This file is indexed.

/usr/include/vtk-5.8/vtkParametricFunctionSource.h is in libvtk5-dev 5.8.0-5.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
/*=========================================================================

  Program:   Visualization Toolkit
  Module:    vtkParametricFunctionSource.h

  Copyright (c) Ken Martin, Will Schroeder, Bill Lorensen 
  All rights reserved.
  See Copyright.txt or http://www.kitware.com/Copyright.htm for details.

     This software is distributed WITHOUT ANY WARRANTY; without even 
     the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR 
     PURPOSE.  See the above copyright notice for more information.

=========================================================================*/
// .NAME vtkParametricFunctionSource - tessellate parametric functions
// .SECTION Description
// This class tessellates parametric functions. The user must specify how
// many points in the parametric coordinate directions are required (i.e.,
// the resolution), and the mode to use to generate scalars. 
//
// .SECTION Thanks
// Andrew Maclean a.maclean@cas.edu.au for creating and contributing the
// class.
//
// .SECTION See Also
// vtkParametricFunction
//
// Implementation of parametrics for 1D lines:
// vtkParametricSpline
//
// Subclasses of vtkParametricFunction implementing non-orentable surfaces:
// vtkParametricBoy vtkParametricCrossCap vtkParametricFigure8Klein
// vtkParametricKlein vtkParametricMobius vtkParametricRoman
//
// Subclasses of vtkParametricFunction implementing orientable surfaces:
// vtkParametricConicSpiral vtkParametricDini vtkParametricEllipsoid 
// vtkParametricEnneper vtkParametricRandomHills vtkParametricSuperEllipsoid 
// vtkParametricSuperToroid vtkParametricTorus 
// 
#ifndef __vtkParametricFunctionSource_h
#define __vtkParametricFunctionSource_h

#include "vtkPolyDataAlgorithm.h"

class vtkCellArray;
class vtkParametricFunction;

class VTK_GRAPHICS_EXPORT vtkParametricFunctionSource : public vtkPolyDataAlgorithm
{
public:
  vtkTypeMacro(vtkParametricFunctionSource,vtkPolyDataAlgorithm);
  void PrintSelf(ostream& os, vtkIndent indent);

  // Description:
  // Create a new instance with (50,50,50) points in the (u-v-w) directions.
  static vtkParametricFunctionSource *New();

  // Description:
  // Specify the parametric function to use to generate the tessellation.
  virtual void SetParametricFunction(vtkParametricFunction*);
  vtkGetObjectMacro(ParametricFunction,vtkParametricFunction);

  // Description:
  // Set/Get the number of subdivisions / tessellations in the u parametric
  // direction. Note that the number of tessellant points in the u 
  // direction is the UResolution + 1.
  vtkSetMacro(UResolution,int);
  vtkGetMacro(UResolution,int);

  // Description:
  // Set/Get the number of subdivisions / tessellations in the v parametric
  // direction. Note that the number of tessellant points in the v 
  // direction is the VResolution + 1.
  vtkSetMacro(VResolution,int);
  vtkGetMacro(VResolution,int);

  // Description:
  // Set/Get the number of subdivisions / tessellations in the w parametric
  // direction. Note that the number of tessellant points in the w 
  // direction is the WResolution + 1.
  vtkSetMacro(WResolution,int);
  vtkGetMacro(WResolution,int);

  // Description:
  // Set/Get the generation of texture coordinates. This is off by
  // default.
  // Note that this is only applicable to parametric surfaces 
  // whose parametric dimension is 2.
  // Note that texturing may fail in some cases.
  vtkBooleanMacro(GenerateTextureCoordinates,int);
  vtkSetMacro(GenerateTextureCoordinates,int);
  vtkGetMacro(GenerateTextureCoordinates,int);

  //BTX
  // Description:
  // Enumerate the supported scalar generation modes.
  // <pre>
  // SCALAR_NONE, (default) scalars are not generated.
  // SCALAR_U, the scalar is set to the u-value. 
  // SCALAR_V, the scalar is set to the v-value.
  // SCALAR_U0, the scalar is set to 1 if u = (u_max - u_min)/2 = u_avg, 0 otherwise.
  // SCALAR_V0, the scalar is set to 1 if v = (v_max - v_min)/2 = v_avg, 0 otherwise.
  // SCALAR_U0V0, the scalar is 
  //   set to 1 if u == u_avg, 2 if v == v_avg, 3 if u = u_avg && v = v_avg, 0 otherwise.
  // SCALAR_MODULUS, the scalar is set to (sqrt(u*u+v*v)), this is measured relative to (u_avg,v_avg).
  // SCALAR_PHASE, the scalar is set to (atan2(v,u)) (in degrees, 0 to 360), this is measured relative to (u_avg,v_avg).
  // SCALAR_QUADRANT, the scalar is set to 1, 2, 3 or 4 
  //   depending upon the quadrant of the point (u,v).
  // SCALAR_X, the scalar is set to the x-value. 
  // SCALAR_Y, the scalar is set to the y-value. 
  // SCALAR_Z, the scalar is set to the z-value. 
  // SCALAR_DISTANCE, the scalar is set to (sqrt(x*x+y*y+z*z)). I.e. distance from the origin.
  // SCALAR_USER_DEFINED, the scalar is set to the value returned from EvaluateScalar().
  // </pre>
  enum SCALAR_MODE { SCALAR_NONE = 0, 
    SCALAR_U, SCALAR_V, 
    SCALAR_U0, SCALAR_V0, SCALAR_U0V0,
    SCALAR_MODULUS, SCALAR_PHASE, SCALAR_QUADRANT,
    SCALAR_X, SCALAR_Y, SCALAR_Z, SCALAR_DISTANCE,
    SCALAR_FUNCTION_DEFINED };
  //ETX

