/usr/include/vtk-5.8/alglib/bidiagonal.h is in libvtk5-dev 5.8.0-5.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 | /*************************************************************************
Copyright (c) 1992-2007 The University of Tennessee. All rights reserved.
Contributors:
* Sergey Bochkanov (ALGLIB project). Translation from FORTRAN to
pseudocode.
See subroutines comments for additional copyrights.
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are
met:
- Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.
- Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer listed
in this license in the documentation and/or other materials
provided with the distribution.
- Neither the name of the copyright holders nor the names of its
contributors may be used to endorse or promote products derived from
this software without specific prior written permission.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*************************************************************************/
#ifndef _bidiagonal_h
#define _bidiagonal_h
#include "alglib/ap.h"
#include "alglib/reflections.h"
/*************************************************************************
Reduction of a rectangular matrix to bidiagonal form
The algorithm reduces the rectangular matrix A to bidiagonal form by
orthogonal transformations P and Q: A = Q*B*P.
Input parameters:
A - source matrix. array[0..M-1, 0..N-1]
M - number of rows in matrix A.
N - number of columns in matrix A.
Output parameters:
A - matrices Q, B, P in compact form (see below).
TauQ - scalar factors which are used to form matrix Q.
TauP - scalar factors which are used to form matrix P.
The main diagonal and one of the secondary diagonals of matrix A are
replaced with bidiagonal matrix B. Other elements contain elementary
reflections which form MxM matrix Q and NxN matrix P, respectively.
If M>=N, B is the upper bidiagonal MxN matrix and is stored in the
corresponding elements of matrix A. Matrix Q is represented as a
product of elementary reflections Q = H(0)*H(1)*...*H(n-1), where
H(i) = 1-tau*v*v'. Here tau is a scalar which is stored in TauQ[i], and
vector v has the following structure: v(0:i-1)=0, v(i)=1, v(i+1:m-1) is
stored in elements A(i+1:m-1,i). Matrix P is as follows: P =
G(0)*G(1)*...*G(n-2), where G(i) = 1 - tau*u*u'. Tau is stored in TauP[i],
u(0:i)=0, u(i+1)=1, u(i+2:n-1) is stored in elements A(i,i+2:n-1).
If M<N, B is the lower bidiagonal MxN matrix and is stored in the
corresponding elements of matrix A. Q = H(0)*H(1)*...*H(m-2), where
H(i) = 1 - tau*v*v', tau is stored in TauQ, v(0:i)=0, v(i+1)=1, v(i+2:m-1)
is stored in elements A(i+2:m-1,i). P = G(0)*G(1)*...*G(m-1),
G(i) = 1-tau*u*u', tau is stored in TauP, u(0:i-1)=0, u(i)=1, u(i+1:n-1)
is stored in A(i,i+1:n-1).
EXAMPLE:
m=6, n=5 (m > n): m=5, n=6 (m < n):
( d e u1 u1 u1 ) ( d u1 u1 u1 u1 u1 )
( v1 d e u2 u2 ) ( e d u2 u2 u2 u2 )
( v1 v2 d e u3 ) ( v1 e d u3 u3 u3 )
( v1 v2 v3 d e ) ( v1 v2 e d u4 u4 )
( v1 v2 v3 v4 d ) ( v1 v2 v3 e d u5 )
( v1 v2 v3 v4 v5 )
Here vi and ui are vectors which form H(i) and G(i), and d and e -
are the diagonal and off-diagonal elements of matrix B.
*************************************************************************/
ALGLIB_EXPORT
void rmatrixbd(ap::real_2d_array& a,
int m,
int n,
ap::real_1d_array& tauq,
ap::real_1d_array& taup);
/*************************************************************************
Unpacking matrix Q which reduces a matrix to bidiagonal form.
Input parameters:
QP - matrices Q and P in compact form.
Output of ToBidiagonal subroutine.
M - number of rows in matrix A.
N - number of columns in matrix A.
TAUQ - scalar factors which are used to form Q.
Output of ToBidiagonal subroutine.
QColumns - required number of columns in matrix Q.
M>=QColumns>=0.
Output parameters:
Q - first QColumns columns of matrix Q.
Array[0..M-1, 0..QColumns-1]
If QColumns=0, the array is not modified.
-- ALGLIB --
Copyright 2005 by Bochkanov Sergey
*************************************************************************/
ALGLIB_EXPORT
void rmatrixbdunpackq(const ap::real_2d_array& qp,
int m,
int n,
const ap::real_1d_array& tauq,
int qcolumns,
ap::real_2d_array& q);
/*************************************************************************
Multiplication by matrix Q which reduces matrix A to bidiagonal form.
The algorithm allows pre- or post-multiply by Q or Q'.
Input parameters:
QP - matrices Q and P in compact form.
Output of ToBidiagonal subroutine.
M - number of rows in matrix A.
N - number of columns in matrix A.
TAUQ - scalar factors which are used to form Q.
Output of ToBidiagonal subroutine.
Z - multiplied matrix.
array[0..ZRows-1,0..ZColumns-1]
ZRows - number of rows in matrix Z. If FromTheRight=False,
ZRows=M, otherwise ZRows can be arbitrary.
ZColumns - number of columns in matrix Z. If FromTheRight=True,
ZColumns=M, otherwise ZColumns can be arbitrary.
FromTheRight - pre- or post-multiply.
DoTranspose - multiply by Q or Q'.
Output parameters:
Z - product of Z and Q.
Array[0..ZRows-1,0..ZColumns-1]
If ZRows=0 or ZColumns=0, the array is not modified.
