This file is indexed.

/usr/share/uim/lib/srfi-43.scm is in libuim-data 1:1.7.1-3ubuntu1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
;;;;;; SRFI 43: Vector library                           -*- Scheme -*-

;;; Taylor Campbell wrote this code; he places it in the public domain.


;; ChangeLog
;;
;; 2007-08-28 yamaken   - Imported from
;;                        http://srfi.schemers.org/srfi-43/vector-lib.scm
;;                        and adapted to SigScheme
;; 2007-09-08 yamaken   - Fix an incorrect error message in check-indices


;;; --------------------
;;; Exported procedure index
;;;
;;; * Constructors
;;; make-vector vector
;;; vector-unfold                   vector-unfold-right
;;; vector-copy                     vector-reverse-copy
;;; vector-append                   vector-concatenate
;;;
;;; * Predicates
;;; vector?
;;; vector-empty?
;;; vector=
;;;
;;; * Selectors
;;; vector-ref
;;; vector-length
;;;
;;; * Iteration
;;; vector-fold                     vector-fold-right
;;; vector-map                      vector-map!
;;; vector-for-each
;;; vector-count
;;;
;;; * Searching
;;; vector-index                    vector-skip
;;; vector-index-right              vector-skip-right
;;; vector-binary-search
;;; vector-any                      vector-every
;;;
;;; * Mutators
;;; vector-set!
;;; vector-swap!
;;; vector-fill!
;;; vector-reverse!
;;; vector-copy!                    vector-reverse-copy!
;;; vector-reverse!
;;;
;;; * Conversion
;;; vector->list                    reverse-vector->list
;;; list->vector                    reverse-list->vector



;;; --------------------
;;; Commentary on efficiency of the code

;;; This code is somewhat tuned for efficiency.  There are several
;;; internal routines that can be optimized greatly to greatly improve
;;; the performance of much of the library.  These internal procedures
;;; are already carefully tuned for performance, and lambda-lifted by
;;; hand.  Some other routines are lambda-lifted by hand, but only the
;;; loops are lambda-lifted, and only if some routine has two possible
;;; loops -- a fast path and an n-ary case --, whereas _all_ of the
;;; internal routines' loops are lambda-lifted so as to never cons a
;;; closure in their body (VECTOR-PARSE-START+END doesn't have a loop),
;;; even in Scheme systems that perform no loop optimization (which is
;;; most of them, unfortunately).
;;;
;;; Fast paths are provided for common cases in most of the loops in
;;; this library.
;;;
;;; All calls to primitive vector operations are protected by a prior
;;; type check; they can be safely converted to use unsafe equivalents
;;; of the operations, if available.  Ideally, the compiler should be
;;; able to determine this, but the state of Scheme compilers today is
;;; not a happy one.
;;;
;;; Efficiency of the actual algorithms is a rather mundane point to
;;; mention; vector operations are rarely beyond being straightforward.



;;; --------------------
;;; Utilities

;;; SigScheme: Use native SRFI-8
;;;;; SRFI 8, too trivial to put in the dependencies list.
;;(define-syntax receive
;;  (syntax-rules ()
;;    ((receive ?formals ?producer ?body1 ?body2 ...)
;;     (call-with-values (lambda () ?producer)
;;       (lambda ?formals ?body1 ?body2 ...)))))

;;; SigScheme: Define let*-optionals as an alias to let-optionals*
;;;;; Not the best LET*-OPTIONALS, but not the worst, either.  Use Olin's
;;;;; if it's available to you.
;;(define-syntax let*-optionals
;;  (syntax-rules ()
;;    ((let*-optionals (?x ...) ((?var ?default) ...) ?body1 ?body2 ...)
;;     (let ((args (?x ...)))
;;       (let*-optionals args ((?var ?default) ...) ?body1 ?body2 ...)))
;;    ((let*-optionals ?args ((?var ?default) ...) ?body1 ?body2 ...)
;;     (let*-optionals:aux ?args ?args ((?var ?default) ...)
;;       ?body1 ?body2 ...))))
;;
;;(define-syntax let*-optionals:aux
;;  (syntax-rules ()
;;    ((aux ?orig-args-var ?args-var () ?body1 ?body2 ...)
;;     (if (null? ?args-var)
;;         (let () ?body1 ?body2 ...)
;;         (error "too many arguments" (length ?orig-args-var)
;;                ?orig-args-var)))
;;    ((aux ?orig-args-var ?args-var
;;         ((?var ?default) ?more ...)
;;       ?body1 ?body2 ...)
;;     (if (null? ?args-var)
;;         (let* ((?var ?default) ?more ...) ?body1 ?body2 ...)
;;         (let ((?var (car ?args-var))
;;               (new-args (cdr ?args-var)))
;;           (let*-optionals:aux ?orig-args-var new-args
;;               (?more ...)
;;             ?body1 ?body2 ...))))))

(define (nonneg-int? x)
  (and (integer? x)
       (not (negative? x))))

(define (between? x y z)
  (and (<  x y)
       (<= y z)))

(define (unspecified-value) (if #f #f))

;++ This should be implemented more efficiently.  It shouldn't cons a
;++ closure, and the cons cells used in the loops when using this could
;++ be reused.
(define (vectors-ref vectors i)
  (map (lambda (v) (vector-ref v i)) vectors))



;;; --------------------
;;; Error checking

;;; Error signalling (not checking) is done in a way that tries to be
;;; as helpful to the person who gets the debugging prompt as possible.
;;; That said, error _checking_ tries to be as unredundant as possible.

;;; I don't use any sort of general condition mechanism; I use simply
;;; SRFI 23's ERROR, even in cases where it might be better to use such
;;; a general condition mechanism.  Fix that when porting this to a
;;; Scheme implementation that has its own condition system.

;;; In argument checks, upon receiving an invalid argument, the checker
;;; procedure recursively calls itself, but in one of the arguments to
;;; itself is a call to ERROR; this mechanism is used in the hopes that
;;; the user may be thrown into a debugger prompt, proceed with another
;;; value, and let it be checked again.

;;; Type checking is pretty basic, but easily factored out and replaced
;;; with whatever your implementation's preferred type checking method
;;; is.  I doubt there will be many other methods of index checking,
;;; though the index checkers might be better implemented natively.

