This file is indexed.

/usr/include/vtk-5.8/vtkKdTree.h is in libvtk5-dev 5.8.0-5.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
/*=========================================================================

  Program:   Visualization Toolkit
  Module:    vtkKdTree.h

  Copyright (c) Ken Martin, Will Schroeder, Bill Lorensen
  All rights reserved.
  See Copyright.txt or http://www.kitware.com/Copyright.htm for details.

     This software is distributed WITHOUT ANY WARRANTY; without even
     the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
     PURPOSE.  See the above copyright notice for more information.

=========================================================================*/
/*----------------------------------------------------------------------------
 Copyright (c) Sandia Corporation
 See Copyright.txt or http://www.paraview.org/HTML/Copyright.html for details.
----------------------------------------------------------------------------*/

// .NAME vtkKdTree - a Kd-tree spatial decomposition of a set of points
//
// .SECTION Description
//     Given one or more vtkDataSets, create a load balancing
//     k-d tree decomposition of the points at the center of the cells.
//     Or, create a k-d tree point locator from a list of points.
//
//     This class can also generate a PolyData representation of
//     the boundaries of the spatial regions in the decomposition.
//
//     It can sort the regions with respect to a viewing direction,
//     and it can decompose a list of regions into subsets, each
//     of which represent a convex spatial region (since many algorithms
//     require a convex region).  
//
//     If the points were derived from cells, vtkKdTree
//     can create a list of cell Ids for each region for each data set.  
//     Two lists are available - all cells with centroid in the region, 
//     and all cells that intersect the region but whose centroid lies 
//     in another region.
//
//     For the purpose of removing duplicate points quickly from large
//     data sets, or for finding nearby points, we added another mode for 
//     building the locator.  BuildLocatorFromPoints will build a k-d tree
//     from one or more vtkPoints objects.  This can be followed by
//     BuildMapForDuplicatePoints which returns a mapping from the original
//     ids to a subset of the ids that is unique within a supplied
//     tolerance, or you can use FindPoint and FindClosestPoint to
//     locate points in the original set that the tree was built from.
//
// .SECTION See Also
//      vtkLocator vtkCellLocator vtkPKdTree

#ifndef __vtkKdTree_h
#define __vtkKdTree_h

#include "vtkLocator.h"

class vtkTimerLog;
class vtkIdList;
class vtkIdTypeArray;
class vtkIntArray;
class vtkPointSet;
class vtkPoints;
class vtkCellArray;
class vtkCell;
class vtkKdNode;
class vtkBSPCuts;
class vtkBSPIntersections;
class vtkDataSetCollection;

class VTK_FILTERING_EXPORT vtkKdTree : public vtkLocator
{
public:
  vtkTypeMacro(vtkKdTree, vtkLocator);
  void PrintSelf(ostream& os, vtkIndent indent);

  static vtkKdTree *New();

  // Description:
  //  Turn on timing of the k-d tree build
  vtkBooleanMacro(Timing, int);
  vtkSetMacro(Timing, int);
  vtkGetMacro(Timing, int);

  // Description:
  //  Minimum number of cells per spatial region.  Default is 100.
  vtkSetMacro(MinCells, int);
  vtkGetMacro(MinCells, int);

  // Description:
  //   Set/Get the number of spatial regions you want to get close
  //   to without going over.  (The number of spatial regions is normally
  //   a power of two.)  Call this before BuildLocator().  Default
  //   is unset (0).

  vtkGetMacro(NumberOfRegionsOrLess, int);
  vtkSetMacro(NumberOfRegionsOrLess, int);

  // Description:
  //   Set/Get the number of spatial regions you want to get close
  //   to while having at least this many regions.  (The number of
  //   spatial regions is normally a power of two.)   Default
  //   is unset (0).

  vtkGetMacro(NumberOfRegionsOrMore, int);
  vtkSetMacro(NumberOfRegionsOrMore, int);
  
