This file is indexed.

/usr/include/vtk-5.8/vtkCellLocator.h is in libvtk5-dev 5.8.0-5.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
/*=========================================================================

  Program:   Visualization Toolkit
  Module:    vtkCellLocator.h

  Copyright (c) Ken Martin, Will Schroeder, Bill Lorensen
  All rights reserved.
  See Copyright.txt or http://www.kitware.com/Copyright.htm for details.

     This software is distributed WITHOUT ANY WARRANTY; without even
     the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
     PURPOSE.  See the above copyright notice for more information.

=========================================================================*/
// .NAME vtkCellLocator - octree-based spatial search object to quickly locate cells
// .SECTION Description
// vtkCellLocator is a spatial search object to quickly locate cells in 3D.
// vtkCellLocator uses a uniform-level octree subdivision, where each octant
// (an octant is also referred to as a bucket) carries an indication of
// whether it is empty or not, and each leaf octant carries a list of the
// cells inside of it. (An octant is not empty if it has one or more cells
// inside of it.)  Typical operations are intersection with a line to return
// candidate cells, or intersection with another vtkCellLocator to return
// candidate cells.

// .SECTION Caveats
// Many other types of spatial locators have been developed, such as 
// variable depth octrees and kd-trees. These are often more efficient 
// for the operations described here. vtkCellLocator has been designed
// for subclassing; so these locators can be derived if necessary.

// .SECTION See Also
// vtkLocator vtkPointLocator vtkOBBTree

#ifndef __vtkCellLocator_h
#define __vtkCellLocator_h

#include "vtkAbstractCellLocator.h"

class vtkNeighborCells;

class VTK_FILTERING_EXPORT vtkCellLocator : public vtkAbstractCellLocator
{
public:
  vtkTypeMacro(vtkCellLocator,vtkAbstractCellLocator);
  void PrintSelf(ostream& os, vtkIndent indent);

  // Description:
  // Construct with automatic computation of divisions, averaging
  // 25 cells per bucket.
  static vtkCellLocator *New();

  // Description:
  // Specify the average number of cells in each octant.
  void SetNumberOfCellsPerBucket(int N) 
  { this->SetNumberOfCellsPerNode(N); }
  int GetNumberOfCellsPerBucket()  
  { return this->NumberOfCellsPerNode; }

//BTX
/*
  if the borland compiler is ever removed, we can use these declarations
  instead of reimplementaing the calls in this subclass
  using vtkAbstractCellLocator::IntersectWithLine;
  using vtkAbstractCellLocator::FindClosestPoint;
  using vtkAbstractCellLocator::FindClosestPointWithinRadius;
*/
//ETX

  // Description:
  // reimplemented from vtkAbstractCellLocator to support bad compilers
  virtual int IntersectWithLine(
    double a0[3], double a1[3], double tol,
    double& t, double x[3], double pcoords[3],
    int &subId) 
  {
    return Superclass::
      IntersectWithLine(a0, a1, tol,t, x, pcoords, subId);
  }

  // Description:
  // reimplemented from vtkAbstractCellLocator to support bad compilers
  virtual int IntersectWithLine(
    double a0[3], double a1[3], double tol,
    double& t, double x[3], double pcoords[3],
    int &subId, vtkIdType &cellId)
  {
    return Superclass::
      IntersectWithLine(a0, a1, tol,t, x, pcoords, subId, cellId);
  }

  // Description:
  // reimplemented from vtkAbstractCellLocator to support bad compilers
  virtual int IntersectWithLine(
    const double a0[3], const double a1[3],
    vtkPoints *points, vtkIdList *cellIds)
  {
    return Superclass::
      IntersectWithLine(a0, a1, points, cellIds);
  }

  // Description:
  // Return intersection point (if any) AND the cell which was intersected by
  // the finite line. The cell is returned as a cell id and as a generic cell.
  // For other IntersectWithLine signatures, see vtkAbstractCellLocator
  virtual int IntersectWithLine(double a0[3], double a1[3], double tol,
                                double& t, double x[3], double pcoords[3],
                                int &subId, vtkIdType &cellId,
                                vtkGenericCell *cell);

  // Description:
  // reimplemented from vtkAbstractCellLocator to support bad compilers
  virtual void FindClosestPoint(
    double x[3], double closestPoint[3],
    vtkIdType &cellId, int &subId, double& dist2)
  {
    Superclass::
      FindClosestPoint(x, closestPoint, cellId, subId, dist2);
  }
  
  // Description:
  // Return the closest point and the cell which is closest to the point x.
  // The closest point is somewhere on a cell, it need not be one of the
  // vertices of the cell.  This version takes in a vtkGenericCell
  // to avoid allocating and deallocating the cell.  This is much faster than
  // the version which does not take a *cell, especially when this function is
  // called many times in a row such as by a for loop, where the allocation and
  // deallocation can be done only once outside the for loop.  If a cell is
  // found, "cell" contains the points and ptIds for the cell "cellId" upon
  // exit.
  virtual void FindClosestPoint(
    double x[3], double closestPoint[3],
    vtkGenericCell *cell, vtkIdType &cellId, 
    int &subId, double& dist2);

  // Description:
  // reimplemented from vtkAbstractCellLocator to support bad compilers
  virtual vtkIdType FindClosestPointWithinRadius(
    double x[3], double radius,
    double closestPoint[3], vtkIdType &cellId,
    int &subId, double& dist2)
  {
    return Superclass::FindClosestPointWithinRadius
      (x, radius, closestPoint, cellId, subId, dist2);
  }
 