;;; (CHECK-TYPE <type-predicate?> <value> <callee>) -> value
;;;   Ensure that VALUE satisfies TYPE-PREDICATE?; if not, signal an
;;;   error stating that VALUE did not satisfy TYPE-PREDICATE?, showing
;;;   that this happened while calling CALLEE.  Return VALUE if no
;;;   error was signalled.
(define (check-type pred? value callee)
  (if (pred? value)
      value
      ;; Recur: when (or if) the user gets a debugger prompt, he can
      ;; proceed where the call to ERROR was with the correct value.
      (check-type pred?
                  (error "erroneous value"
                         (list pred? value)
                         `(while calling ,callee))
                  callee)))

;;; (CHECK-INDEX <vector> <index> <callee>) -> index
;;;   Ensure that INDEX is a valid index into VECTOR; if not, signal an
;;;   error stating that it is not and that this happened in a call to
;;;   CALLEE.  Return INDEX when it is valid.  (Note that this does NOT
;;;   check that VECTOR is indeed a vector.)
(define (check-index vec index callee)
  (let ((index (check-type integer? index callee)))
    (cond ((< index 0)
           (check-index vec
                        (error "vector index too low"
                               index
                               `(into vector ,vec)
                               `(while calling ,callee))
                        callee))
          ((>= index (vector-length vec))
           (check-index vec
                        (error "vector index too high"
                               index
                               `(into vector ,vec)
                               `(while calling ,callee))
                        callee))
          (else index))))

;;; (CHECK-INDICES <vector>
;;;                <start> <start-name>
;;;                <end> <end-name>
;;;                <caller>) -> [start end]
;;;   Ensure that START and END are valid bounds of a range within
;;;   VECTOR; if not, signal an error stating that they are not, with
;;;   the message being informative about what the argument names were
;;;   called -- by using START-NAME & END-NAME --, and that it occurred
;;;   while calling CALLEE.  Also ensure that VEC is in fact a vector.
;;;   Returns no useful value.
(define (check-indices vec start start-name end end-name callee)
  (let ((lose (lambda things
                (apply error "vector range out of bounds"
                       (append things
                               `(vector was ,vec)
                               `(,start-name was ,start)
                               `(,end-name was ,end)
                               `(while calling ,callee)))))
        (start (check-type integer? start callee))
        (end   (check-type integer? end   callee)))
    (cond ((> start end)
           ;; I'm not sure how well this will work.  The intent is that
           ;; the programmer tells the debugger to proceed with both a
           ;; new START & a new END by returning multiple values
           ;; somewhere.
           (receive (new-start new-end)
                    (lose `(,end-name < ,start-name))
             (check-indices vec
                            new-start start-name
                            new-end end-name
                            callee)))
          ((< start 0)
           (check-indices vec
                          (lose `(,start-name < 0))
                          start-name
                          end end-name
                          callee))
          ((>= start (vector-length vec))
           (check-indices vec
                          (lose `(,start-name >= len)
                                `(len was ,(vector-length vec)))
                          start-name
                          end end-name
                          callee))
          ((> end (vector-length vec))
           (check-indices vec
                          start start-name
                          (lose `(,end-name > len)
                                `(len was ,(vector-length vec)))
                          end-name
                          callee))
          (else
           (values start end)))))



;;; --------------------
;;; Internal routines

;;; These should all be integrated, native, or otherwise optimized --
;;; they're used a _lot_ --.  All of the loops and LETs inside loops
;;; are lambda-lifted by hand, just so as not to cons closures in the
;;; loops.  (If your compiler can do better than that if they're not
;;; lambda-lifted, then lambda-drop (?) them.)

;;; (VECTOR-PARSE-START+END <vector> <arguments>
;;;                         <start-name> <end-name>
;;;                         <callee>)
;;;       -> [start end]
;;;   Return two values, composing a valid range within VECTOR, as
;;;   extracted from ARGUMENTS or defaulted from VECTOR -- 0 for START
;;;   and the length of VECTOR for END --; START-NAME and END-NAME are
;;;   purely for error checking.
(define (vector-parse-start+end vec args start-name end-name callee)
  (let ((len (vector-length vec)))
    (cond ((null? args)
           (values 0 len))
          ((null? (cdr args))
           (check-indices vec
                          (car args) start-name
                          len end-name
                          callee))
          ((null? (cddr args))
           (check-indices vec
                          (car  args) start-name
                          (cadr args) end-name
                          callee))
          (else
           (error "too many arguments"
                  `(extra args were ,(cddr args))
                  `(while calling ,callee))))))

;;; SigScheme: Defined in module-srfi43.c
;;(define-syntax let-vector-start+end
;;  (syntax-rules ()
;;    ((let-vector-start+end ?callee ?vec ?args (?start ?end)
;;       ?body1 ?body2 ...)
;;     (let ((?vec (check-type vector? ?vec ?callee)))
;;       (receive (?start ?end)
;;                (vector-parse-start+end ?vec ?args '?start '?end
;;                                        ?callee)
;;         ?body1 ?body2 ...)))))

;;; (%SMALLEST-LENGTH <vector-list> <default-length> <callee>)
;;;       -> exact, nonnegative integer
;;;   Compute the smallest length of VECTOR-LIST.  DEFAULT-LENGTH is
;;;   the length that is returned if VECTOR-LIST is empty.  Common use
;;;   of this is in n-ary vector routines:
;;;     (define (f vec . vectors)
;;;       (let ((vec (check-type vector? vec f)))
;;;         ...(%smallest-length vectors (vector-length vec) f)...))
;;;   %SMALLEST-LENGTH takes care of the type checking -- which is what
;;;   the CALLEE argument is for --; thus, the design is tuned for
;;;   avoiding redundant type checks.
(define %smallest-length
  (letrec ((loop (lambda (vector-list length callee)
                   (if (null? vector-list)
                       length
                       (loop (cdr vector-list)
                             (min (vector-length
                                   (check-type vector?
                                               (car vector-list)
                                               callee))
                                  length)
                             callee)))))
    loop))

;;; (%VECTOR-COPY! <target> <tstart> <source> <sstart> <send>)
;;;   Copy elements at locations SSTART to SEND from SOURCE to TARGET,
;;;   starting at TSTART in TARGET.
;;;
;;; Optimize this!  Probably with some combination of:
;;;   - Force it to be integrated.
;;;   - Let it use unsafe vector element dereferencing routines: bounds
;;;     checking already happens outside of it.  (Or use a compiler
;;;     that figures this out, but Olin Shivers' PhD thesis seems to
;;;     have been largely ignored in actual implementations...)
;;;   - Implement it natively as a VM primitive: the VM can undoubtedly
;;;     perform much faster than it can make Scheme perform, even with
;;;     bounds checking.
;;;   - Implement it in assembly: you _want_ the fine control that
;;;     assembly can give you for this.
;;; I already lambda-lift it by hand, but you should be able to make it
;;; even better than that.
(define %vector-copy!
  (letrec ((loop/l->r (lambda (target source send i j)
                        (cond ((< i send)
                               (vector-set! target j
                                            (vector-ref source i))
                               (loop/l->r target source send
                                          (+ i 1) (+ j 1))))))
           (loop/r->l (lambda (target source sstart i j)
                        (cond ((>= i sstart)
                               (vector-set! target j
                                            (vector-ref source i))
                               (loop/r->l target source sstart
                                          (- i 1) (- j 1)))))))
    (lambda (target tstart source sstart send)
      (if (> sstart tstart)             ; Make sure we don't copy over
                                        ;   ourselves.
          (loop/l->r target source send sstart tstart)
          (loop/r->l target source sstart (- send 1)
                     (+ -1 tstart send (- sstart)))))))