  // Description:
  //  Some algorithms on k-d trees require a value that is a very
  //  small distance relative to the diameter of the entire space
  //  divided by the k-d tree.  This factor is the maximum axis-aligned
  //  width of the space multipled by 10e-6.

  vtkGetMacro(FudgeFactor, double);
  vtkSetMacro(FudgeFactor, double);

  // Description:
  //   Get a vtkBSPCuts object, a general object representing an axis-
  //   aligned spatial partitioning.  Used by vtkBSPIntersections.

  vtkGetObjectMacro(Cuts, vtkBSPCuts);

  // Description:
  //   Normally the k-d tree is computed from the dataset(s) provided
  //   in SetDataSet.  Alternatively, you can provide the cuts that will
  //   be applied by calling SetCuts.

  void SetCuts(vtkBSPCuts *cuts);

  // Description:   
  //    Omit partitions along the X axis, yielding shafts in the X direction
  void OmitXPartitioning();
  
  // Description:
  //    Omit partitions along the Y axis, yielding shafts in the Y direction
  void OmitYPartitioning();

  // Description:
  //    Omit partitions along the Z axis, yielding shafts in the Z direction
  void OmitZPartitioning();

  // Description:
  //    Omit partitions along the X and Y axes, yielding slabs along Z
  void OmitXYPartitioning();

  // Description:
  //    Omit partitions along the Y and Z axes, yielding slabs along X
  void OmitYZPartitioning();
  
  // Description:
  //    Omit partitions along the Z and X axes, yielding slabs along Y
  void OmitZXPartitioning();

  // Description:
  //    Partition along all three axes - this is the default
  void OmitNoPartitioning();

  //  Description
  //     This class can compute a spatial decomposition based on the
  //     cells in a list of one or more input data sets.
  //     SetDataSet sets the first data set in the list to the named set.
  //     SetNthDataSet sets the data set at index N to the data set named.
  //     RemoveData set takes either the data set itself or an index and
  //   removes that data set from the list of data sets.
  //     AddDataSet adds a data set to the list of data sets.

  // Description:
  // Clear out all data sets and replace with single data set.  For backward
  // compatibility with superclass.
  virtual void SetDataSet(vtkDataSet *set);

  // Description:
  // This class can compute a spatial decomposition based on the cells in a list
  // of one or more input data sets.  Add them one at a time with this method.
  virtual void AddDataSet(vtkDataSet *set);

  // Description:
  // Remove the given data set.
  virtual void RemoveDataSet(int index);
  virtual void RemoveDataSet(vtkDataSet *set);
  virtual void RemoveAllDataSets();

  // Description:
  //   Get the number of data sets included in spatial paritioning
  int GetNumberOfDataSets();

  // Description:
  //   Get the nth defined data set in the spatial partitioning.
  //   (If you used SetNthDataSet to define 0,1 and 3 and ask for
  //   data set 2, you get 3.)

  // Description:
  // Return the n'th data set.
  vtkDataSet *GetDataSet(int n);

  // Description:
  // Return the 0'th data set.  For compatability with the superclass'
  // interface.
  vtkDataSet *GetDataSet(){ return this->GetDataSet(0); }

  // Description:
  // Return a collection of all the data sets.
  vtkGetObjectMacro(DataSets, vtkDataSetCollection);

  // Description:
  // Return the index of the given data set.  Returns -1 if that data
  // set does not exist.
  int GetDataSetIndex(vtkDataSet *set);

  // Description:
  //   Get the spatial bounds of the entire k-d tree space. Sets
  //    bounds array to xmin, xmax, ymin, ymax, zmin, zmax.
  void GetBounds(double *bounds);

  // Description:
  //   There are certain applications where you want the bounds of
  //   the k-d tree space to be at least as large as a specified
  //   box.  If the k-d tree has been built, you can expand it's 
  //   bounds with this method.  If the bounds supplied are smaller
  //   than those computed, they will be ignored.

  void SetNewBounds(double *bounds);

  // Description:
  //   The number of leaf nodes of the tree, the spatial regions
  vtkGetMacro(NumberOfRegions, int);

