This file is indexed.

/usr/include/vtk-5.8/alglib/bidiagonal.h is in libvtk5-dev 5.8.0-5.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
/*************************************************************************
Copyright (c) 1992-2007 The University of Tennessee.  All rights reserved.

Contributors:
    * Sergey Bochkanov (ALGLIB project). Translation from FORTRAN to
      pseudocode.

See subroutines comments for additional copyrights.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are
met:

- Redistributions of source code must retain the above copyright
  notice, this list of conditions and the following disclaimer.

- Redistributions in binary form must reproduce the above copyright
  notice, this list of conditions and the following disclaimer listed
  in this license in the documentation and/or other materials
  provided with the distribution.

- Neither the name of the copyright holders nor the names of its
  contributors may be used to endorse or promote products derived from
  this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*************************************************************************/

#ifndef _bidiagonal_h
#define _bidiagonal_h

#include "alglib/ap.h"

#include "alglib/reflections.h"


/*************************************************************************
Reduction of a rectangular matrix to  bidiagonal form

The algorithm reduces the rectangular matrix A to  bidiagonal form by
orthogonal transformations P and Q: A = Q*B*P.

Input parameters:
    A       -   source matrix. array[0..M-1, 0..N-1]
    M       -   number of rows in matrix A.
    N       -   number of columns in matrix A.

Output parameters:
    A       -   matrices Q, B, P in compact form (see below).
    TauQ    -   scalar factors which are used to form matrix Q.
    TauP    -   scalar factors which are used to form matrix P.

The main diagonal and one of the  secondary  diagonals  of  matrix  A  are
replaced with bidiagonal  matrix  B.  Other  elements  contain  elementary
reflections which form MxM matrix Q and NxN matrix P, respectively.

If M>=N, B is the upper  bidiagonal  MxN  matrix  and  is  stored  in  the
corresponding  elements  of  matrix  A.  Matrix  Q  is  represented  as  a
product   of   elementary   reflections   Q = H(0)*H(1)*...*H(n-1),  where
H(i) = 1-tau*v*v'. Here tau is a scalar which is stored  in  TauQ[i],  and
vector v has the following  structure:  v(0:i-1)=0, v(i)=1, v(i+1:m-1)  is
stored   in   elements   A(i+1:m-1,i).   Matrix   P  is  as  follows:  P =
G(0)*G(1)*...*G(n-2), where G(i) = 1 - tau*u*u'. Tau is stored in TauP[i],
u(0:i)=0, u(i+1)=1, u(i+2:n-1) is stored in elements A(i,i+2:n-1).

If M<N, B is the  lower  bidiagonal  MxN  matrix  and  is  stored  in  the
corresponding   elements  of  matrix  A.  Q = H(0)*H(1)*...*H(m-2),  where
H(i) = 1 - tau*v*v', tau is stored in TauQ, v(0:i)=0, v(i+1)=1, v(i+2:m-1)
is    stored    in   elements   A(i+2:m-1,i).    P = G(0)*G(1)*...*G(m-1),
G(i) = 1-tau*u*u', tau is stored in  TauP,  u(0:i-1)=0, u(i)=1, u(i+1:n-1)
is stored in A(i,i+1:n-1).

EXAMPLE:

m=6, n=5 (m > n):               m=5, n=6 (m < n):

(  d   e   u1  u1  u1 )         (  d   u1  u1  u1  u1  u1 )
(  v1  d   e   u2  u2 )         (  e   d   u2  u2  u2  u2 )
(  v1  v2  d   e   u3 )         (  v1  e   d   u3  u3  u3 )
(  v1  v2  v3  d   e  )         (  v1  v2  e   d   u4  u4 )
(  v1  v2  v3  v4  d  )         (  v1  v2  v3  e   d   u5 )
(  v1  v2  v3  v4  v5 )

Here vi and ui are vectors which form H(i) and G(i), and d and e -
are the diagonal and off-diagonal elements of matrix B.
*************************************************************************/
ALGLIB_EXPORT
void rmatrixbd(ap::real_2d_array& a,
     int m,
     int n,
     ap::real_1d_array& tauq,
     ap::real_1d_array& taup);


/*************************************************************************
Unpacking matrix Q which reduces a matrix to bidiagonal form.