;;; (%VECTOR-REVERSE-COPY! <target> <tstart> <source> <sstart> <send>)
;;;   Copy elements from SSTART to SEND from SOURCE to TARGET, in the
;;;   reverse order.
(define %vector-reverse-copy!
  (letrec ((loop (lambda (target source sstart i j)
                   (cond ((>= i sstart)
                          (vector-set! target j (vector-ref source i))
                          (loop target source sstart
                                (- i 1)
                                (+ j 1)))))))
    (lambda (target tstart source sstart send)
      (loop target source sstart
            (- send 1)
            tstart))))

;;; (%VECTOR-REVERSE! <vector>)
(define %vector-reverse!
  (letrec ((loop (lambda (vec i j)
                   (cond ((<= i j)
                          (let ((v (vector-ref vec i)))
                            (vector-set! vec i (vector-ref vec j))
                            (vector-set! vec j v)
                            (loop vec (+ i 1) (- j 1))))))))
    (lambda (vec start end)
      (loop vec start (- end 1)))))

;;; (%VECTOR-FOLD1 <kons> <knil> <vector>) -> knil'
;;;     (KONS <index> <knil> <elt>) -> knil'
(define %vector-fold1
  (letrec ((loop (lambda (kons knil len vec i)
                   (if (= i len)
                       knil
                       (loop kons
                             (kons i knil (vector-ref vec i))
                             len vec (+ i 1))))))
    (lambda (kons knil len vec)
      (loop kons knil len vec 0))))

;;; (%VECTOR-FOLD2+ <kons> <knil> <vector> ...) -> knil'
;;;     (KONS <index> <knil> <elt> ...) -> knil'
(define %vector-fold2+
  (letrec ((loop (lambda (kons knil len vectors i)
                   (if (= i len)
                       knil
                       (loop kons
                             (apply kons i knil
                                    (vectors-ref vectors i))
                             len vectors (+ i 1))))))
    (lambda (kons knil len vectors)
      (loop kons knil len vectors 0))))

;;; (%VECTOR-MAP! <f> <target> <length> <vector>) -> target
;;;     (F <index> <elt>) -> elt'
(define %vector-map1!
  (letrec ((loop (lambda (f target vec i)
                   (if (zero? i)
                       target
                       (let ((j (- i 1)))
                         (vector-set! target j
                                      (f j (vector-ref vec j)))
                         (loop f target vec j))))))
    (lambda (f target vec len)
      (loop f target vec len))))

;;; (%VECTOR-MAP2+! <f> <target> <vectors> <len>) -> target
;;;     (F <index> <elt> ...) -> elt'
(define %vector-map2+!
  (letrec ((loop (lambda (f target vectors i)
                   (if (zero? i)
                       target
                       (let ((j (- i 1)))
                         (vector-set! target j
                           (apply f j (vectors-ref vectors j)))
                         (loop f target vectors j))))))
    (lambda (f target vectors len)
      (loop f target vectors len))))



;;;;;;;;;;;;;;;;;;;;;;;; ***** vector-lib ***** ;;;;;;;;;;;;;;;;;;;;;;;

;;; --------------------
;;; Constructors

;;; (MAKE-VECTOR <size> [<fill>]) -> vector
;;;   [R5RS] Create a vector of length LENGTH.  If FILL is present,
;;;   initialize each slot in the vector with it; if not, the vector's
;;;   initial contents are unspecified.
(define make-vector make-vector)

;;; (VECTOR <elt> ...) -> vector
;;;   [R5RS] Create a vector containing ELEMENT ..., in order.
(define vector vector)

;;; This ought to be able to be implemented much more efficiently -- if
;;; we have the number of arguments available to us, we can create the
;;; vector without using LENGTH to determine the number of elements it
;;; should have.
;(define (vector . elements) (list->vector elements))

;;; (VECTOR-UNFOLD <f> <length> <initial-seed> ...) -> vector
;;;     (F <index> <seed> ...) -> [elt seed' ...]
;;;   The fundamental vector constructor.  Creates a vector whose
;;;   length is LENGTH and iterates across each index K between 0 and
;;;   LENGTH, applying F at each iteration to the current index and the
;;;   current seeds to receive N+1 values: first, the element to put in
;;;   the Kth slot and then N new seeds for the next iteration.
(define vector-unfold
  (letrec ((tabulate!                   ; Special zero-seed case.
            (lambda (f vec i len)
              (cond ((< i len)
                     (vector-set! vec i (f i))
                     (tabulate! f vec (+ i 1) len)))))
           (unfold1!                    ; Fast path for one seed.
            (lambda (f vec i len seed)
              (if (< i len)
                  (receive (elt new-seed)
                           (f i seed)
                    (vector-set! vec i elt)
                    (unfold1! f vec (+ i 1) len new-seed)))))
           (unfold2+!                   ; Slower variant for N seeds.
            (lambda (f vec i len seeds)
              (if (< i len)
                  (receive (elt . new-seeds)
                           (apply f i seeds)
                    (vector-set! vec i elt)
                    (unfold2+! f vec (+ i 1) len new-seeds))))))
    (lambda (f len . initial-seeds)
      (let ((f   (check-type procedure?  f   vector-unfold))
            (len (check-type nonneg-int? len vector-unfold)))
        (let ((vec (make-vector len)))
          (cond ((null? initial-seeds)
                 (tabulate! f vec 0 len))
                ((null? (cdr initial-seeds))
                 (unfold1! f vec 0 len (car initial-seeds)))
                (else
                 (unfold2+! f vec 0 len initial-seeds)))
          vec)))))

;;; (VECTOR-UNFOLD-RIGHT <f> <length> <initial-seed> ...) -> vector
;;;     (F <seed> ...) -> [seed' ...]
;;;   Like VECTOR-UNFOLD, but it generates elements from LENGTH to 0
;;;   (still exclusive with  LENGTH and inclusive with 0), not 0 to
;;;   LENGTH as with VECTOR-UNFOLD.
(define vector-unfold-right
  (letrec ((tabulate!
            (lambda (f vec i)
              (cond ((>= i 0)
                     (vector-set! vec i (f i))
                     (tabulate! f vec (- i 1))))))
           (unfold1!
            (lambda (f vec i seed)
              (if (>= i 0)
                  (receive (elt new-seed)
                           (f i seed)
                    (vector-set! vec i elt)
                    (unfold1! f vec (- i 1) new-seed)))))
           (unfold2+!
            (lambda (f vec i seeds)
              (if (>= i 0)
                  (receive (elt . new-seeds)
                           (apply f i seeds)
                    (vector-set! vec i elt)
                    (unfold2+! f vec (- i 1) new-seeds))))))
    (lambda (f len . initial-seeds)
      (let ((f   (check-type procedure?  f   vector-unfold-right))
            (len (check-type nonneg-int? len vector-unfold-right)))
        (let ((vec (make-vector len))
              (i (- len 1)))
          (cond ((null? initial-seeds)
                 (tabulate! f vec i))
                ((null? (cdr initial-seeds))
                 (unfold1!  f vec i (car initial-seeds)))
                (else
                 (unfold2+! f vec i initial-seeds)))
          vec)))))