  // Description:
  //   Get the spatial bounds of k-d tree region
  void GetRegionBounds(int regionID, double bounds[6]);

  // Description:
  //    Get the bounds of the data within the k-d tree region
  void GetRegionDataBounds(int regionID, double bounds[6]);

  // Description:
  //    Print out nodes of kd tree
  void PrintTree();
  void PrintVerboseTree();
  
  // Description:
  //    Print out leaf node data for given id
  void PrintRegion(int id);
  
  // Description:
  //   Create a list for each of the requested regions, listing
  //   the IDs of all cells whose centroid falls in the region.
  //   These lists are obtained with GetCellList().
  //   If no DataSet is specified, the cell list is created
  //   for DataSet 0.  If no list of requested regions is provided,
  //   the cell lists for all regions are created.  
  //
  //   When CreateCellLists is called again, the lists created
  //   on the previous call  are deleted.
  
  void CreateCellLists(int dataSetIndex, int *regionReqList, 
                       int reqListSize);
  void CreateCellLists(vtkDataSet *set, int *regionReqList,
                       int reqListSize);
  void CreateCellLists(int *regionReqList, int listSize);
  void CreateCellLists(); 
  
  // Description:
  //   If IncludeRegionBoundaryCells is ON,
  //   CreateCellLists() will also create a list of cells which
  //   intersect a given region, but are not assigned
  //   to the region.  These lists are obtained with 
  //   GetBoundaryCellList().  Default is OFF.
  vtkSetMacro(IncludeRegionBoundaryCells, int);
  vtkGetMacro(IncludeRegionBoundaryCells, int);
  vtkBooleanMacro(IncludeRegionBoundaryCells, int);

  // Description:
  //    Free the memory used by the cell lists.
  void DeleteCellLists();

  // Description:
  //    Get the cell list for a region.  This returns a pointer
  //    to vtkKdTree's memory, so don't free it.
  vtkIdList *GetCellList(int regionID);

  // Description:
  //    The cell list obtained with GetCellList is the list
  //    of all cells such that their centroid is contained in
  //    the spatial region.  It may also be desirable to get
  //    a list of all cells intersecting a spatial region,
  //    but with centroid in some other region.  This is that
  //    list.  This list is computed in CreateCellLists() if
  //    and only if IncludeRegionBoundaryCells is ON.  This
  //    returns a pointer to KdTree's memory, so don't free it.
  vtkIdList *GetBoundaryCellList(int regionID);

  // Description:
  //   
  //   For a list of regions, get two cell lists.  The first lists
  //   the IDs  all cells whose centroids lie in one of the regions.
  //   The second lists the IDs of all cells that intersect the regions,
  //   but whose centroid lies in a region not on the list.
  //
  //   The total number of cell IDs written to both lists is returned.
  //   Either list pointer passed in can be NULL, and it will be ignored.
  //   If there are multiple data sets, you must specify which data set
  //   you wish cell IDs for.
  //
  //   The caller should delete these two lists when done.  This method
  //   uses the cell lists created in CreateCellLists().
  //   If the cell list for any of the requested regions does not
  //   exist, then this method will call CreateCellLists() to create
  //   cell lists for *every* region of the k-d tree.  You must remember 
  //   to DeleteCellLists() when done with all calls to this method, as 
  //   cell lists can require a great deal of memory.
  vtkIdType GetCellLists(vtkIntArray *regions, int set, 
                   vtkIdList *inRegionCells, vtkIdList *onBoundaryCells);
  vtkIdType GetCellLists(vtkIntArray *regions, vtkDataSet *set,
            vtkIdList *inRegionCells, vtkIdList *onBoundaryCells);
  vtkIdType GetCellLists(vtkIntArray *regions, vtkIdList *inRegionCells,
                                    vtkIdList *onBoundaryCells);
  
  // Description:
  //    Get the id of the region containing the cell centroid.  If
  //    no DataSet is specified, assume DataSet 0.  If you need the
  //    region ID for every cell, use AllGetRegionContainingCell
  //    instead.  It is more efficient.
  int GetRegionContainingCell(vtkDataSet *set, vtkIdType cellID);
  int GetRegionContainingCell(int set, vtkIdType cellID);
  int GetRegionContainingCell(vtkIdType cellID);

