This file is indexed.

/usr/include/vtk-5.8/vtkOpenGLHAVSVolumeMapper.h is in libvtk5-dev 5.8.0-5.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
/*=========================================================================

Program:   Visualization Toolkit
Module:    vtkOpenGLHAVSVolumeMapper.h

Copyright (c) Ken Martin, Will Schroeder, Bill Lorensen
All rights reserved.
See Copyright.txt or http://www.kitware.com/Copyright.htm for details.

This software is distributed WITHOUT ANY WARRANTY; without even
the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE.  See the above copyright notice for more information.

=========================================================================*/

/* Copyright 2005, 2006 by University of Utah. */

// .NAME vtkOpenGLHAVSVolumeMapper - Hardware-Assisted
// Visibility Sorting unstructured grid mapper, OpenGL implementation
//
// .SECTION Description
//
// vtkHAVSVolumeMapper is a class that renders polygonal data
// (represented as an unstructured grid) using the Hardware-Assisted
// Visibility Sorting (HAVS) algorithm.  First the unique triangles are sorted
// in object space, then they are sorted in image space using a fixed size
// A-buffer implemented on the GPU called the k-buffer.  The HAVS algorithm
// excels at rendering large datasets quickly.  The trade-off is that the
// algorithm may produce some rendering artifacts due to an insufficient k
// size (currently 2 or 6 is supported) or read/write race conditions.
// 
// A built in level-of-detail (LOD) approach samples the geometry using one of
// two heuristics (field or area).  If LOD is enabled, the amount of geometry
// that is sampled and rendered changes dynamically to stay within the target
// frame rate.  The field sampling method generally works best for datasets
// with cell sizes that don't vary much in size.  On the contrary, the area
// sampling approach gives better approximations when the volume has a lot of
// variation in cell size.
//
// The HAVS algorithm uses several advanced features on graphics hardware.
// The k-buffer sorting network is implemented using framebuffer objects
// (FBOs) with multiple render targets (MRTs).  Therefore, only cards that
// support these features can run the algorithm (at least an ATI 9500 or an
// NVidia NV40 (6600)).
//
// .SECTION Notes
//
// Several issues had to be addressed to get the HAVS algorithm working within
// the vtk framework.  These additions forced the code to forsake speed for
// the sake of compliance and robustness.
//
// The HAVS algorithm operates on the triangles that compose the mesh.
// Therefore, before rendering, the cells are decomposed into unique triangles
// and stored on the GPU for efficient rendering.  The use of GPU data
// structures is only recommended if the entire geometry can fit in graphics
// memory.  Otherwise this feature should be disabled. 
//
// Another new feature is the handling of mixed data types (eg., polygonal
// data with volume data).  This is handled by reading the z-buffer from the
// current window and copying it into the framebuffer object for off-screen
// rendering.  The depth test is then enabled so that the volume only appears
// over the opaque geometry.  Finally, the results of the off-screen rendering
// are blended into the framebuffer as a transparent, view-aligned texture. 
// 
// Instead of using a preintegrated 3D lookup table for storing the ray
// integral, this implementation uses partial pre-integration.  This improves
// the performance of dynamic transfer function updates by avoiding a costly
// preprocess of the table.
//
// A final change to the original algorithm is the handling of non-convexities
// in the mesh.  Due to read/write hazards that may create undesired artifacts
// with non-convexities when using a inside/outside toggle in the fragment
// program, another approach was employed.  To handle non-convexities, the
// fragment shader determines if a ray-gap is larger than the max cell size
// and kill the fragment if so.  This approximation performs rather well in
// practice but may miss small non-convexities.
// 
// For more information on the HAVS algorithm see:
//
//  "Hardware-Assisted Visibility Sorting for Unstructured Volume
// Rendering" by S. P. Callahan, M. Ikits, J. L. D. Comba, and C. T. Silva, 
// IEEE Transactions of Visualization and Computer Graphics; May/June 2005.
//
// For more information on the Level-of-Detail algorithm, see:
//
// "Interactive Rendering of Large Unstructured Grids Using Dynamic
// Level-of-Detail" by S. P. Callahan, J. L. D. Comba, P. Shirley, and
// C. T. Silva, Proceedings of IEEE Visualization '05, Oct. 2005.
//
// .SECTION Acknowledgments
//
// This code was developed by Steven P. Callahan under the supervision
// of Prof. Claudio T. Silva. The code also contains contributions
// from Milan Ikits, Linh Ha, Huy T. Vo, Carlos E. Scheidegger, and 
// Joao L. D. Comba.  
//
// The work was supported by grants, contracts, and gifts from the
// National Science Foundation, the Department of Energy, the Army
// Research Office, and IBM.
//
// The port of HAVS to VTK and ParaView has been primarily supported
// by Sandia National Labs.
//