;;; (VECTOR-COPY <vector> [<start> <end> <fill>]) -> vector
;;;   Create a newly allocated vector containing the elements from the
;;;   range [START,END) in VECTOR.  START defaults to 0; END defaults
;;;   to the length of VECTOR.  END may be greater than the length of
;;;   VECTOR, in which case the vector is enlarged; if FILL is passed,
;;;   the new locations from which there is no respective element in
;;;   VECTOR are filled with FILL.
(define (vector-copy vec . args)
  (let ((vec (check-type vector? vec vector-copy)))
    ;; We can't use LET-VECTOR-START+END, because we have one more
    ;; argument, and we want finer control, too.
    ;;
    ;; Olin's implementation of LET*-OPTIONALS would prove useful here:
    ;; the built-in argument-checks-as-you-go-along produces almost
    ;; _exactly_ the same code as VECTOR-COPY:PARSE-ARGS.
    (receive (start end fill)
             (vector-copy:parse-args vec args)
      (let ((new-vector (make-vector (- end start) fill)))
        (%vector-copy! new-vector 0
                       vec        start
                       (if (> end (vector-length vec))
                           (vector-length vec)
                           end))
        new-vector))))

;;; Auxiliary for VECTOR-COPY.
(define (vector-copy:parse-args vec args)
  (if (null? args)
      (values 0 (vector-length vec) (unspecified-value))
      (let ((start (check-index vec (car args) vector-copy)))
        (if (null? (cdr args))
            (values start (vector-length vec) (unspecified-value))
            (let ((end (check-type nonneg-int? (cadr args)
                                   vector-copy)))
              (cond ((>= start (vector-length vec))
                     (error "start bound out of bounds"
                            `(start was ,start)
                            `(end was ,end)
                            `(vector was ,vec)
                            `(while calling ,vector-copy)))
                    ((> start end)
                     (error "can't invert a vector copy!"
                            `(start was ,start)
                            `(end was ,end)
                            `(vector was ,vec)
                            `(while calling ,vector-copy)))
                    ((null? (cddr args))
                     (values start end (unspecified-value)))
                    (else
                     (let ((fill (caddr args)))
                       (if (null? (cdddr args))
                           (values start end fill)
                           (error "too many arguments"
                                  vector-copy
                                  (cdddr args)))))))))))

;;; (VECTOR-REVERSE-COPY <vector> [<start> <end>]) -> vector
;;;   Create a newly allocated vector whose elements are the reversed
;;;   sequence of elements between START and END in VECTOR.  START's
;;;   default is 0; END's default is the length of VECTOR.
(define (vector-reverse-copy vec . maybe-start+end)
  (let-vector-start+end vector-reverse-copy vec maybe-start+end
                        (start end)
    (let ((new (make-vector (- end start))))
      (%vector-reverse-copy! new 0 vec start end)
      new)))

;;; (VECTOR-APPEND <vector> ...) -> vector
;;;   Append VECTOR ... into a newly allocated vector and return that
;;;   new vector.
(define (vector-append . vectors)
  (vector-concatenate:aux vectors vector-append))

;;; (VECTOR-CONCATENATE <vector-list>) -> vector
;;;   Concatenate the vectors in VECTOR-LIST.  This is equivalent to
;;;     (apply vector-append VECTOR-LIST)
;;;   but VECTOR-APPEND tends to be implemented in terms of
;;;   VECTOR-CONCATENATE, and some Schemes bork when the list to apply
;;;   a function to is too long.
;;;
;;; Actually, they're both implemented in terms of an internal routine.
(define (vector-concatenate vector-list)
  (vector-concatenate:aux vector-list vector-concatenate))

;;; Auxiliary for VECTOR-APPEND and VECTOR-CONCATENATE
(define vector-concatenate:aux
  (letrec ((compute-length
            (lambda (vectors len callee)
              (if (null? vectors)
                  len
                  (let ((vec (check-type vector? (car vectors)
                                         callee)))
                    (compute-length (cdr vectors)
                                    (+ (vector-length vec) len)
                                    callee)))))
           (concatenate!
            (lambda (vectors target to)
              (if (null? vectors)
                  target
                  (let* ((vec1 (car vectors))
                         (len (vector-length vec1)))
                    (%vector-copy! target to vec1 0 len)
                    (concatenate! (cdr vectors) target
                                  (+ to len)))))))
    (lambda (vectors callee)
      (cond ((null? vectors)            ;+++
             (make-vector 0))
            ((null? (cdr vectors))      ;+++
             ;; Blech, we still have to allocate a new one.
             (let* ((vec (check-type vector? (car vectors) callee))
                    (len (vector-length vec))
                    (new (make-vector len)))
               (%vector-copy! new 0 vec 0 len)
               new))
            (else
             (let ((new-vector
                    (make-vector (compute-length vectors 0 callee))))
               (concatenate! vectors new-vector 0)
               new-vector))))))



;;; --------------------
;;; Predicates

;;; (VECTOR? <value>) -> boolean
;;;   [R5RS] Return #T if VALUE is a vector and #F if not.
(define vector? vector?)

;;; (VECTOR-EMPTY? <vector>) -> boolean
;;;   Return #T if VECTOR has zero elements in it, i.e. VECTOR's length
;;;   is 0, and #F if not.
(define (vector-empty? vec)
  (let ((vec (check-type vector? vec vector-empty?)))
    (zero? (vector-length vec))))