  // Description:
  //    Get a list (in order by data set by cell id) of the
  //    region IDs of the region containing the centroid for
  //    each cell.
  //    This is faster than calling GetRegionContainingCell
  //    for each cell in the DataSet.
  //    vtkKdTree uses this list, so don't delete it.
  int *AllGetRegionContainingCell();

  // Description:
  //    Get the id of the region containing the specified location.
  int GetRegionContainingPoint(double x, double y, double z);
  
  // Description:
  // Create the k-d tree decomposition of the cells of the data set
  // or data sets.  Cells are assigned to k-d tree spatial regions
  // based on the location of their centroids.
  void BuildLocator();

  // Description:
  //   Given a list of region IDs, determine the decomposition of
  //   these regions into the minimal number of convex subregions.  Due
  //   to the way the k-d tree is constructed, those convex subregions
  //   will be axis-aligned boxes.  Return the minimal number of
  //   such convex regions that compose the original region list.
  //   This call will set convexRegionBounds to point to a list
  //   of the bounds of these regions.  Caller should free this.
  //   There will be six values for each convex subregion (xmin,
  //   xmax, ymin, ymax, zmin, zmax).  If the regions in the
  //   regionIdList form a box already, a "1" is returned and the
  //   second argument contains the bounds of the box.

  int MinimalNumberOfConvexSubRegions(vtkIntArray *regionIdList,
                                      double **convexRegionBounds);

  // Description:
  // DO NOT CALL.  Depricated in VTK 5.2.  Use ViewOrderAllRegionsInDirection
  // or ViewOrderAllRegionsFromPosition.
  VTK_LEGACY(int DepthOrderAllRegions(double *dop, vtkIntArray *orderedList));

  // Description:
  // DO NOT CALL.  Depricated in VTK 5.2.  Use ViewOrderRegionsInDirection
  // or ViewOrderRegionsFromPosition.
  VTK_LEGACY(int DepthOrderRegions(vtkIntArray *regionIds, double *dop,
                                   vtkIntArray *orderedList));

  // Description:
  // Given a direction of projection (typically obtained with
  // vtkCamera::GetDirectionOfProjection()), this method, creates a list of the
  // k-d tree region IDs in order from front to back with respect to that
  // direction.  The number of ordered regions is returned.  Use this method to
  // view order regions for cameras that use parallel projection.
  int ViewOrderAllRegionsInDirection(const double directionOfProjection[3],
                                     vtkIntArray *orderedList);

  // Description:
  // Given a direction of projection and a list of k-d tree region IDs, this
  // method, creates a list of the k-d tree region IDs in order from front to
  // back with respect to that direction.  The number of ordered regions is
  // returned.  Use this method to view order regions for cameras that use
  // parallel projection.
  int ViewOrderRegionsInDirection(vtkIntArray *regionIds,
                                  const double directionOfProjection[3],
                                  vtkIntArray *orderedList);

  // Description:
  // Given a camera position (typically obtained with vtkCamera::GetPosition()),
  // this method, creates a list of the k-d tree region IDs in order from front
  // to back with respect to that direction.  The number of ordered regions is
  // returned.  Use this method to view order regions for cameras that use
  // perspective projection.
  int ViewOrderAllRegionsFromPosition(const double directionOfProjection[3],
                                      vtkIntArray *orderedList);

  // Description:
  // Given a camera position and a list of k-d tree region IDs, this method,
  // creates a list of the k-d tree region IDs in order from front to back with
  // respect to that direction.  The number of ordered regions is returned.  Use
  // this method to view order regions for cameras that use perspective
  // projection.
  int ViewOrderRegionsFromPosition(vtkIntArray *regionIds,
                                   const double directionOfProjection[3],
                                   vtkIntArray *orderedList);

