This file is indexed.

/usr/include/trilinos/ml_MultiLevelPreconditioner.h is in libtrilinos-dev 10.4.0.dfsg-1ubuntu2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
/*!
 * \file ml_MultiLevelPreconditioner.h
 *
 * \class MultiLevelPreconditioner
 *
 * \brief ML black-box preconditioner for Epetra_RowMatrix derived classes.
 *
 */
/* ******************************************************************** */
/* See the file COPYRIGHT for a complete copyright notice, contact      */
/* person and disclaimer.                                               */        
/* ******************************************************************** */
/*#############################################################################
# CVS File Information
#    Current revision: $Revision$
#    Branch:           $Branch$
#    Last modified:    $Date$
#    Modified by:      $Author$
#############################################################################*/

#ifndef ML_MULTILEVELPRECONDITIONER_H
#define ML_MULTILEVELPRECONDITIONER_H

#include "ml_include.h"

#if defined(HAVE_ML_EPETRA) && defined(HAVE_ML_TEUCHOS) 
// define the following to allow compilation without AztecOO
#ifndef HAVE_ML_AZTECOO
#ifndef AZ_PROC_SIZE
#define AZ_PROC_SIZE 1
#endif
#ifndef AZ_OPTIONS_SIZE
#define AZ_OPTIONS_SIZE 1
#endif
#ifndef AZ_PARAMS_SIZE
#define AZ_PARAMS_SIZE 1
#endif
#ifndef AZ_STATUS_SIZE
#define AZ_STATUS_SIZE 1
#endif
#endif

class Epetra_Map;
class Epetra_BlockMap;
class Epetra_MultiVector;
class Epetra_Comm;
class Epetra_CrsMatrix;
class Epetra_FECrsMatrix;
class Epetra_VbrMatrix;

#include "Epetra_SerialDenseMatrix.h"
#include "Epetra_SerialDenseVector.h"
#include "Epetra_SerialDenseSolver.h"

#define ML_MEM_SIZE      20
#define ML_MEM_INITIAL    0
#define ML_MEM_FINAL      1
#define ML_MEM_SMOOTHER   2
#define ML_MEM_COARSE     3
#define ML_MEM_HIERARCHY  4
#define ML_MEM_PREC_FIRST 5
#define ML_MEM_PREC_OTHER 6
#define ML_MEM_TOT1       7
#define ML_MEM_TOT2       8
#define ML_MEM_INITIAL_MALLOC    10
#define ML_MEM_FINAL_MALLOC      11
#define ML_MEM_SMOOTHER_MALLOC   12
#define ML_MEM_COARSE_MALLOC     13
#define ML_MEM_HIERARCHY_MALLOC  14
#define ML_MEM_PREC_FIRST_MALLOC 15
#define ML_MEM_PREC_OTHER_MALLOC 16
#define ML_MEM_TOT1_MALLOC       17
#define ML_MEM_TOT2_MALLOC       18

#include "Epetra_Operator.h"
#include "Epetra_RowMatrix.h"
#ifdef HAVE_ML_AZTECOO
#include "Epetra_MultiVector.h"                                                 
#include "Epetra_MsrMatrix.h"
#endif
#include "Teuchos_ParameterList.hpp"

#ifdef HAVE_ML_EPETRAEXT
#include "EpetraExt_SolverMap_CrsMatrix.h"
#endif

namespace ML_Epetra
{

  //! Sets default parameters for aggregation-based preconditioners.
  /*! This function, defined in the namespace ML_Epetra, can be used to set
    default values in a user's defined Teuchos::ParameterList.
    \param ProblemType (In) : a std::string, whose possible values are:
       - "SA" : classical smoothed aggregation preconditioners;
       - "NSSA" : default values for Petrov-Galerkin preconditioner for nonsymmetric systems
       - "maxwell" : default values for aggregation preconditioner for eddy current systems
       - "DD" : defaults for 2-level domain decomposition preconditioners based
       on aggregation;
       - "DD-LU" : Like "DD", but use exact LU decompositions on each subdomain;
       - "DD-ML" : 3-level domain decomposition preconditioners, with coarser
       spaces defined by aggregation;
      - "DD-ML-LU" : Like "DD-ML", but with LU decompositions on each subdomain.
    \param List (Out) : list which will populated by the default parameters
    \param options (In/Out) : integer array, of size \c AZ_OPTIONS_SIZE, that will be
    populated with suitable values. A pointer to \c options will be stick into
    the parameters list. Note that this array is still required to apply the
    preconditioner! Do not delete options, nor let it go out of scope. The default value is 
    0, meaning that \c SetDefaults() will allocate the array.
    \param params (In/Out) : double array, of size \c AZ_PARAMS_SIZE. See comments
    for \c options.
    \param OverWrite (In) : boolean.  If false, any pre-existing values in the
    parameter list will be preserved.  Default value is true, i.e., any
    pre-existing values may be overwritten. 
   */
  int SetDefaults(std::string ProblemType, Teuchos::ParameterList & List,
		  int * options = 0, double * params = 0, const bool OverWrite=true);
  