;;; (VECTOR= <elt=?> <vector> ...) -> boolean
;;;     (ELT=? <value> <value>) -> boolean
;;;   Determine vector equality generalized across element comparators.
;;;   Vectors A and B are equal iff their lengths are the same and for
;;;   each respective elements E_a and E_b (element=? E_a E_b) returns
;;;   a true value.  ELT=? is always applied to two arguments.  Element
;;;   comparison must be consistent wtih EQ?; that is, if (eq? E_a E_b)
;;;   results in a true value, then (ELEMENT=? E_a E_b) must result in a
;;;   true value.  This may be exploited to avoid multiple unnecessary
;;;   element comparisons.  (This implementation does, but does not deal
;;;   with the situation that ELEMENT=? is EQ? to avoid more unnecessary
;;;   comparisons, but I believe this optimization is probably fairly
;;;   insignificant.)
;;;   
;;;   If the number of vector arguments is zero or one, then #T is
;;;   automatically returned.  If there are N vector arguments,
;;;   VECTOR_1 VECTOR_2 ... VECTOR_N, then VECTOR_1 & VECTOR_2 are
;;;   compared; if they are equal, the vectors VECTOR_2 ... VECTOR_N
;;;   are compared.  The precise order in which ELT=? is applied is not
;;;   specified.
(define (vector= elt=? . vectors)
  (let ((elt=? (check-type procedure? elt=? vector=)))
    (cond ((null? vectors)
           #t)
          ((null? (cdr vectors))
           (check-type vector? (car vectors) vector=)
           #t)
          (else
           (let loop ((vecs vectors))
             (let ((vec1 (check-type vector? (car vecs) vector=))
                   (vec2+ (cdr vecs)))
               (or (null? vec2+)
                   (and (binary-vector= elt=? vec1 (car vec2+))
                        (loop vec2+)))))))))
(define (binary-vector= elt=? vector-a vector-b)
  (or (eq? vector-a vector-b)           ;+++
      (let ((length-a (vector-length vector-a))
            (length-b (vector-length vector-b)))
        (letrec ((loop (lambda (i)
                         (or (= i length-a)
                             (and (< i length-b)
                                  (test (vector-ref vector-a i)
                                        (vector-ref vector-b i)
                                        i)))))
                 (test (lambda (elt-a elt-b i)
                         (and (or (eq? elt-a elt-b) ;+++
                                  (elt=? elt-a elt-b))
                              (loop (+ i 1))))))
          (and (= length-a length-b)
               (loop 0))))))



;;; --------------------
;;; Selectors

;;; (VECTOR-REF <vector> <index>) -> value
;;;   [R5RS] Return the value that the location in VECTOR at INDEX is
;;;   mapped to in the store.
(define vector-ref vector-ref)

;;; (VECTOR-LENGTH <vector>) -> exact, nonnegative integer
;;;   [R5RS] Return the length of VECTOR.
(define vector-length vector-length)



;;; --------------------
;;; Iteration

;;; (VECTOR-FOLD <kons> <initial-knil> <vector> ...) -> knil
;;;     (KONS <knil> <elt> ...) -> knil' ; N vectors -> N+1 args
;;;   The fundamental vector iterator.  KONS is iterated over each
;;;   index in all of the vectors in parallel, stopping at the end of
;;;   the shortest; KONS is applied to an argument list of (list I
;;;   STATE (vector-ref VEC I) ...), where STATE is the current state
;;;   value -- the state value begins with KNIL and becomes whatever
;;;   KONS returned at the respective iteration --, and I is the
;;;   current index in the iteration.  The iteration is strictly left-
;;;   to-right.
;;;     (vector-fold KONS KNIL (vector E_1 E_2 ... E_N))
;;;       <=>
;;;     (KONS (... (KONS (KONS KNIL E_1) E_2) ... E_N-1) E_N)
(define (vector-fold kons knil vec . vectors)
  (let ((kons (check-type procedure? kons vector-fold))
        (vec  (check-type vector?    vec  vector-fold)))
    (if (null? vectors)
        (%vector-fold1 kons knil (vector-length vec) vec)
        (%vector-fold2+ kons knil
                        (%smallest-length vectors
                                          (vector-length vec)
                                          vector-fold)
                        (cons vec vectors)))))

;;; (VECTOR-FOLD-RIGHT <kons> <initial-knil> <vector> ...) -> knil
;;;     (KONS <knil> <elt> ...) -> knil' ; N vectors => N+1 args
;;;   The fundamental vector recursor.  Iterates in parallel across
;;;   VECTOR ... right to left, applying KONS to the elements and the
;;;   current state value; the state value becomes what KONS returns
;;;   at each next iteration.  KNIL is the initial state value.
;;;     (vector-fold-right KONS KNIL (vector E_1 E_2 ... E_N))
;;;       <=>
;;;     (KONS (... (KONS (KONS KNIL E_N) E_N-1) ... E_2) E_1)
;;;
;;; Not implemented in terms of a more primitive operations that might
;;; called %VECTOR-FOLD-RIGHT due to the fact that it wouldn't be very
;;; useful elsewhere.
(define vector-fold-right
  (letrec ((loop1 (lambda (kons knil vec i)
                    (if (negative? i)
                        knil
                        (loop1 kons (kons i knil (vector-ref vec i))
                               vec
                               (- i 1)))))
           (loop2+ (lambda (kons knil vectors i)
                     (if (negative? i)
                         knil
                         (loop2+ kons
                                 (apply kons i knil
                                        (vectors-ref vectors i))
                                 vectors
                                 (- i 1))))))
    (lambda (kons knil vec . vectors)
      (let ((kons (check-type procedure? kons vector-fold-right))
            (vec  (check-type vector?    vec  vector-fold-right)))
        (if (null? vectors)
            (loop1  kons knil vec (- (vector-length vec) 1))
            (loop2+ kons knil (cons vec vectors)
                    (- (%smallest-length vectors
                                         (vector-length vec)
                                         vector-fold-right)
                       1)))))))

;;; (VECTOR-MAP <f> <vector> ...) -> vector
;;;     (F <elt> ...) -> value ; N vectors -> N args
;;;   Constructs a new vector of the shortest length of the vector
;;;   arguments.  Each element at index I of the new vector is mapped
;;;   from the old vectors by (F I (vector-ref VECTOR I) ...).  The
;;;   dynamic order of application of F is unspecified.
(define (vector-map f vec . vectors)
  (let ((f   (check-type procedure? f   vector-map))
        (vec (check-type vector?    vec vector-map)))
    (if (null? vectors)
        (let ((len (vector-length vec)))
          (%vector-map1! f (make-vector len) vec len))
        (let ((len (%smallest-length vectors
                                     (vector-length vec)
                                     vector-map)))
          (%vector-map2+! f (make-vector len) (cons vec vectors)
                          len)))))

;;; (VECTOR-MAP! <f> <vector> ...) -> unspecified
;;;     (F <elt> ...) -> element' ; N vectors -> N args
;;;   Similar to VECTOR-MAP, but rather than mapping the new elements
;;;   into a new vector, the new mapped elements are destructively
;;;   inserted into the first vector.  Again, the dynamic order of
;;;   application of F is unspecified, so it is dangerous for F to
;;;   manipulate the first VECTOR.
(define (vector-map! f vec . vectors)
  (let ((f   (check-type procedure? f   vector-map!))
        (vec (check-type vector?    vec vector-map!)))
    (if (null? vectors)
        (%vector-map1!  f vec vec (vector-length vec))
        (%vector-map2+! f vec (cons vec vectors)
                        (%smallest-length vectors
                                          (vector-length vec)
                                          vector-map!)))
    (unspecified-value)))

