/usr/include/vtk-5.8/vtkGeometricErrorMetric.h is in libvtk5-dev 5.8.0-5.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 | /*=========================================================================
Program: Visualization Toolkit
Module: vtkGeometricErrorMetric.h
Copyright (c) Ken Martin, Will Schroeder, Bill Lorensen
All rights reserved.
See Copyright.txt or http://www.kitware.com/Copyright.htm for details.
This software is distributed WITHOUT ANY WARRANTY; without even
the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE. See the above copyright notice for more information.
=========================================================================*/
// .NAME vtkGeometricErrorMetric - Objects that compute
// geometry-based error during cell tessellation.
//
// .SECTION Description
// It is a concrete error metric, based on a geometric criterium:
// the variation of the edge from a straight line.
//
// .SECTION See Also
// vtkGenericCellTessellator vtkGenericSubdivisionErrorMetric
#ifndef __vtkGeometricErrorMetric_h
#define __vtkGeometricErrorMetric_h
#include "vtkGenericSubdivisionErrorMetric.h"
class vtkGenericDataSet;
class VTK_FILTERING_EXPORT vtkGeometricErrorMetric : public vtkGenericSubdivisionErrorMetric
{
public:
// Description:
// Construct the error metric with a default squared absolute geometric
// accuracy equal to 1.
static vtkGeometricErrorMetric *New();
// Description:
// Standard VTK type and error macros.
vtkTypeMacro(vtkGeometricErrorMetric,vtkGenericSubdivisionErrorMetric);
void PrintSelf(ostream& os, vtkIndent indent);
// Description:
// Return the squared absolute geometric accuracy. See
// SetAbsoluteGeometricTolerance() for details.
// \post positive_result: result>0
vtkGetMacro(AbsoluteGeometricTolerance, double);
// Description:
// Set the geometric accuracy with a squared absolute value.
// This is the geometric object-based accuracy.
// Subdivision will be required if the square distance between the real
// point and the straight line passing through the vertices of the edge is
// greater than `value'. For instance 0.01 will give better result than 0.1.
// \pre positive_value: value>0
void SetAbsoluteGeometricTolerance(double value);
// Description:
// Set the geometric accuracy with a value relative to the length of the
// bounding box of the dataset. Internally compute the absolute tolerance.
// For instance 0.01 will give better result than 0.1.
// \pre valid_range_value: value>0 && value<1
// \pre ds_exists: ds!=0
void SetRelativeGeometricTolerance(double value,
vtkGenericDataSet *ds);
// Description:
// Does the edge need to be subdivided according to the distance between
// the line passing through its endpoints and the mid point?
// The edge is defined by its `leftPoint' and its `rightPoint'.
// `leftPoint', `midPoint' and `rightPoint' have to be initialized before
// calling RequiresEdgeSubdivision().
// Their format is global coordinates, parametric coordinates and
// point centered attributes: xyx rst abc de...
// `alpha' is the normalized abscissa of the midpoint along the edge.
// (close to 0 means close to the left point, close to 1 means close to the
// right point)
// \pre leftPoint_exists: leftPoint!=0
// \pre midPoint_exists: midPoint!=0
// \pre rightPoint_exists: rightPoint!=0
// \pre clamped_alpha: alpha>0 && alpha<1
// \pre valid_size: sizeof(leftPoint)=sizeof(midPoint)=sizeof(rightPoint)
// =GetAttributeCollection()->GetNumberOfPointCenteredComponents()+6
int RequiresEdgeSubdivision(double *leftPoint, double *midPoint, double *rightPoint,
double alpha);
// Description:
// Return the error at the mid-point. It will return an error relative to
// the bounding box size if GetRelative() is true, a square absolute error
// otherwise.
// See RequiresEdgeSubdivision() for a description of the arguments.
// \pre leftPoint_exists: leftPoint!=0
// \pre midPoint_exists: midPoint!=0
// \pre rightPoint_exists: rightPoint!=0
// \pre clamped_alpha: alpha>0 && alpha<1
// \pre valid_size: sizeof(leftPoint)=sizeof(midPoint)=sizeof(rightPoint)
// =GetAttributeCollection()->GetNumberOfPointCenteredComponents()+6
// \post positive_result: result>=0
double GetError(double *leftPoint, double *midPoint,
double *rightPoint, double alpha);
// Description:
// Return the type of output of GetError()
int GetRelative();
protected:
vtkGeometricErrorMetric();
virtual ~vtkGeometricErrorMetric();
// Description:
// Square distance between a straight line (defined by points x and y)
// and a point z. Property: if x and y are equal, the line is a point and
// the result is the square distance between points x and z.
double Distance2LinePoint(double x[3],
double y[3],
double z[3]);
double AbsoluteGeometricTolerance;
double SmallestSize;
int Relative; // Control the type of output of GetError()
private:
vtkGeometricErrorMetric(const vtkGeometricErrorMetric&); // Not implemented.
void operator=(const vtkGeometricErrorMetric&); // Not implemented.
};
#endif
|