/usr/include/trilinos/mrtr_projector.H is in libtrilinos-dev 10.4.0.dfsg-1ubuntu2.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 | /*
#@HEADER
# ************************************************************************
#
# Moertel FE Package
# Copyright (2006) Sandia Corporation
#
# Under terms of Contract DE-AC04-94AL85000, there is a non-exclusive
# license for use of this work by or on behalf of the U.S. Government.
#
# This library is free software; you can redistribute it and/or modify
# it under the terms of the GNU Lesser General Public License as
# published by the Free Software Foundation; either version 2.1 of the
# License, or (at your option) any later version.
#
# This library is distributed in the hope that it will be useful, but
# WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
# Lesser General Public License for more details.
#
# You should have received a copy of the GNU Lesser General Public
# License along with this library; if not, write to the Free Software
# Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307
# USA
# Questions? Contact Glen Hansen (Glen.Hansen@inl.gov)
#
# ************************************************************************
#@HEADER
*/
/* ******************************************************************** */
/* See the file COPYRIGHT for a complete copyright notice, contact */
/* person and disclaimer. */
/* ******************************************************************** */
/*!
* \file mrtr_projector.H
*
* \class MOERTEL::Projector
*
* \brief A class to perform projections of nodes onto opposing segments in 2D and 3D
*
* \date Last update do Doxygen: 20-March-06
*
*/
#ifndef MOERTEL_PROJECTOR_H
#define MOERTEL_PROJECTOR_H
#include <ctime>
#include <iostream>
#include <iomanip>
using namespace std;
// ---------- User Defined Includes ----------
/*!
\brief MOERTEL: namespace of the Moertel package
The Moertel package depends on \ref Epetra, \ref EpetraExt, \ref Teuchos,
\ref Amesos, \ref ML and \ref AztecOO:<br>
Use at least the following lines in the configure of Trilinos:<br>
\code
--enable-moertel
--enable-epetra
--enable-epetraext
--enable-teuchos
--enable-ml
--enable-aztecoo --enable-aztecoo-teuchos
--enable-amesos
\endcode
*/
namespace MOERTEL
{
// forward declarations
class Interface;
class Segment;
class Node;
/*!
\class Projector
\brief <b> A class to perform projections of nodes onto opposing segments in 2D and 3D </b>
This class performs all neccessary projections of nodes onto opposing segment surfaces in 2D and 3D
applying 2 different kinds of projection techniques.<br>
In 2D problems, the user has a choice of projecting nodes onto opposing segment surfaces
either orthogonal to that segment surface or along a previously constructed
C0-continous normal field of the slave side.<br>
In both cases finding the projection of a Node on a Segment in terms of the segment's local
coordinates of the projection point is a nonlinear operation. A local Newton iteration
is involved and a dense solve of a 2x2 system is neccessary within the Newton iteration.<br>
When projecting along the C0-continous normal field, the field of normals is defined over the
slave side discretization and is an interpolation of (weighted averaged) nodal normals of the slave side.
Projections in both directions are performed along that same normal field making it neccessary to have
different methods for projecting slave to mortar and vice versa.
In 3D projection is always performed along a previously constructed outward field of nodal normals.
The projection of a point in 3D along a field onto a 2D surface is always a nonlinear iteration
and a Newton method is applied here involving a dense 3x3 solve in each Newton step.
These projections make up for a pretty good share of the overall computational cost
of the mortar method though convergence in the Newton iterations is usually excellent.
\author Glen Hansen (Glen.Hansen@inl.gov)
*/
class Projector
{
public:
// @{ \name Constructors and destructors
/*!
\brief Constructor
Constructs an instance of this class.<br>
Note that this is \b not a collective call as projections are performed in parallel by
individual processes.
\param twoD : True if problem is 2D, false if problem is 3D
\param outlevel : Level of output information written to stdout ( 0 - 10 )
*/
explicit Projector(bool twoD, int outlevel);
/*!
\brief Destructor
*/
virtual ~Projector();
//@}
// @{ \name Public members
/*!
\brief Return the level of output written to stdout ( 0 - 10 )
*/
int OutLevel() { return outputlevel_; }
/*!
\brief Return whether this instance was constructed for 2D or 3D projections
*/
bool IsTwoDimensional() { return twoD_; }
//@}
// @{ \name 2D and 3D projection methods
/*!
\brief Project a Node onto a Segment along the Node 's normal
Used to project a Node from the slave side onto a Segment on the mortar side
This method will compute the coordinates of a projection of a Node in the local coordinate system of a Segment.
The projection point will not neccesarily fall inside the Segment. However, if the projection point is far
outside the segment's boundaries, problems with the internal nonlinear iteration might occur and a warning is issued
when convergence can not be achieved in a limited number of iterations.
\param node (in): Node to project
\param seg (in) : Segment to project on
\param xi (out) : Local coordinates if projection of Node in Segment 's coordinate System
*/
bool ProjectNodetoSegment_NodalNormal(MOERTEL::Node& node, MOERTEL::Segment& seg, double xi[]);
/*!
