
                        double x[3], double pcoords[3], int& subId);
  int Triangulate(int index, vtkIdList *ptIds, vtkPoints *pts);
  void Derivatives(int subId, double pcoords[3], double *values,
                   int dim, double *derivs);
  virtual double *GetParametricCoords();

  // Description:
  // Returns the set of points that are on the boundary of the tetrahedron that
  // are closest parametrically to the point specified. This may include faces,
  // edges, or vertices.
  int CellBoundary(int subId, double pcoords[3], vtkIdList *pts);

  // Description:
  // Return the center of the tetrahedron in parametric coordinates.
  int GetParametricCenter(double pcoords[3]);

  // Description:
  // Return the distance of the parametric coordinate provided to the
  // cell. If inside the cell, a distance of zero is returned.
  double GetParametricDistance(double pcoords[3]);

  // Description:
  // Compute the center of the tetrahedron,
  static void TetraCenter(double p1[3], double p2[3], double p3[3], double p4[3],
                          double center[3]);

  // Description:
  // Compute the circumcenter (center[3]) and radius squared (method
  // return value) of a tetrahedron defined by the four points x1, x2,
  // x3, and x4.
  static double Circumsphere(double  p1[3], double p2[3], double p3[3],
                             double p4[3], double center[3]);

  // Description:
  // Compute the center (center[3]) and radius (method return value) of
  // a sphere that just fits inside the faces of a tetrahedron defined
  // by the four points x1, x2, x3, and x4.
  static double Insphere(double  p1[3], double p2[3], double p3[3],
                         double p4[3], double center[3]);

  // Description:
  // Given a 3D point x[3], determine the barycentric coordinates of the point.
  // Barycentric coordinates are a natural coordinate system for simplices that
  // express a position as a linear combination of the vertices. For a
  // tetrahedron, there are four barycentric coordinates (because there are
  // four vertices), and the sum of the coordinates must equal 1. If a
  // point x is inside a simplex, then all four coordinates will be strictly
  // positive.  If three coordinates are zero (so the fourth =1), then the
  // point x is on a vertex. If two coordinates are zero, the point x is on an
  // edge (and so on). In this method, you must specify the vertex coordinates
  // x1->x4. Returns 0 if tetrahedron is degenerate.
  static int BarycentricCoords(double x[3], double  x1[3], double x2[3],
                               double x3[3], double x4[3], double bcoords[4]);

  // Description:
  // Compute the volume of a tetrahedron defined by the four points
  // p1, p2, p3, and p4.
  static double ComputeVolume(double  p1[3], double p2[3], double p3[3],
                              double p4[3]);

  // Description:
  // Given parametric coordinates compute inverse Jacobian transformation
  // matrix. Returns 9 elements of 3x3 inverse Jacobian plus interpolation
  // function derivatives. Returns 0 if no inverse exists.
  int JacobianInverse(double **inverse, double derivs[12]);

  // Description:
  // @deprecated Replaced by vtkTetra::InterpolateFunctions as of VTK 5.2
  static void InterpolationFunctions(double pcoords[3], double weights[4]);
  // Description:
  // @deprecated Replaced by vtkTetra::InterpolateDerivs as of VTK 5.2
  static void InterpolationDerivs(double pcoords[3], double derivs[12]);
  // Description:
  // Compute the interpolation functions/derivatives
  // (aka shape functions/derivatives)
  virtual void InterpolateFunctions(double pcoords[3], double weights[4])
    {
    vtkTetra::InterpolationFunctions(pcoords,weights);
    }
  virtual void InterpolateDerivs(double pcoords[3], double derivs[12])
    {
    vtkTetra::InterpolationDerivs(pcoords,derivs);
    }

  // Description:
  // Return the ids of the vertices defining edge/face (`edgeId`/`faceId').
  // Ids are related to the cell, not to the dataset.
  static int *GetEdgeArray(int edgeId);
  static int *GetFaceArray(int faceId);

protected:
  vtkTetra();
  ~vtkTetra();

  vtkLine *Line;
  vtkTriangle *Triangle;

private:
  vtkTetra(const vtkTetra&);  // Not implemented.
  void operator=(const vtkTetra&);  // Not implemented.
};

inline int vtkTetra::GetParametricCenter(double pcoords[3])
{
  pcoords[0] = pcoords[1] = pcoords[2] = 0.25;
  return 0;
}

#endif