  // Description:
  // This is a special purpose locator that builds a k-d tree to 
  // find duplicate and near-by points.  It builds the tree from 
  // one or more vtkPoints objects instead of from the cells of
  // a vtkDataSet.  This build would normally be followed by
  // BuildMapForDuplicatePoints, FindPoint, or FindClosestPoint.
  // Since this will build a normal k-d tree, all the region intersection
  // queries will still work, as will most other calls except those that
  // have "Cell" in the name.
  //
  // This method works most efficiently when the point arrays are
  // float arrays.
  void BuildLocatorFromPoints(vtkPointSet *pointset);
  void BuildLocatorFromPoints(vtkPoints *ptArray);
  void BuildLocatorFromPoints(vtkPoints **ptArray, int numPtArrays);
  
  // Description:
  // This call returns a mapping from the original point IDs supplied
  // to BuildLocatorFromPoints to a subset of those IDs that is unique 
  // within the specified tolerance.  
  // If points 2, 5, and 12 are the same, then 
  // IdMap[2] = IdMap[5] = IdMap[12] = 2 (or 5 or 12).
  //
  // "original point IDs" - For point IDs we start at 0 for the first
  // point in the first vtkPoints object, and increase by 1 for subsequent
  // points and subsequent vtkPoints objects.
  //
  // You must have called BuildLocatorFromPoints() before calling this.
  // You are responsible for deleting the returned array.
  vtkIdTypeArray *BuildMapForDuplicatePoints(float tolerance);

  // Description:
  // Find the Id of the point that was previously supplied
  // to BuildLocatorFromPoints().  Returns -1 if the point
  // was not in the original array.
  vtkIdType FindPoint(double *x);
  vtkIdType FindPoint(double x, double y, double z);

  // Description:
  // Find the Id of the point that was previously supplied
  // to BuildLocatorFromPoints() which is closest to the given point.
  // Set the square of the distance between the two points.
  vtkIdType FindClosestPoint(double *x, double &dist2);
  vtkIdType FindClosestPoint(double x, double y, double z, double &dist2);

  // Description:
  // Given a position x and a radius r, return the id of the point 
  // closest to the point in that radius.
  // dist2 returns the squared distance to the point.
  vtkIdType FindClosestPointWithinRadius(
    double radius, const double x[3], double& dist2);

  // Description:
  // Find the Id of the point in the given region which is
  // closest to the given point.  Return the ID of the point,
  // and set the square of the distance of between the points.
  vtkIdType FindClosestPointInRegion(int regionId, double *x, double &dist2);
  vtkIdType FindClosestPointInRegion(int regionId, double x, double y, double z, 
                                     double &dist2);

  // Description:
  // Find all points within a specified radius R of position x.
  // The result is not sorted in any specific manner.
  // These methods are thread safe if BuildLocator() is directly or
  // indirectly called from a single thread first.
  void FindPointsWithinRadius(double R, const double x[3], vtkIdList *result);

  // Description:
  // Find the closest N points to a position. This returns the closest
  // N points to a position. A faster method could be created that returned
  // N close points to a position, but necessarily the exact N closest.
  // The returned points are sorted from closest to farthest.
  // These methods are thread safe if BuildLocator() is directly or
  // indirectly called from a single thread first.
  void FindClosestNPoints(int N, const double x[3], vtkIdList *result);

  // Description:
  // Get a list of the original IDs of all points in a region.  You
  // must have called BuildLocatorFromPoints before calling this.
  vtkIdTypeArray *GetPointsInRegion(int regionId);

  // Description:
  // Delete the k-d tree data structure. Also delete any
  // cell lists that were computed with CreateCellLists().
  void FreeSearchStructure();
  
  // Description:
  // Create a polydata representation of the boundaries of
  // the k-d tree regions.  If level equals GetLevel(), the
  // leaf nodes are represented.
  void GenerateRepresentation(int level, vtkPolyData *pd);
  
  // Description:
  //    Generate a polygonal representation of a list of regions.
  //    Only leaf nodes have region IDs, so these will be leaf nodes.
  void GenerateRepresentation(int *regionList, int len, vtkPolyData *pd);