  // Description:
  // reimplemented from vtkAbstractCellLocator to support bad compilers
  virtual vtkIdType FindClosestPointWithinRadius(
    double x[3], double radius,
    double closestPoint[3],
    vtkGenericCell *cell, vtkIdType &cellId,
    int &subId, double& dist2)
  {
    return Superclass::FindClosestPointWithinRadius
      (x, radius, closestPoint, cell, cellId, subId, dist2);
  }

  // Description:
  // Return the closest point within a specified radius and the cell which is
  // closest to the point x. The closest point is somewhere on a cell, it
  // need not be one of the vertices of the cell. This method returns 1 if a
  // point is found within the specified radius. If there are no cells within
  // the specified radius, the method returns 0 and the values of
  // closestPoint, cellId, subId, and dist2 are undefined. This version takes
  // in a vtkGenericCell to avoid allocating and deallocating the cell.  This
  // is much faster than the version which does not take a *cell, especially
  // when this function is called many times in a row such as by a for loop,
  // where the allocation and dealloction can be done only once outside the
  // for loop.  If a closest point is found, "cell" contains the points and
  // ptIds for the cell "cellId" upon exit.  If a closest point is found,
  // inside returns the return value of the EvaluatePosition call to the
  // closest cell; inside(=1) or outside(=0).
  // For other FindClosestPointWithinRadius signatures, see vtkAbstractCellLocator
  virtual vtkIdType FindClosestPointWithinRadius(
    double x[3], double radius, double closestPoint[3],
    vtkGenericCell *cell, vtkIdType &cellId,
    int &subId, double& dist2, int &inside);
  
  // Description:
  // Get the cells in a particular bucket.
  virtual vtkIdList *GetCells(int bucket);

  // Description:
  // Return number of buckets available. Insure that the locator has been 
  // built before attempting to access buckets (octants).
  virtual int GetNumberOfBuckets(void);

  // Description:
  // Returns the Id of the cell containing the point, 
  // returns -1 if no cell found. This interface uses a tolerance of zero
  virtual vtkIdType FindCell(double x[3])
    { return this->Superclass::FindCell(x); }

  // Description:
  // Find the cell containing a given point. returns -1 if no cell found
  // the cell parameters are copied into the supplied variables, a cell must
  // be provided to store the information.
  virtual vtkIdType FindCell(
    double x[3], double tol2, vtkGenericCell *GenCell, 
    double pcoords[3], double *weights);

  // Description:
  // Return a list of unique cell ids inside of a given bounding box. The
  // user must provide the vtkIdList to populate. This method returns data
  // only after the locator has been built.
  virtual void FindCellsWithinBounds(double *bbox, vtkIdList *cells);

  // Description:
  // Given a finite line defined by the two points (p1,p2), return the list
  // of unique cell ids in the buckets containing the line. It is possible
  // that an empty cell list is returned. The user must provide the vtkIdList
  // to populate. This method returns data only after the locator has been
  // built.
  virtual void FindCellsAlongLine(
    double p1[3], double p2[3], double tolerance, vtkIdList *cells);

  // Description:
  // Satisfy vtkLocator abstract interface.
  virtual void FreeSearchStructure();
  virtual void BuildLocator();
  virtual void BuildLocatorIfNeeded();
  virtual void ForceBuildLocator();
  virtual void BuildLocatorInternal();
  virtual void GenerateRepresentation(int level, vtkPolyData *pd);
  
protected:
  vtkCellLocator();
  ~vtkCellLocator();

  void GetBucketNeighbors(int ijk[3], int ndivs, int level);
  void GetOverlappingBuckets(double x[3], int ijk[3], double dist, 
                             int prevMinLevel[3], int prevMaxLevel[3]);

  void ClearCellHasBeenVisited();
  void ClearCellHasBeenVisited(int id);

  double Distance2ToBucket(double x[3], int nei[3]);
  double Distance2ToBounds(double x[3], double bounds[6]);
  
  int NumberOfOctants; // number of octants in tree
  double Bounds[6]; // bounding box root octant
  int NumberOfParents; // number of parent octants
  double H[3]; // width of leaf octant in x-y-z directions
  int NumberOfDivisions; // number of "leaf" octant sub-divisions
  vtkIdList **Tree; // octree

  void MarkParents(void*, int, int, int, int, int);
  void GetChildren(int idx, int level, int children[8]);
  int GenerateIndex(int offset, int numDivs, int i, int j, int k,
                    vtkIdType &idx);
  void GenerateFace(int face, int numDivs, int i, int j, int k,
                    vtkPoints *pts, vtkCellArray *polys);

  vtkNeighborCells *Buckets;
  unsigned char *CellHasBeenVisited;
  unsigned char QueryNumber;

  void ComputeOctantBounds(int i, int j, int k);
  double OctantBounds[6]; //the bounds of the current octant
  int IsInOctantBounds(double x[3])
    {
    if ( this->OctantBounds[0] <= x[0] && x[0] <= this->OctantBounds[1] &&
         this->OctantBounds[2] <= x[1] && x[1] <= this->OctantBounds[3] &&
         this->OctantBounds[4] <= x[2] && x[2] <= this->OctantBounds[5] )
      {
      return 1;
      }
    else
      {
      return 0;
      }
    }

private:
  vtkCellLocator(const vtkCellLocator&);  // Not implemented.
  void operator=(const vtkCellLocator&);  // Not implemented.
};

#endif