Input parameters:
    QP          -   matrices Q and P in compact form.
                    Output of ToBidiagonal subroutine.
    M           -   number of rows in matrix A.
    N           -   number of columns in matrix A.
    TAUQ        -   scalar factors which are used to form Q.
                    Output of ToBidiagonal subroutine.
    QColumns    -   required number of columns in matrix Q.
                    M>=QColumns>=0.

Output parameters:
    Q           -   first QColumns columns of matrix Q.
                    Array[0..M-1, 0..QColumns-1]
                    If QColumns=0, the array is not modified.

  -- ALGLIB --
     Copyright 2005 by Bochkanov Sergey
*************************************************************************/
ALGLIB_EXPORT
void rmatrixbdunpackq(const ap::real_2d_array& qp,
     int m,
     int n,
     const ap::real_1d_array& tauq,
     int qcolumns,
     ap::real_2d_array& q);


/*************************************************************************
Multiplication by matrix Q which reduces matrix A to  bidiagonal form.

The algorithm allows pre- or post-multiply by Q or Q'.

Input parameters:
    QP          -   matrices Q and P in compact form.
                    Output of ToBidiagonal subroutine.
    M           -   number of rows in matrix A.
    N           -   number of columns in matrix A.
    TAUQ        -   scalar factors which are used to form Q.
                    Output of ToBidiagonal subroutine.
    Z           -   multiplied matrix.
                    array[0..ZRows-1,0..ZColumns-1]
    ZRows       -   number of rows in matrix Z. If FromTheRight=False,
                    ZRows=M, otherwise ZRows can be arbitrary.
    ZColumns    -   number of columns in matrix Z. If FromTheRight=True,
                    ZColumns=M, otherwise ZColumns can be arbitrary.
    FromTheRight -  pre- or post-multiply.
    DoTranspose -   multiply by Q or Q'.

Output parameters:
    Z           -   product of Z and Q.
                    Array[0..ZRows-1,0..ZColumns-1]
                    If ZRows=0 or ZColumns=0, the array is not modified.

  -- ALGLIB --
     Copyright 2005 by Bochkanov Sergey
*************************************************************************/
ALGLIB_EXPORT
void rmatrixbdmultiplybyq(const ap::real_2d_array& qp,
     int m,
     int n,
     const ap::real_1d_array& tauq,
     ap::real_2d_array& z,
     int zrows,
     int zcolumns,
     bool fromtheright,
     bool dotranspose);


/*************************************************************************
Unpacking matrix P which reduces matrix A to bidiagonal form.
The subroutine returns transposed matrix P.

Input parameters:
    QP      -   matrices Q and P in compact form.
                Output of ToBidiagonal subroutine.
    M       -   number of rows in matrix A.
    N       -   number of columns in matrix A.
    TAUP    -   scalar factors which are used to form P.
                Output of ToBidiagonal subroutine.
    PTRows  -   required number of rows of matrix P^T. N >= PTRows >= 0.

Output parameters:
    PT      -   first PTRows columns of matrix P^T
                Array[0..PTRows-1, 0..N-1]
                If PTRows=0, the array is not modified.

  -- ALGLIB --
     Copyright 2005-2007 by Bochkanov Sergey
*************************************************************************/
ALGLIB_EXPORT
void rmatrixbdunpackpt(const ap::real_2d_array& qp,
     int m,
     int n,
     const ap::real_1d_array& taup,
     int ptrows,
     ap::real_2d_array& pt);


/*************************************************************************
Multiplication by matrix P which reduces matrix A to  bidiagonal form.

The algorithm allows pre- or post-multiply by P or P'.

Input parameters:
    QP          -   matrices Q and P in compact form.
                    Output of RMatrixBD subroutine.
    M           -   number of rows in matrix A.
    N           -   number of columns in matrix A.
    TAUP        -   scalar factors which are used to form P.
                    Output of RMatrixBD subroutine.
    Z           -   multiplied matrix.
                    Array whose indexes range within [0..ZRows-1,0..ZColumns-1].
    ZRows       -   number of rows in matrix Z. If FromTheRight=False,
                    ZRows=N, otherwise ZRows can be arbitrary.
    ZColumns    -   number of columns in matrix Z. If FromTheRight=True,
                    ZColumns=N, otherwise ZColumns can be arbitrary.
    FromTheRight -  pre- or post-multiply.
    DoTranspose -   multiply by P or P'.