#ifndef __vtkOpenGLHAVSVolumeMapper_h
#define __vtkOpenGLHAVSVolumeMapper_h

#include "vtkHAVSVolumeMapper.h"

#include <vtkWeakPointer.h> // to cache the vtkRenderWindow
class vtkRenderer;
class vtkRenderWindow;


class VTK_VOLUMERENDERING_EXPORT vtkOpenGLHAVSVolumeMapper : public vtkHAVSVolumeMapper
{
public:
  static vtkOpenGLHAVSVolumeMapper *New();
  vtkTypeMacro(vtkOpenGLHAVSVolumeMapper,
                       vtkHAVSVolumeMapper);
  virtual void PrintSelf(ostream& os, vtkIndent indent);
  
  // Description:
  // Render the volume
  virtual void Render(vtkRenderer *ren, vtkVolume *vol);

  // Description
  // Release any graphics resources that are being consumed by this volume
  // renderer.
  virtual void ReleaseGraphicsResources(vtkWindow *);

  // Description:
  // Set/get whether or not the data structures should be stored on the GPU 
  // for better peformance.
  virtual void SetGPUDataStructures(bool);

  // Description:
  // Check hardware support for the HAVS algorithm.  Necessary
  // features include off-screen rendering, 32-bit fp textures, multiple
  // render targets, and framebuffer objects.
  // Subclasses must override this method to indicate if supported by Hardware.
  virtual bool SupportedByHardware(vtkRenderer *r);
protected:

  vtkOpenGLHAVSVolumeMapper();
  ~vtkOpenGLHAVSVolumeMapper();
  virtual int FillInputPortInformation(int port, vtkInformation* info);

//BTX
  virtual void Initialize(vtkRenderer *ren, vtkVolume *vol);
  virtual void InitializeLookupTables(vtkVolume *vol);
  void InitializeGPUDataStructures();
  void InitializeShaders();
  void DeleteShaders();
  void InitializeFramebufferObject();

  void RenderHAVS(vtkRenderer *ren);
  void SetupFBOZBuffer(int screenWidth, int screenHeight, float depthNear, float depthFar, 
                       float *zbuffer);
  void SetupFBOMRT();
  void DrawFBOInit(int screenWidth, int screenHeight, float depthNear, float depthFar);
  void DrawFBOGeometry();
  void DrawFBOFlush(int screenWidth, int screenHeight, float depthNear, float depthFar);
  void DrawBlend(int screenWidth, int screenHeight, float depthNear, float depthFar);

  void CheckOpenGLError(const char *str);

  // GPU
  unsigned int VBOVertexName;
  unsigned int VBOTexCoordName;
  unsigned int VBOVertexIndexName;
  unsigned int VertexProgram;
  unsigned int FragmentProgramBegin;
  unsigned int FragmentProgram;
  unsigned int FragmentProgramEnd;
  unsigned int FramebufferObject;
  int FramebufferObjectSize;
  unsigned int FramebufferTextures[4];
  unsigned int DepthTexture;

  // Lookup Tables
  unsigned int PsiTableTexture;
  unsigned int TransferFunctionTexture;

  vtkWeakPointer<vtkRenderWindow> RenderWindow;
//ETX

private:
  vtkOpenGLHAVSVolumeMapper(const vtkOpenGLHAVSVolumeMapper&);  // Not implemented.
  void operator=(const vtkOpenGLHAVSVolumeMapper&);  // Not implemented.
};

#endif