;;; (VECTOR-FOR-EACH <f> <vector> ...) -> unspecified
;;;     (F <elt> ...) ; N vectors -> N args
;;;   Simple vector iterator: applies F to each index in the range [0,
;;;   LENGTH), where LENGTH is the length of the smallest vector
;;;   argument passed, and the respective element at that index.  In
;;;   contrast with VECTOR-MAP, F is reliably applied to each
;;;   subsequent elements, starting at index 0 from left to right, in
;;;   the vectors.
(define vector-for-each
  (letrec ((for-each1
            (lambda (f vec i len)
              (cond ((< i len)
                     (f i (vector-ref vec i))
                     (for-each1 f vec (+ i 1) len)))))
           (for-each2+
            (lambda (f vecs i len)
              (cond ((< i len)
                     (apply f i (vectors-ref vecs i))
                     (for-each2+ f vecs (+ i 1) len))))))
    (lambda (f vec . vectors)
      (let ((f   (check-type procedure? f   vector-for-each))
            (vec (check-type vector?    vec vector-for-each)))
        (if (null? vectors)
            (for-each1 f vec 0 (vector-length vec))
            (for-each2+ f (cons vec vectors) 0
                        (%smallest-length vectors
                                          (vector-length vec)
                                          vector-for-each)))))))

;;; (VECTOR-COUNT <predicate?> <vector> ...)
;;;       -> exact, nonnegative integer
;;;     (PREDICATE? <index> <value> ...) ; N vectors -> N+1 args
;;;   PREDICATE? is applied element-wise to the elements of VECTOR ...,
;;;   and a count is tallied of the number of elements for which a
;;;   true value is produced by PREDICATE?.  This count is returned.
(define (vector-count pred? vec . vectors)
  (let ((pred? (check-type procedure? pred? vector-count))
        (vec   (check-type vector?    vec   vector-count)))
    (if (null? vectors)
        (%vector-fold1 (lambda (index count elt)
                         (if (pred? index elt)
                             (+ count 1)
                             count))
                       0
                       (vector-length vec)
                       vec)
        (%vector-fold2+ (lambda (index count . elts)
                          (if (apply pred? index elts)
                              (+ count 1)
                              count))
                        0
                        (%smallest-length vectors
                                          (vector-length vec)
                                          vector-count)
                        (cons vec vectors)))))



;;; --------------------
;;; Searching

;;; (VECTOR-INDEX <predicate?> <vector> ...)
;;;       -> exact, nonnegative integer or #F
;;;     (PREDICATE? <elt> ...) -> boolean ; N vectors -> N args
;;;   Search left-to-right across VECTOR ... in parallel, returning the
;;;   index of the first set of values VALUE ... such that (PREDICATE?
;;;   VALUE ...) returns a true value; if no such set of elements is
;;;   reached, return #F.
(define (vector-index pred? vec . vectors)
  (vector-index/skip pred? vec vectors vector-index))

;;; (VECTOR-SKIP <predicate?> <vector> ...)
;;;       -> exact, nonnegative integer or #F
;;;     (PREDICATE? <elt> ...) -> boolean ; N vectors -> N args
;;;   (vector-index (lambda elts (not (apply PREDICATE? elts)))
;;;                 VECTOR ...)
;;;   Like VECTOR-INDEX, but find the index of the first set of values
;;;   that do _not_ satisfy PREDICATE?.
(define (vector-skip pred? vec . vectors)
  (vector-index/skip (lambda elts (not (apply pred? elts)))
                     vec vectors
                     vector-skip))

;;; Auxiliary for VECTOR-INDEX & VECTOR-SKIP
(define vector-index/skip
  (letrec ((loop1  (lambda (pred? vec len i)
                     (cond ((= i len) #f)
                           ((pred? (vector-ref vec i)) i)
                           (else (loop1 pred? vec len (+ i 1))))))
           (loop2+ (lambda (pred? vectors len i)
                     (cond ((= i len) #f)
                           ((apply pred? (vectors-ref vectors i)) i)
                           (else (loop2+ pred? vectors len
                                         (+ i 1)))))))
    (lambda (pred? vec vectors callee)
      (let ((pred? (check-type procedure? pred? callee))
            (vec   (check-type vector?    vec   callee)))
        (if (null? vectors)
            (loop1 pred? vec (vector-length vec) 0)
            (loop2+ pred? (cons vec vectors)
                    (%smallest-length vectors
                                      (vector-length vec)
                                      callee)
                    0))))))

;;; (VECTOR-INDEX-RIGHT <predicate?> <vector> ...)
;;;       -> exact, nonnegative integer or #F
;;;     (PREDICATE? <elt> ...) -> boolean ; N vectors -> N args
;;;   Right-to-left variant of VECTOR-INDEX.
(define (vector-index-right pred? vec . vectors)
  (vector-index/skip-right pred? vec vectors vector-index-right))

;;; (VECTOR-SKIP-RIGHT <predicate?> <vector> ...)
;;;       -> exact, nonnegative integer or #F
;;;     (PREDICATE? <elt> ...) -> boolean ; N vectors -> N args
;;;   Right-to-left variant of VECTOR-SKIP.
(define (vector-skip-right pred? vec . vectors)
  (vector-index/skip-right (lambda elts (not (apply pred? elts)))
                           vec vectors
                           vector-index-right))

(define vector-index/skip-right
  (letrec ((loop1  (lambda (pred? vec i)
                     (cond ((negative? i) #f)
                           ((pred? (vector-ref vec i)) i)
                           (else (loop1 pred? vec (- i 1))))))
           (loop2+ (lambda (pred? vectors i)
                     (cond ((negative? i) #f)
                           ((apply pred? (vectors-ref vectors i)) i)
                           (else (loop2+ pred? vectors (- i 1)))))))
    (lambda (pred? vec vectors callee)
      (let ((pred? (check-type procedure? pred? callee))
            (vec   (check-type vector?    vec   callee)))
        (if (null? vectors)
            (loop1 pred? vec (- (vector-length vec) 1))
            (loop2+ pred? (cons vec vectors)
                    (- (%smallest-length vectors
                                         (vector-length vec)
                                         callee)
                       1)))))))

;;; (VECTOR-BINARY-SEARCH <vector> <value> <cmp> [<start> <end>])
;;;       -> exact, nonnegative integer or #F
;;;     (CMP <value1> <value2>) -> integer
;;;       positive -> VALUE1 > VALUE2
;;;       zero     -> VALUE1 = VALUE2
;;;       negative -> VALUE1 < VALUE2
;;;   Perform a binary search through VECTOR for VALUE, comparing each
;;;   element to VALUE with CMP.
(define (vector-binary-search vec value cmp . maybe-start+end)
  (let ((cmp (check-type procedure? cmp vector-binary-search)))
    (let-vector-start+end vector-binary-search vec maybe-start+end
                          (start end)
      (let loop ((start start) (end end) (j #f))
        (let ((i (quotient (+ start end) 2)))
          (if (or (= start end) (and j (= i j)))
              #f
              (let ((comparison
                     (check-type integer?
                                 (cmp (vector-ref vec i) value)
                                 `(,cmp for ,vector-binary-search))))
                (cond ((zero?     comparison) i)
                      ((positive? comparison) (loop start i i))
                      (else                   (loop i end i))))))))))