\brief Project a Node onto a Segment along the interpolated outward normal field of the Segment
Used to project a Node from the mortar side onto a Segment on the slave side
This method will compute the coordinates of a projection of a Node in the local coordinate system of a Segment.
The projection point will not neccesarily fall inside the Segment. However, if the projection point is far
outside the segment's boundaries, problems with the internal nonlinear iteration might occur and a warning is issued
when convergence can not be achieved in a limited number of iterations.
\param node (in): Node to project
\param seg (in) : Segment to project on
\param xi (out) : Local coordinates if projection of Node in Segment 's coordinate System
*/
bool ProjectNodetoSegment_SegmentNormal(MOERTEL::Node& node, MOERTEL::Segment& seg, double xi[]);
//@}
// @{ \name Additional 2D projection methods
/*!
\brief Project a Node onto a Segment orthogonal to the Segment (2D problems only)
Used to project a Node from the mortar side onto a Segment on the slave side
This method will compute the coordinates of a projection of a Node in the local coordinate system of a Segment.
The projection point will not neccesarily fall inside the Segment. However, if the projection point is far
outside the segment's boundaries, problems with the internal nonlinear iteration might occur and a warning is issued
when convergence can not be achieved in a limited number of iterations.
\param node (in): Node to project
\param seg (in) : Segment to project on
\param xi (out) : Local coordinates if projection of Node in Segment 's coordinate System
*/
bool ProjectNodetoSegment_SegmentOrthogonal(MOERTEL::Node& node, MOERTEL::Segment& seg, double xi[]);
/*!
\brief Project a Node onto a Segment orthogonal another Segment (2D problems only)
Used to project a Node from the slave side onto a Segment on the mortar side orthogonal to some slave Segment
This method will compute the coordinates of a projection of a Node in the local coordinate system of a Segment.
The projection point will not neccesarily fall inside the Segment. However, if the projection point is far
outside the segment's boundaries, problems with the internal nonlinear iteration might occur and a warning is issued
when convergence can not be achieved in a limited number of iterations.
\param node (in): Node to project
\param seg (in) : Segment to project on
\param xi (out) : Local coordinates if projection of Node in Segment 's coordinate System
\param sseg (in) : Segment to project orthogonal to
*/
bool ProjectNodetoSegment_Orthogonal_to_Slave(MOERTEL::Node& snode, MOERTEL::Segment& seg, double xi[], MOERTEL::Segment& sseg);
//@}
private:
// don't want = operator
Projector operator = (const Projector& old);
// don't want copy-ctor
Projector(MOERTEL::Projector& old);
//====2D projection methods
// evaluate F and gradF functions for ProjectNodetoSegment_NodalNormal in 2D
double evaluate_F_2D_NodalNormal(MOERTEL::Node& node, MOERTEL::Segment& seg, double eta);
double evaluate_gradF_2D_NodalNormal(MOERTEL::Node& node, MOERTEL::Segment& seg, double eta);
// evaluate F and gradF functions for ProjectNodetoSegment_SegmentNormal in 2D
double evaluate_F_2D_SegmentNormal(MOERTEL::Node& node, MOERTEL::Segment& seg, double eta);
double evaluate_gradF_2D_SegmentNormal(MOERTEL::Node& node, MOERTEL::Segment& seg, double eta);
// evaluate F and gradF functions for ProjectNodetoSegment_SegmentOrthogonal in 2D
double evaluate_F_2D_SegmentOrthogonal(MOERTEL::Node& node, MOERTEL::Segment& seg, double eta);
double evaluate_gradF_2D_SegmentOrthogonal(MOERTEL::Node& node, MOERTEL::Segment& seg, double eta);
// evalauate F and gradF functions for ProjectNodetoSegment_Orthogonal_to_Slave in 2D
double evaluate_F_2D_SegmentOrthogonal_to_g(MOERTEL::Node& node, MOERTEL::Segment& seg, double eta, double* g);
double evaluate_gradF_2D_SegmentOrthogonal_to_g(MOERTEL::Node& node, MOERTEL::Segment& seg, double eta, double* g);
//====3D projection methods
// evaluate F and gradF functions for ProjectNodetoSegment_NodalNormal in 3D
bool evaluate_FgradF_3D_NodalNormal(double* F,double dF[][3],const MOERTEL::Node& node,
MOERTEL::Segment& seg,double* eta,double alpha);
// evaluate F and gradF functions for ProjectNodetoSegment_SegmentNormal in 3D
bool evaluate_FgradF_3D_SegmentNormal(double* F,double dF[][3],const MOERTEL::Node& node,
MOERTEL::Segment& seg,double* eta,double alpha);
private:
bool twoD_; // dimension of the projection, true if 2-dimensional
int outputlevel_; // amount of output to be written (0-10)
};
} // namespace MOERTEL
#endif // MOERTEL_PROJECTOR_H
|