/usr/include/vtk-5.8/vtkGeometricErrorMetric.h is in libvtk5-dev 5.8.0-5.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
| 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 | /*=========================================================================
  Program:   Visualization Toolkit
  Module:    vtkGeometricErrorMetric.h
  Copyright (c) Ken Martin, Will Schroeder, Bill Lorensen
  All rights reserved.
  See Copyright.txt or http://www.kitware.com/Copyright.htm for details.
     This software is distributed WITHOUT ANY WARRANTY; without even
     the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
     PURPOSE.  See the above copyright notice for more information.
=========================================================================*/
// .NAME vtkGeometricErrorMetric - Objects that compute
// geometry-based error during cell tessellation.
//
// .SECTION Description
// It is a concrete error metric, based on a geometric criterium:
// the variation of the edge from a straight line.
//
// .SECTION See Also
// vtkGenericCellTessellator vtkGenericSubdivisionErrorMetric
#ifndef __vtkGeometricErrorMetric_h
#define __vtkGeometricErrorMetric_h
#include "vtkGenericSubdivisionErrorMetric.h"
class vtkGenericDataSet;
class VTK_FILTERING_EXPORT vtkGeometricErrorMetric : public vtkGenericSubdivisionErrorMetric
{
public:
  // Description:
  // Construct the error metric with a default squared absolute geometric
  // accuracy equal to 1.
  static vtkGeometricErrorMetric *New();
  
  // Description:
  // Standard VTK type and error macros.
  vtkTypeMacro(vtkGeometricErrorMetric,vtkGenericSubdivisionErrorMetric);
  void PrintSelf(ostream& os, vtkIndent indent);
  
  // Description:
  // Return the squared absolute geometric accuracy. See
  // SetAbsoluteGeometricTolerance() for details.
  // \post positive_result: result>0
  vtkGetMacro(AbsoluteGeometricTolerance, double);
  
  // Description:
  // Set the geometric accuracy with a squared absolute value.
  // This is the geometric object-based accuracy.
  // Subdivision will be required if the square distance between the real
  // point and the straight line passing through the vertices of the edge is
  // greater than `value'. For instance 0.01 will give better result than 0.1.
  // \pre positive_value: value>0
  void SetAbsoluteGeometricTolerance(double value);
  
  // Description:
  // Set the geometric accuracy with a value relative to the length of the
  // bounding box of the dataset. Internally compute the absolute tolerance.
  // For instance 0.01 will give better result than 0.1.
  // \pre valid_range_value: value>0 && value<1
  // \pre ds_exists: ds!=0
  void SetRelativeGeometricTolerance(double value,
                                     vtkGenericDataSet *ds);
  
  // Description:
  // Does the edge need to be subdivided according to the distance between
  // the line passing through its endpoints and the mid point?
  // The edge is defined by its `leftPoint' and its `rightPoint'.
  // `leftPoint', `midPoint' and `rightPoint' have to be initialized before
  // calling RequiresEdgeSubdivision().
  // Their format is global coordinates, parametric coordinates and
  // point centered attributes: xyx rst abc de...
  // `alpha' is the normalized abscissa of the midpoint along the edge.
  // (close to 0 means close to the left point, close to 1 means close to the
  // right point)
  // \pre leftPoint_exists: leftPoint!=0
  // \pre midPoint_exists: midPoint!=0
  // \pre rightPoint_exists: rightPoint!=0
  // \pre clamped_alpha: alpha>0 && alpha<1
  // \pre valid_size: sizeof(leftPoint)=sizeof(midPoint)=sizeof(rightPoint)
  //          =GetAttributeCollection()->GetNumberOfPointCenteredComponents()+6
  int RequiresEdgeSubdivision(double *leftPoint, double *midPoint, double *rightPoint,
                              double alpha);
  // Description:
  // Return the error at the mid-point. It will return an error relative to
  // the bounding box size if GetRelative() is true, a square absolute error
  // otherwise.
  // See RequiresEdgeSubdivision() for a description of the arguments.
  // \pre leftPoint_exists: leftPoint!=0
  // \pre midPoint_exists: midPoint!=0
  // \pre rightPoint_exists: rightPoint!=0
  // \pre clamped_alpha: alpha>0 && alpha<1
  // \pre valid_size: sizeof(leftPoint)=sizeof(midPoint)=sizeof(rightPoint)
  //          =GetAttributeCollection()->GetNumberOfPointCenteredComponents()+6
  // \post positive_result: result>=0
  double GetError(double *leftPoint, double *midPoint,
                  double *rightPoint, double alpha);
  
  // Description:
  // Return the type of output of GetError()
  int GetRelative();
  
protected:
  vtkGeometricErrorMetric();
  virtual ~vtkGeometricErrorMetric();
  
  // Description:
  // Square distance between a straight line (defined by points x and y)
  // and a point z. Property: if x and y are equal, the line is a point and
  // the result is the square distance between points x and z.
  double Distance2LinePoint(double x[3],
                            double y[3],
                            double z[3]);
  
  double AbsoluteGeometricTolerance;
  double SmallestSize;
  int Relative; // Control the type of output of GetError()
  
private:
  vtkGeometricErrorMetric(const vtkGeometricErrorMetric&);  // Not implemented.
  void operator=(const vtkGeometricErrorMetric&);  // Not implemented.
};
#endif
 |