;;; (VECTOR-ANY <pred?> <vector> ...) -> value
;;;   Apply PRED? to each parallel element in each VECTOR ...; if PRED?
;;;   should ever return a true value, immediately stop and return that
;;;   value; otherwise, when the shortest vector runs out, return #F.
;;;   The iteration and order of application of PRED? across elements
;;;   is of the vectors is strictly left-to-right.
(define vector-any
  (letrec ((loop1 (lambda (pred? vec i len len-1)
                    (and (not (= i len))
                         (if (= i len-1)
                             (pred? (vector-ref vec i))
                             (or (pred? (vector-ref vec i))
                                 (loop1 pred? vec (+ i 1)
                                        len len-1))))))
           (loop2+ (lambda (pred? vectors i len len-1)
                     (and (not (= i len))
                          (if (= i len-1)
                              (apply pred? (vectors-ref vectors i))
                              (or (apply pred? (vectors-ref vectors i))
                                  (loop2+ pred? vectors (+ i 1)
                                         len len-1)))))))
    (lambda (pred? vec . vectors)
      (let ((pred? (check-type procedure? pred? vector-any))
            (vec   (check-type vector?    vec   vector-any)))
        (if (null? vectors)
            (let ((len (vector-length vec)))
              (loop1 pred? vec 0 len (- len 1)))
            (let ((len (%smallest-length vectors
                                         (vector-length vec)
                                         vector-any)))
              (loop2+ pred? (cons vec vectors) 0 len (- len 1))))))))

;;; (VECTOR-EVERY <pred?> <vector> ...) -> value
;;;   Apply PRED? to each parallel value in each VECTOR ...; if PRED?
;;;   should ever return #F, immediately stop and return #F; otherwise,
;;;   if PRED? should return a true value for each element, stopping at
;;;   the end of the shortest vector, return the last value that PRED?
;;;   returned.  In the case that there is an empty vector, return #T.
;;;   The iteration and order of application of PRED? across elements
;;;   is of the vectors is strictly left-to-right.
(define vector-every
  (letrec ((loop1 (lambda (pred? vec i len len-1)
                    (or (= i len)
                        (if (= i len-1)
                            (pred? (vector-ref vec i))
                            (and (pred? (vector-ref vec i))
                                 (loop1 pred? vec (+ i 1)
                                        len len-1))))))
           (loop2+ (lambda (pred? vectors i len len-1)
                     (or (= i len)
                         (if (= i len-1)
                             (apply pred? (vectors-ref vectors i))
                             (and (apply pred? (vectors-ref vectors i))
                                  (loop2+ pred? vectors (+ i 1)
                                          len len-1)))))))
    (lambda (pred? vec . vectors)
      (let ((pred? (check-type procedure? pred? vector-every))
            (vec   (check-type vector?    vec   vector-every)))
        (if (null? vectors)
            (let ((len (vector-length vec)))
              (loop1 pred? vec 0 len (- len 1)))
            (let ((len (%smallest-length vectors
                                         (vector-length vec)
                                         vector-every)))
              (loop2+ pred? (cons vec vectors) 0 len (- len 1))))))))



;;; --------------------
;;; Mutators

;;; (VECTOR-SET! <vector> <index> <value>) -> unspecified
;;;   [R5RS] Assign the location at INDEX in VECTOR to VALUE.
(define vector-set! vector-set!)

;;; (VECTOR-SWAP! <vector> <index1> <index2>) -> unspecified
;;;   Swap the values in the locations at INDEX1 and INDEX2.
(define (vector-swap! vec i j)
  (let ((vec (check-type vector? vec vector-swap!)))
    (let ((i (check-index vec i vector-swap!))
          (j (check-index vec j vector-swap!)))
      (let ((x (vector-ref vec i)))
        (vector-set! vec i (vector-ref vec j))
        (vector-set! vec j x)))))

;;; (VECTOR-FILL! <vector> <value> [<start> <end>]) -> unspecified
;;;   [R5RS+] Fill the locations in VECTOR between START, whose default
;;;   is 0, and END, whose default is the length of VECTOR, with VALUE.
;;;
;;; This one can probably be made really fast natively.
(define vector-fill!
  (let ((%vector-fill! vector-fill!))   ; Take the native one, under
                                        ;   the assumption that it's
                                        ;   faster, so we can use it if
                                        ;   there are no optional
                                        ;   arguments.
    (lambda (vec value . maybe-start+end)
      (if (null? maybe-start+end)
          (%vector-fill! vec value)     ;+++
          (let-vector-start+end vector-fill! vec maybe-start+end
                                (start end)
            (do ((i start (+ i 1)))
                ((= i end))
              (vector-set! vec i value)))))))

;;; (VECTOR-COPY! <target> <tstart> <source> [<sstart> <send>])
;;;       -> unspecified
;;;   Copy the values in the locations in [SSTART,SEND) from SOURCE to
;;;   to TARGET, starting at TSTART in TARGET.
(define (vector-copy! target tstart source . maybe-sstart+send)
  (let* ((target (check-type vector? target vector-copy!))
         (tstart (check-index target tstart vector-copy!)))
    (let-vector-start+end vector-copy! source maybe-sstart+send
                          (sstart send)
      (let* ((source-length (vector-length source))
             (lose (lambda (argument)
                     (error "vector range out of bounds"
                            argument
                            `(while calling ,vector-copy!)
                            `(target was ,target)
                            `(target-length was ,(vector-length target))
                            `(tstart was ,tstart)
                            `(source was ,source)
                            `(source-length was ,source-length)
                            `(sstart was ,sstart)
                            `(send   was ,send)))))
        (cond ((< sstart 0)
               (lose '(sstart < 0)))
              ((< send 0)
               (lose '(send < 0)))
              ((> sstart send)
               (lose '(sstart > send)))
              ((>= sstart source-length)
               (lose '(sstart >= source-length)))
              ((> send source-length)
               (lose '(send > source-length)))
              (else
               (%vector-copy! target tstart
                              source sstart send)))))))