  //! Sets default parameters for aggregation-based 2-level domain decomposition preconditioners.
  int SetDefaultsDD(Teuchos::ParameterList & List, 
		               Teuchos::RCP<std::vector<int> > &options,
                       Teuchos::RCP<std::vector<double> > &params,
                       bool Overwrite=true);
  
  //! Sets default parameters for aggregation-based 2-level domain decomposition preconditioners, using LU on each subdomain
  int SetDefaultsDD_LU(Teuchos::ParameterList & List, 
		               Teuchos::RCP<std::vector<int> > &options,
                       Teuchos::RCP<std::vector<double> > &params,
                       bool Overwrite=true);
  
  //! Sets default parameters for aggregation-based 3-level domain decomposition preconditioners.  
  int SetDefaultsDD_3Levels(Teuchos::ParameterList & List, 
		               Teuchos::RCP<std::vector<int> > &options,
                       Teuchos::RCP<std::vector<double> > &params,
                       bool Overwrite=true);
  
  //! Sets default parameters for aggregation-based 3-level domain decomposition preconditioners with LU.
  int SetDefaultsDD_3Levels_LU(Teuchos::ParameterList & List, 
		               Teuchos::RCP<std::vector<int> > &options,
                       Teuchos::RCP<std::vector<double> > &params,
                       bool Overwrite=true);

  //! Sets default parameters for the eddy current equations equations.
  int SetDefaultsMaxwell(Teuchos::ParameterList & List, 
		               Teuchos::RCP<std::vector<int> > &options,
                       Teuchos::RCP<std::vector<double> > &params,
                       bool Overwrite=true);
  
  //! Sets default parameters for classical smoothed aggregation.
  int SetDefaultsSA(Teuchos::ParameterList & List, 
		               Teuchos::RCP<std::vector<int> > &options,
                       Teuchos::RCP<std::vector<double> > &params,
                       bool Overwrite=true);
  
  //! Sets defaults for energy minimization preconditioning for nonsymmetric problems.
  int SetDefaultsNSSA(Teuchos::ParameterList & List, 
		               Teuchos::RCP<std::vector<int> > &options,
                       Teuchos::RCP<std::vector<double> > &params,
                       bool Overwrite=true);

  //! Reads in parameter list options from file.
  int ReadXML(const string &FileName, Teuchos::ParameterList &List,
                   const Epetra_Comm &Comm);

  //! Enumerated type indicating the type of AMG solver to be used.

  enum AMGType {

  ML_SA_FAMILY,         /*< Smoothed aggregation solver including EMIN,NSA */
  ML_MAXWELL,           /*< Old Maxwell solver */
  ML_COMPOSITE          /*< Composite AMG: block diagonal prolongator */
  };

/*!
 
   \brief MultiLevelPreconditioner: a class to define black-box multilevel preconditioners using aggregation methods.

   Class ML_Epetra::MultiLevelPreconditioner defined black-box algebraic
   multilevel preconditioners of matrices defined as Epetra_RowMatrix derived
   objects. The resulting preconditioner can be used in AztecOO, and in any
   other solver that accepts Epetra_Operator derived objects, and apply the
   action of the given Epetra_Operator using ApplyInverse(). 
  
   Please refer to the user's guide for a detailed introduction to
   this class, examples, and description of input parameters.
  
    This file requires ML to be configured with the following options:
    - \c --enable-epetra
    - \c --enable-teuchos
    
    The following option is suggested:
    - \c --enable-amesos
    - \c --enable-ifpack

    Some part of this class needs the following options:
    - \c --enable-aztecoo
    - \c --enable-anasazi
    
    It is important to note that ML is more restrictive than Epetra for
    the definition of maps. It is required that RowMatrixRowMap() is equal 
    to OperatorRangeMap(). This is because ML needs to perform matrix-std::vector
    product, as well as getrow() functions, on the same data distribution.
    