  // Description:
  // Get/Set the mode used for the scalar data.  The options are:
  // SCALAR_NONE, (default) scalars are not generated.
  // SCALAR_U, the scalar is set to the u-value. 
  // SCALAR_V, the scalar is set to the v-value.
  // SCALAR_U0, the scalar is set to 1 if u = (u_max - u_min)/2 = u_avg, 0 otherwise.
  // SCALAR_V0, the scalar is set to 1 if v = (v_max - v_min)/2 = v_avg, 0 otherwise.
  // SCALAR_U0V0, the scalar is 
  //   set to 1 if u == u_avg, 2 if v == v_avg, 3 if u = u_avg && v = v_avg, 0 otherwise.
  // SCALAR_MODULUS, the scalar is set to (sqrt(u*u+v*v)), this is measured relative to (u_avg,v_avg).
  // SCALAR_PHASE, the scalar is set to (atan2(v,u)) (in degrees, 0 to 360), this is measured relative to (u_avg,v_avg).
  // SCALAR_QUADRANT, the scalar is set to 1, 2, 3 or 4 
  //   depending upon the quadrant of the point (u,v).
  // SCALAR_X, the scalar is set to the x-value. 
  // SCALAR_Y, the scalar is set to the y-value. 
  // SCALAR_Z, the scalar is set to the z-value. 
  // SCALAR_DISTANCE, the scalar is set to (sqrt(x*x+y*y+z*z)). I.e. distance from the origin.
  // SCALAR_FUNCTION_DEFINED, the scalar is set to the value returned from EvaluateScalar().
  vtkSetClampMacro(ScalarMode, int, SCALAR_NONE, SCALAR_FUNCTION_DEFINED);
  vtkGetMacro(ScalarMode, int);
  void SetScalarModeToNone( void ) {this->SetScalarMode(SCALAR_NONE);}
  void SetScalarModeToU( void ) {this->SetScalarMode(SCALAR_U);}
  void SetScalarModeToV( void ) {this->SetScalarMode(SCALAR_V);}
  void SetScalarModeToU0( void ) {this->SetScalarMode(SCALAR_U0);}
  void SetScalarModeToV0( void ) {this->SetScalarMode(SCALAR_V0);}
  void SetScalarModeToU0V0( void ) {this->SetScalarMode(SCALAR_U0V0);}
  void SetScalarModeToModulus( void ) {this->SetScalarMode(SCALAR_MODULUS);}
  void SetScalarModeToPhase( void ) {this->SetScalarMode(SCALAR_PHASE);}
  void SetScalarModeToQuadrant( void ) {this->SetScalarMode(SCALAR_QUADRANT);} 
  void SetScalarModeToX( void ) {this->SetScalarMode(SCALAR_X);}
  void SetScalarModeToY( void ) {this->SetScalarMode(SCALAR_Y);}
  void SetScalarModeToZ( void ) {this->SetScalarMode(SCALAR_Z);}
  void SetScalarModeToDistance( void ) {this->SetScalarMode(SCALAR_DISTANCE);}
  void SetScalarModeToFunctionDefined( void ) {this->SetScalarMode(SCALAR_FUNCTION_DEFINED);}

  // Description:
  // Return the MTime also considering the parametric function.
  unsigned long GetMTime();

protected:
  vtkParametricFunctionSource();
  virtual ~vtkParametricFunctionSource();

  // Usual data generation method
  int RequestData(vtkInformation *info, vtkInformationVector **input,
                  vtkInformationVector *output);

  // Variables
  vtkParametricFunction *ParametricFunction;
  
  int UResolution;
  int VResolution;
  int WResolution;
  int GenerateTextureCoordinates;
  int ScalarMode;

private:
  // Create output depending on function dimension
  void Produce1DOutput(vtkInformationVector *output);
  void Produce2DOutput(vtkInformationVector *output);

  // Description:
  // Generate triangle strips from an ordered set of points.
  //
  // Given a parametrization f(u,v)->(x,y,z), this function generates 
  // a vtkCellAarray of point IDs over the range MinimumU <= u < MaximumU 
  // and MinimumV <= v < MaximumV.
  //
  // Before using this function, ensure that: UResolution,
  // VResolution, MinimumU, MaximumU, MinimumV, MaximumV, JoinU, JoinV,
  // TwistU, TwistV, ordering are set appropriately for the parametric function.
  //
  void MakeTriangleStrips ( vtkCellArray * strips, int PtsU, int PtsV );
  
  vtkParametricFunctionSource(const vtkParametricFunctionSource&);  // Not implemented.
  void operator=(const vtkParametricFunctionSource&);  // Not implemented.

};

#endif