;;; (VECTOR-REVERSE-COPY! <target> <tstart> <source> [<sstart> <send>])
(define (vector-reverse-copy! target tstart source . maybe-sstart+send)
  (let* ((target (check-type vector? target vector-reverse-copy!))
         (tstart (check-index target tstart vector-reverse-copy!)))
    (let-vector-start+end vector-reverse-copy source maybe-sstart+send
                          (sstart send)
      (let* ((source-length (vector-length source))
             (lose (lambda (argument)
                     (error "vector range out of bounds"
                            argument
                            `(while calling ,vector-reverse-copy!)
                            `(target was ,target)
                            `(target-length was ,(vector-length target))
                            `(tstart was ,tstart)
                            `(source was ,source)
                            `(source-length was ,source-length)
                            `(sstart was ,sstart)
                            `(send   was ,send)))))
        (cond ((< sstart 0)
               (lose '(sstart < 0)))
              ((< send 0)
               (lose '(send < 0)))
              ((> sstart send)
               (lose '(sstart > send)))
              ((>= sstart source-length)
               (lose '(sstart >= source-length)))
              ((> send source-length)
               (lose '(send > source-length)))
              ((and (eq? target source)
                    (= sstart tstart))
               (%vector-reverse! target tstart send))
              ((and (eq? target source)
                    (or (between? sstart tstart send)
                        (between? tstart sstart
                                  (+ tstart (- send sstart)))))
               (error "vector range for self-copying overlaps"
                      vector-reverse-copy!
                      `(vector was ,target)
                      `(tstart was ,tstart)
                      `(sstart was ,sstart)
                      `(send   was ,send)))
              (else
               (%vector-reverse-copy! target tstart
                                      source sstart send)))))))

;;; (VECTOR-REVERSE! <vector> [<start> <end>]) -> unspecified
;;;   Destructively reverse the contents of the sequence of locations
;;;   in VECTOR between START, whose default is 0, and END, whose
;;;   default is the length of VECTOR.
(define (vector-reverse! vec . start+end)
  (let-vector-start+end vector-reverse! vec start+end
                        (start end)
    (%vector-reverse! vec start end)))



;;; --------------------
;;; Conversion

;;; (VECTOR->LIST <vector> [<start> <end>]) -> list
;;;   [R5RS+] Produce a list containing the elements in the locations
;;;   between START, whose default is 0, and END, whose default is the
;;;   length of VECTOR, from VECTOR.
(define vector->list
  (let ((%vector->list vector->list))
    (lambda (vec . maybe-start+end)
      (if (null? maybe-start+end)       ; Oughta use CASE-LAMBDA.
          (%vector->list vec)           ;+++
          (let-vector-start+end vector->list vec maybe-start+end
                                (start end)
            ;(unfold (lambda (i)        ; No SRFI 1.
            ;          (< i start))
            ;        (lambda (i) (vector-ref vec i))
            ;        (lambda (i) (- i 1))
            ;        (- end 1))
            (do ((i (- end 1) (- i 1))
                 (result '() (cons (vector-ref vec i) result)))
                ((< i start) result)))))))

;;; (REVERSE-VECTOR->LIST <vector> [<start> <end>]) -> list
;;;   Produce a list containing the elements in the locations between
;;;   START, whose default is 0, and END, whose default is the length
;;;   of VECTOR, from VECTOR, in reverse order.
(define (reverse-vector->list vec . maybe-start+end)
  (let-vector-start+end reverse-vector->list vec maybe-start+end
                        (start end)
    ;(unfold (lambda (i) (= i end))     ; No SRFI 1.
    ;        (lambda (i) (vector-ref vec i))
    ;        (lambda (i) (+ i 1))
    ;        start)
    (do ((i start (+ i 1))
         (result '() (cons (vector-ref vec i) result)))
        ((= i end) result))))

;;; (LIST->VECTOR <list> [<start> <end>]) -> vector
;;;   [R5RS+] Produce a vector containing the elements in LIST, which
;;;   must be a proper list, between START, whose default is 0, & END,
;;;   whose default is the length of LIST.  It is suggested that if the
;;;   length of LIST is known in advance, the START and END arguments
;;;   be passed, so that LIST->VECTOR need not call LENGTH to determine
;;;   the the length.
;;;
;;; This implementation diverges on circular lists, unless LENGTH fails
;;; and causes - to fail as well.  Given a LENGTH* that computes the
;;; length of a list's cycle, this wouldn't diverge, and would work
;;; great for circular lists.
(define list->vector
  (let ((%list->vector list->vector))
    (lambda (lst . maybe-start+end)
      ;; Checking the type of a proper list is expensive, so we do it
      ;; amortizedly, or let %LIST->VECTOR or LIST-TAIL do it.
      (if (null? maybe-start+end)       ; Oughta use CASE-LAMBDA.
          (%list->vector lst)           ;+++
          ;; We can't use LET-VECTOR-START+END, because we're using the
          ;; bounds of a _list_, not a vector.
          (let*-optionals maybe-start+end
              ((start 0)
               (end (length lst)))      ; Ugh -- LENGTH
            (let ((start (check-type nonneg-int? start list->vector))
                  (end   (check-type nonneg-int? end   list->vector)))
              ((lambda (f)
                 (vector-unfold f (- end start) (list-tail lst start)))
               (lambda (index l)
                 (cond ((null? l)
                        (error "list was too short"
                               `(list was ,lst)
                               `(attempted end was ,end)
                               `(while calling ,list->vector)))
                       ((pair? l)
                        (values (car l) (cdr l)))
                       (else
                        ;; Make this look as much like what CHECK-TYPE
                        ;; would report as possible.
                        (error "erroneous value"
                               ;; We want SRFI 1's PROPER-LIST?, but it
                               ;; would be a waste to link all of SRFI
                               ;; 1 to this module for only the single
                               ;; function PROPER-LIST?.
                               (list list? lst)
                               `(while calling
                                 ,list->vector))))))))))))

;;; (REVERSE-LIST->VECTOR <list> [<start> <end>]) -> vector
;;;   Produce a vector containing the elements in LIST, which must be a
;;;   proper list, between START, whose default is 0, and END, whose
;;;   default is the length of LIST, in reverse order.  It is suggested
;;;   that if the length of LIST is known in advance, the START and END
;;;   arguments be passed, so that REVERSE-LIST->VECTOR need not call
;;;   LENGTH to determine the the length.
;;;
;;; This also diverges on circular lists unless, again, LENGTH returns
;;; something that makes - bork.
(define (reverse-list->vector lst . maybe-start+end)
  (let*-optionals maybe-start+end
      ((start 0)
       (end (length lst)))              ; Ugh -- LENGTH
    (let ((start (check-type nonneg-int? start reverse-list->vector))
          (end   (check-type nonneg-int? end   reverse-list->vector)))
      ((lambda (f)
         (vector-unfold-right f (- end start) (list-tail lst start)))
       (lambda (index l)
         (cond ((null? l)
                (error "list too short"
                       `(list was ,lst)
                       `(attempted end was ,end)
                       `(while calling ,reverse-list->vector)))
               ((pair? l)
                (values (car l) (cdr l)))
               (else
                (error "erroneous value"
                       (list list? lst)
                       `(while calling ,reverse-list->vector)))))))))