  // Description:
  //    The polydata representation of the k-d tree shows the boundaries
  //    of the k-d tree decomposition spatial regions.  The data inside
  //    the regions may not occupy the entire space.  To draw just the
  //    bounds of the data in the regions, set this variable ON.
  vtkBooleanMacro(GenerateRepresentationUsingDataBounds, int);
  vtkSetMacro(GenerateRepresentationUsingDataBounds, int);
  vtkGetMacro(GenerateRepresentationUsingDataBounds, int);

  // Description:
  //    Print timing of k-d tree build
  virtual void PrintTiming(ostream& os, vtkIndent indent);

  // Description:
  //    Return 1 if the geometry of the input data sets
  //    has changed since the last time the k-d tree was built.
  virtual int NewGeometry();

  // Description:
  //    Return 1 if the geometry of these data sets differs
  //    for the geometry of the last data sets used to build
  //    the k-d tree.
  virtual int NewGeometry(vtkDataSet **sets, int numDataSets);

  // Description:
  // Forget about the last geometry used.  The next call to NewGeometry will
  // return 1.  A new k-d tree will be built the next time BuildLocator is
  // called.
  virtual void InvalidateGeometry();

  // Description:
  //    Create a copy of the binary tree representation of the
  //    k-d tree spatial partitioning provided.  

  static vtkKdNode *CopyTree(vtkKdNode *kd);

  // Description:
  // Fill ids with points found in area.  The area is a 6-tuple containing
  // (xmin, xmax, ymin, ymax, zmin, zmax).
  // This method will clear the array by default.  To append ids to an array,
  // set clearArray to false.
  void FindPointsInArea(double* area, vtkIdTypeArray* ids, bool clearArray = true);

protected:

  vtkKdTree();
  ~vtkKdTree();

  vtkBSPIntersections *BSPCalculator;
  int UserDefinedCuts;

  void SetCalculator(vtkKdNode *kd);

  int ProcessUserDefinedCuts(double *bounds);

  void SetCuts(vtkBSPCuts *cuts, int userDefined);

  // Description:
  //   Save enough state so NewGeometry() can work,
  //   and update the BuildTime time stamp.

  void UpdateBuildTime();

  // Description:
  //   Prior to dividing a region at level "level", of size
  //   "numberOfPoints", apply the tests implied by MinCells,
  //   NumberOfRegionsOrMore and NumberOfRegionsOrLess.  Return 1 if it's
  //   OK to divide the region, 0 if you should not.

  int DivideTest(int numberOfPoints, int level);

//BTX
  enum {
    XDIM = 0,  // don't change these values
    YDIM = 1,
    ZDIM = 2
  };
//ETX

  int ValidDirections;

  vtkKdNode *Top;
  vtkKdNode **RegionList;      // indexed by region ID

  vtkTimerLog *TimerLog;

  static void DeleteAllDescendants(vtkKdNode *nd);

  void BuildRegionList();
  virtual int SelectCutDirection(vtkKdNode *kd);
  void SetActualLevel(){this->Level = vtkKdTree::ComputeLevel(this->Top);}

  // Description:
  //    Get back a list of the nodes at a specified level, nodes must
  //    be preallocated to hold 2^^(level) node structures.

  void GetRegionsAtLevel(int level, vtkKdNode **nodes);

  // Description:
  //    Adds to the vtkIntArray the list of region IDs of all leaf
  //    nodes in the given node.

  static void GetLeafNodeIds(vtkKdNode *node, vtkIntArray *ids);


  // Description:
  //   Returns the total number of cells in all the data sets

  int GetNumberOfCells();

  // Description:
  //   Returns the total number of cells in data set 1 through
  //   data set 2.

  int GetDataSetsNumberOfCells(int set1, int set2);

  // Description:
  //    Get or compute the center of one cell.  If the DataSet is
  //    NULL, the first DataSet is used.  This is the point used in
  //    determining to which spatial region the cell is assigned.