    Also, for square matrices, OperatorDomainMap() must be as 
    OperatorRangeMap(). 

    Several examples are provided in the \c examples subdirectories:
    - \ref ml_preconditioner_cpp is an introductory 
      example;
    - \ref ml_2level_DD_cpp shows how to
      define a 2-level domain decomposition preconditioner using 
      this class;
    - \ref ml_viz_cpp details how to visualize the aggregates;
    - \ref ml_maxwell_cpp reports how to
      use this class for Maxwell problems.
      
   \note
   Namespace ML_Epetra contains another Epetra_Operator derived class, 
   ML_Epetra::MultiLevelOperator. 
   - you should use MultiLevelOperator
     when your code already defines the required ML objects, with the optimal
     choice of parameters, and you just want to wrap the already defined ML 
     preconditioners for AztecOO problems;
   - you should use MultiLevelPreconditioner
     when you have an Epetra_RowMatrix, and you don't want to code the
     conversion to ML_Operator, the creation of the hierarchy and the
     aggregates, and/or you want to experiment various combinations of the
     parameters, simply changing some parameters in a Teuchos::ParameterList.
  
   Defaults parameters can be specified using function SetDefaults().

    \author Marzio Sala, SNL 9214
*/  
class MultiLevelPreconditioner : public virtual Epetra_Operator {
      
public:  

  //@{ \name Constructors.

  //! Constructs a MultiLevelPreconditioner with default values.

  MultiLevelPreconditioner(const Epetra_RowMatrix & RowMatrix,
                           const bool ComputePrec = true);

  //! Constructs a MultiLevelPreconditioner. Retrieves parameters from \c List.
  
  MultiLevelPreconditioner(const Epetra_RowMatrix & RowMatrix,
			   const Teuchos::ParameterList & List,
			   const bool ComputePrec = true);

  //! Constructs a MultiLevelPreconditioner from an ML_Operator. Retrieves parameters from \c List.
  
  MultiLevelPreconditioner(ML_Operator* Operator,
			   const Teuchos::ParameterList& List,
			   const bool ComputePrec = true);
  
  //! Constructs a MultiLevelPreconditioner which is actually a composite AMG hierarchy using an array of ML_Operator's and an array of parameter lists.
  
  MultiLevelPreconditioner(ML_Operator *Operator, 
                           const Teuchos::ParameterList& List,
                           Epetra_RowMatrix **DiagOperators,
			   Teuchos::ParameterList *DiagLists,
                           int NBlocks = 1,
			   const bool ComputePrec = true);
  
  //! \brief MultiLevelPreconditioner constructor for Maxwell's equations.
  /*! Takes the stiffness and mass terms of the matrix combined. 

      \param EdgeMatrix - (In) Linear matrix to be solved.
      \param GradMatrix - (In) Node-to-edge connectivity matrix, a.k.a,
                               topological gradient
      \param NodeMatrix - (In) Auxiliary nodal finite element matrix
      \param List - (In) Teuchos parameter list containing solver options.
      \param ComputePrec - (In) Optional argument that specifies whether to
                                create preconditioner immediately. 
                                Default is true.
      \param UseNodeMatrixForSmoother - (In) Use the nodal matrix for the nodal
                            portion of the Hipmair smoother (if used).                          
  */

  MultiLevelPreconditioner(const Epetra_RowMatrix& EdgeMatrix,
			   const Epetra_RowMatrix& GradMatrix,
			   const Epetra_RowMatrix& NodeMatrix,
			   const Teuchos::ParameterList& List,
			   const bool ComputePrec = true,
                           const bool UseNodeMatrixForSmoother = false);
  
  //! \brief MultiLevelPreconditioner constructor for Maxwell's equations.
  /*! Takes the stiffness and mass terms of the matrix separately. 