-- ALGLIB --
Copyright 2005 by Bochkanov Sergey
*************************************************************************/
ALGLIB_EXPORT
void rmatrixbdmultiplybyq(const ap::real_2d_array& qp,
int m,
int n,
const ap::real_1d_array& tauq,
ap::real_2d_array& z,
int zrows,
int zcolumns,
bool fromtheright,
bool dotranspose);
/*************************************************************************
Unpacking matrix P which reduces matrix A to bidiagonal form.
The subroutine returns transposed matrix P.
Input parameters:
QP - matrices Q and P in compact form.
Output of ToBidiagonal subroutine.
M - number of rows in matrix A.
N - number of columns in matrix A.
TAUP - scalar factors which are used to form P.
Output of ToBidiagonal subroutine.
PTRows - required number of rows of matrix P^T. N >= PTRows >= 0.
Output parameters:
PT - first PTRows columns of matrix P^T
Array[0..PTRows-1, 0..N-1]
If PTRows=0, the array is not modified.
-- ALGLIB --
Copyright 2005-2007 by Bochkanov Sergey
*************************************************************************/
ALGLIB_EXPORT
void rmatrixbdunpackpt(const ap::real_2d_array& qp,
int m,
int n,
const ap::real_1d_array& taup,
int ptrows,
ap::real_2d_array& pt);
/*************************************************************************
Multiplication by matrix P which reduces matrix A to bidiagonal form.
The algorithm allows pre- or post-multiply by P or P'.
Input parameters:
QP - matrices Q and P in compact form.
Output of RMatrixBD subroutine.
M - number of rows in matrix A.
N - number of columns in matrix A.
TAUP - scalar factors which are used to form P.
Output of RMatrixBD subroutine.
Z - multiplied matrix.
Array whose indexes range within [0..ZRows-1,0..ZColumns-1].
ZRows - number of rows in matrix Z. If FromTheRight=False,
ZRows=N, otherwise ZRows can be arbitrary.
ZColumns - number of columns in matrix Z. If FromTheRight=True,
ZColumns=N, otherwise ZColumns can be arbitrary.
FromTheRight - pre- or post-multiply.
DoTranspose - multiply by P or P'.
Output parameters:
Z - product of Z and P.
Array whose indexes range within [0..ZRows-1,0..ZColumns-1].
If ZRows=0 or ZColumns=0, the array is not modified.
-- ALGLIB --
Copyright 2005-2007 by Bochkanov Sergey
*************************************************************************/
ALGLIB_EXPORT
void rmatrixbdmultiplybyp(const ap::real_2d_array& qp,
int m,
int n,
const ap::real_1d_array& taup,
ap::real_2d_array& z,
int zrows,
int zcolumns,
bool fromtheright,
bool dotranspose);
/*************************************************************************
Unpacking of the main and secondary diagonals of bidiagonal decomposition
of matrix A.
Input parameters:
B - output of RMatrixBD subroutine.
M - number of rows in matrix B.
N - number of columns in matrix B.
Output parameters:
IsUpper - True, if the matrix is upper bidiagonal.
otherwise IsUpper is False.
D - the main diagonal.
Array whose index ranges within [0..Min(M,N)-1].
E - the secondary diagonal (upper or lower, depending on
the value of IsUpper).
Array index ranges within [0..Min(M,N)-1], the last
element is not used.
-- ALGLIB --
Copyright 2005-2007 by Bochkanov Sergey
*************************************************************************/
ALGLIB_EXPORT
void rmatrixbdunpackdiagonals(const ap::real_2d_array& b,
int m,
int n,
bool& isupper,
ap::real_1d_array& d,
ap::real_1d_array& e);
/*************************************************************************
Obsolete 1-based subroutine.
See RMatrixBD for 0-based replacement.
*************************************************************************/
ALGLIB_EXPORT
void tobidiagonal(ap::real_2d_array& a,
int m,
int n,
ap::real_1d_array& tauq,
ap::real_1d_array& taup);
/*************************************************************************
Obsolete 1-based subroutine.
See RMatrixBDUnpackQ for 0-based replacement.
*************************************************************************/
ALGLIB_EXPORT
void unpackqfrombidiagonal(const ap::real_2d_array& qp,
int m,
int n,
const ap::real_1d_array& tauq,
int qcolumns,
ap::real_2d_array& q);
/*************************************************************************
Obsolete 1-based subroutine.
See RMatrixBDMultiplyByQ for 0-based replacement.
*************************************************************************/
ALGLIB_EXPORT
void multiplybyqfrombidiagonal(const ap::real_2d_array& qp,
int m,
int n,
const ap::real_1d_array& tauq,
ap::real_2d_array& z,
int zrows,
int zcolumns,
bool fromtheright,
bool dotranspose);
/*************************************************************************
Obsolete 1-based subroutine.
See RMatrixBDUnpackPT for 0-based replacement.
*************************************************************************/
ALGLIB_EXPORT
void unpackptfrombidiagonal(const ap::real_2d_array& qp,
int m,
int n,
const ap::real_1d_array& taup,
int ptrows,
ap::real_2d_array& pt);
/*************************************************************************
Obsolete 1-based subroutine.
See RMatrixBDMultiplyByP for 0-based replacement.
*************************************************************************/
ALGLIB_EXPORT
void multiplybypfrombidiagonal(const ap::real_2d_array& qp,
int m,
int n,
const ap::real_1d_array& taup,
ap::real_2d_array& z,
int zrows,
int zcolumns,
bool fromtheright,
bool dotranspose);
/*************************************************************************
Obsolete 1-based subroutine.
See RMatrixBDUnpackDiagonals for 0-based replacement.
*************************************************************************/
ALGLIB_EXPORT
void unpackdiagonalsfrombidiagonal(const ap::real_2d_array& b,
int m,
int n,
bool& isupper,
ap::real_1d_array& d,
ap::real_1d_array& e);
#endif
|