  void ComputeCellCenter(vtkDataSet *set, int cellId, float *center);
  void ComputeCellCenter(vtkDataSet *set, int cellId, double *center);

  // Description:
  //    Compute and return a pointer to a list of all cell centers,
  //    in order by data set by cell Id.  If a DataSet is specified
  //    cell centers for cells of that data only are returned.  If
  //    no DataSet is specified, the cell centers of cells in all
  //    DataSets are returned.  The caller should free the list of
  //    cell centers when done.

  float *ComputeCellCenters();
  float *ComputeCellCenters(int set);
  float *ComputeCellCenters(vtkDataSet *set);

  vtkDataSetCollection *DataSets;

  virtual void ReportReferences(vtkGarbageCollector*);

  // Description:
  // Modelled on vtkAlgorithm::UpdateProgress(). 
  // Update the progress when building the locator.
  // Fires vtkCommand::ProgressEvent.
  void UpdateProgress(double amount);

  // Description:
  // Set/Get the execution progress of a process object.
  vtkSetClampMacro(Progress,double,0.0,1.0);
  vtkGetMacro(Progress,double);

protected:
  // So that each suboperation can report progress
  // in [0,1], yet we will be able to report a global 
  // progress. Sub-operations must use UpdateSubOperationProgress()
  // for this to work.
  double ProgressScale;
  double ProgressOffset;
  
  // Update progress for a sub-operation. \c amount goes from 0.0 to 1.0.
  // Actual progress is given by 
  // (this->ProgressOffset + this->ProgressScale* amount).
  void UpdateSubOperationProgress(double amount);

  static void _SetNewBounds(vtkKdNode *kd, double *b, int *fixDim);
  static void CopyChildNodes(vtkKdNode *to, vtkKdNode *from);
  static void CopyKdNode(vtkKdNode *to, vtkKdNode *from);
  static void SetDataBoundsToSpatialBounds(vtkKdNode *kd);
  static void ZeroNumberOfPoints(vtkKdNode *kd);

//BTX
  // Recursive helper for public FindPointsWithinRadius
  void FindPointsWithinRadius(vtkKdNode* node, double R2, 
                              const double x[3], vtkIdList* ids);  

  // Recursive helper for public FindPointsWithinRadius
  void AddAllPointsInRegion(vtkKdNode* node, vtkIdList* ids);

  // Recursive helper for public FindPointsInArea
  void FindPointsInArea(vtkKdNode* node, double* area, vtkIdTypeArray* ids);

  // Recursive helper for public FindPointsInArea
  void AddAllPointsInRegion(vtkKdNode* node, vtkIdTypeArray* ids);

  int DivideRegion(vtkKdNode *kd, float *c1, int *ids, int nlevels);

  void DoMedianFind(vtkKdNode *kd, float *c1, int *ids, int d1, int d2, int d3);

  void SelfRegister(vtkKdNode *kd);

  struct _cellList{
    vtkDataSet *dataSet;        // cell lists for which data set
    int *regionIds;            // NULL if listing all regions
    int nRegions;
    vtkIdList **cells;
    vtkIdList **boundaryCells;
    vtkIdList *emptyList;
  };
//ETX

  void InitializeCellLists();
  vtkIdList *GetList(int regionId, vtkIdList **which);

  void ComputeCellCenter(vtkCell* cell, double *center, double *weights);

  void GenerateRepresentationDataBounds(int level, vtkPolyData *pd);
  void _generateRepresentationDataBounds(vtkKdNode *kd, vtkPoints *pts,
                                         vtkCellArray *polys, int level);

  void GenerateRepresentationWholeSpace(int level, vtkPolyData *pd);
  void _generateRepresentationWholeSpace(vtkKdNode *kd, vtkPoints *pts,
                                         vtkCellArray *polys, int level);

  void AddPolys(vtkKdNode *kd, vtkPoints *pts, vtkCellArray *polys);

  void _printTree(int verbose);

  int SearchNeighborsForDuplicate(int regionId, float *point,
                                  int **pointsSoFar, int *len, 
                                  float tolerance, float tolerance2);