Output parameters:
    Z - product of Z and P.
                Array whose indexes range within [0..ZRows-1,0..ZColumns-1].
                If ZRows=0 or ZColumns=0, the array is not modified.

  -- ALGLIB --
     Copyright 2005-2007 by Bochkanov Sergey
*************************************************************************/
ALGLIB_EXPORT
void rmatrixbdmultiplybyp(const ap::real_2d_array& qp,
     int m,
     int n,
     const ap::real_1d_array& taup,
     ap::real_2d_array& z,
     int zrows,
     int zcolumns,
     bool fromtheright,
     bool dotranspose);


/*************************************************************************
Unpacking of the main and secondary diagonals of bidiagonal decomposition
of matrix A.

Input parameters:
    B   -   output of RMatrixBD subroutine.
    M   -   number of rows in matrix B.
    N   -   number of columns in matrix B.

Output parameters:
    IsUpper -   True, if the matrix is upper bidiagonal.
                otherwise IsUpper is False.
    D       -   the main diagonal.
                Array whose index ranges within [0..Min(M,N)-1].
    E       -   the secondary diagonal (upper or lower, depending on
                the value of IsUpper).
                Array index ranges within [0..Min(M,N)-1], the last
                element is not used.

  -- ALGLIB --
     Copyright 2005-2007 by Bochkanov Sergey
*************************************************************************/
ALGLIB_EXPORT
void rmatrixbdunpackdiagonals(const ap::real_2d_array& b,
     int m,
     int n,
     bool& isupper,
     ap::real_1d_array& d,
     ap::real_1d_array& e);


/*************************************************************************
Obsolete 1-based subroutine.
See RMatrixBD for 0-based replacement.
*************************************************************************/
ALGLIB_EXPORT
void tobidiagonal(ap::real_2d_array& a,
     int m,
     int n,
     ap::real_1d_array& tauq,
     ap::real_1d_array& taup);


/*************************************************************************
Obsolete 1-based subroutine.
See RMatrixBDUnpackQ for 0-based replacement.
*************************************************************************/
ALGLIB_EXPORT
void unpackqfrombidiagonal(const ap::real_2d_array& qp,
     int m,
     int n,
     const ap::real_1d_array& tauq,
     int qcolumns,
     ap::real_2d_array& q);


/*************************************************************************
Obsolete 1-based subroutine.
See RMatrixBDMultiplyByQ for 0-based replacement.
*************************************************************************/
ALGLIB_EXPORT
void multiplybyqfrombidiagonal(const ap::real_2d_array& qp,
     int m,
     int n,
     const ap::real_1d_array& tauq,
     ap::real_2d_array& z,
     int zrows,
     int zcolumns,
     bool fromtheright,
     bool dotranspose);


/*************************************************************************
Obsolete 1-based subroutine.
See RMatrixBDUnpackPT for 0-based replacement.
*************************************************************************/
ALGLIB_EXPORT
void unpackptfrombidiagonal(const ap::real_2d_array& qp,
     int m,
     int n,
     const ap::real_1d_array& taup,
     int ptrows,
     ap::real_2d_array& pt);


/*************************************************************************
Obsolete 1-based subroutine.
See RMatrixBDMultiplyByP for 0-based replacement.
*************************************************************************/
ALGLIB_EXPORT
void multiplybypfrombidiagonal(const ap::real_2d_array& qp,
     int m,
     int n,
     const ap::real_1d_array& taup,
     ap::real_2d_array& z,
     int zrows,
     int zcolumns,
     bool fromtheright,
     bool dotranspose);


/*************************************************************************
Obsolete 1-based subroutine.
See RMatrixBDUnpackDiagonals for 0-based replacement.
*************************************************************************/
ALGLIB_EXPORT
void unpackdiagonalsfrombidiagonal(const ap::real_2d_array& b,
     int m,
     int n,
     bool& isupper,
     ap::real_1d_array& d,
     ap::real_1d_array& e);


#endif