  int SearchRegionForDuplicate(float *point, int *pointsSoFar, 
                               int len, float tolerance2);

  int _FindClosestPointInRegion(int regionId, 
                          double x, double y, double z, double &dist2);

  int FindClosestPointInSphere(double x, double y, double z, double radius,
                               int skipRegion, double &dist2);

  int _ViewOrderRegionsInDirection(vtkIntArray *IdsOfInterest,
                                   const double dop[3],
                                   vtkIntArray *orderedList);

  static int __ViewOrderRegionsInDirection(vtkKdNode *node, vtkIntArray *list, 
                                           vtkIntArray *IdsOfInterest,
                                           const double dir[3], int nextId);

  int _ViewOrderRegionsFromPosition(vtkIntArray *IdsOfInterest,
                                    const double pos[3],
                                    vtkIntArray *orderedList);

  static int __ViewOrderRegionsFromPosition(vtkKdNode *node, vtkIntArray *list, 
                                            vtkIntArray *IdsOfInterest,
                                            const double pos[3], int nextId);

  static int __ConvexSubRegions(int *ids, int len, vtkKdNode *tree, vtkKdNode **nodes);
  static int FoundId(vtkIntArray *idArray, int id);

  void NewParitioningRequest(int req);
  void SetInputDataInfo(int i, 
       int dims[3], double origin[3], double spacing[3]);
  int CheckInputDataInfo(int i, 
       int dims[3], double origin[3], double spacing[3]);
  void ClearLastBuildCache();

//BTX
  static void __printTree(vtkKdNode *kd, int depth, int verbose);
//ETX

  static int MidValue(int dim, float *c1, int nvals, double &coord);

  static int Select(int dim, float *c1, int *ids, int nvals, double &coord);
  static float FindMaxLeftHalf(int dim, float *c1, int K);
  static void _Select(int dim, float *X, int *ids, int L, int R, int K);

//BTX
  static int ComputeLevel(vtkKdNode *kd);
  static int SelfOrder(int id, vtkKdNode *kd);
  static int findRegion(vtkKdNode *node, float x, float y, float z);
  static int findRegion(vtkKdNode *node, double x, double y, double z);
//ETX

  static vtkKdNode **_GetRegionsAtLevel(int level, vtkKdNode **nodes, 
                                        vtkKdNode *kd);

  static void AddNewRegions(vtkKdNode *kd, float *c1, 
                            int midpt, int dim, double coord);

  void NewPartitioningRequest(int req);

  int NumberOfRegionsOrLess;
  int NumberOfRegionsOrMore;

  int IncludeRegionBoundaryCells;
  double CellBoundsCache[6];       // to optimize IntersectsCell()

  int GenerateRepresentationUsingDataBounds;

//BTX
  struct _cellList CellList;
//ETX

  // Region Ids, by data set by cell id - this list is large (one
  // int per cell) but accelerates creation of cell lists

  int *CellRegionList;

  int MinCells;
  int NumberOfRegions;              // number of leaf nodes

  int Timing;
  double FudgeFactor;   // a very small distance, relative to the dataset's size

  // These instance variables are used by the special locator created
  // to find duplicate points. (BuildLocatorFromPoints)

  int NumberOfLocatorPoints;
  float *LocatorPoints;
  int *LocatorIds;
  int *LocatorRegionLocation;

  float MaxWidth;

  // These Last* values are here to save state so we can
  // determine later if k-d tree must be rebuilt.

  int LastNumDataSets;
  int LastDataCacheSize;
  vtkDataSet **LastInputDataSets;
  unsigned long *LastDataSetObserverTags;
  int *LastDataSetType;
  double *LastInputDataInfo;
  double *LastBounds;
  vtkIdType *LastNumPoints;
  vtkIdType *LastNumCells;

  vtkBSPCuts *Cuts;
  double Progress;

  vtkKdTree(const vtkKdTree&); // Not implemented
  void operator=(const vtkKdTree&); // Not implemented
};
#endif