      \param CurlCurlMatrix - (In) The curl-curl (stiffness) term of the
                                   matrix to be solved.
      \param MassMatrix - (In) The mass term of the matrix to be solved.
      \param GradMatrix - (In) Node-to-edge connectivity matrix, a.k.a,
                               topological gradient
      \param NodeMatrix - (In) Auxiliary nodal finite element matrix
      \param List - (In) Teuchos parameter list containing solver options.
      \param ComputePrec - (In) Optional argument that specifies whether to
                                create preconditioner immediately.
                                Default is true.
  */

  MultiLevelPreconditioner(const Epetra_RowMatrix & CurlCurlMatrix,
             const Epetra_RowMatrix & MassMatrix,
             const Epetra_RowMatrix & TMatrix,
             const Epetra_RowMatrix & NodeMatrix,
             const Teuchos::ParameterList & List,
             const bool ComputePrec = true);
  
#ifdef HAVE_ML_AZTECOO
  //! MultiLevelPreconditioner constructor for Maxwell's equations.
  /*! Takes the stiffness and mass terms of the matrix combined.  The edge
      matrix is of type Epetra_Msr, a light-weight wrapper for old-style Aztec
      MSR matrices.  This is intended as transition code for Aztec users.

      \param EdgeMatrix - (In) Linear matrix to be solved.
      \param GradMatrix - (In) Node-to-edge connectivity matrix, a.k.a,
                               topological gradient
      \param NodeMatrix - (In) Auxiliary nodal finite element matrix
      \param proc_config - (In) Aztec array specifying processor layout.
      \param List - (In) Teuchos parameter list containing solver options.
      \param ComputePrec - (In) Optional argument that specifies whether to
                                create preconditioner immediately.
                                Default is true.
  */

  MultiLevelPreconditioner(const Epetra_MsrMatrix & EdgeMatrix,
                         ML_Operator * GradMatrix,
                         AZ_MATRIX * NodeMatrix,
                         int       * proc_config,
                         const Teuchos::ParameterList & List,
                         const bool ComputePrec = true);
#endif

  //@}
  
  //@{ \name Destructor.

  //! Destroys the preconditioner.
  virtual ~MultiLevelPreconditioner() {
    if (IsComputePreconditionerOK_) 
      DestroyPreconditioner(); 
  }

  //@}
  
  //@{ \name Query functions

  //! Prints label associated to this object.
  const char* Label() const{return(Label_);};  
  
  //! Prints unused parameters in the input ParameterList on standard output.
  void PrintUnused() const
  {
    List_.unused(std::cout);
  }

  //! Prints unused parameters in the input ParameterList on the specified stream.
  void PrintUnused(std::ostream & os) const
  {
    List_.unused(os);
  }

  //! Prints unused parameters in the input ParameterList to std::cout on proc \c MyPID. 
  /*! Mispelled parameters are simply ignored. Therefore, it is often the best
   * choice to print out the parameters that have not been used in the
   * construction phase. 
   * - \param MyPID (In) : ID of process that should print the unused parameters.
   */
  void PrintUnused(const int MyPID) const;

  //! Gets a reference to the internally stored parameters' list.
  Teuchos::ParameterList& GetList() 
  {
    return List_;
  }

  // Get a copy of the internally stored output list.
  Teuchos::ParameterList GetOutputList() 
  {
    return OutputList_;
  }

  //! Prints on \c std::cout the values of the internally stored parameter list
  void PrintList();

  //! Copies \c List into the internally stored parameter list object.
  int SetParameterList(const Teuchos::ParameterList& List);

  //@}
  
  //@{ \name Mathematical functions.

  //! Apply the inverse of the preconditioner to an Epetra_MultiVector (NOT AVAILABLE)
  int Apply(const Epetra_MultiVector& X, Epetra_MultiVector& Y) const {
    return(-1);}

  //! Apply the preconditioner to an Epetra_MultiVector X, puts the result in Y
  int ApplyInverse(const Epetra_MultiVector& X, Epetra_MultiVector& Y) const;

  //@}
  
  //@{ \name Atribute access functions


  //! Computes the multilevel hierarchy.
  /*! Computes the multilevel hierarchy. This function retrives the user's defines parameters (as
    specified in the input ParameterList), or takes default values otherwise, and creates the ML
    objects for aggregation and hierarchy. Allocated data can be freed used DestroyPreconditioner(),
    or by the destructor,

    In a Newton-type procedure, several linear systems have to be solved, Often, these systems
    are not too different. In this case, it might be convenient to keep the already 
    computed preconditioner (with hierarchy, coarse solver, smoothers), and use it to
    precondition the next linear system. ML offers a way to determine whether the 
    already available preconditioner is "good enough" for the next linear system. 
    The user should proceed as follows:
    - define \c "reuse: enable" == \c true
    - solve the first linear system. ML tries to estimate the rate of convergence, and record it;
    - change the values of the linear system matrix (but NOT its structure)
    - compute the new preconditioner as \c ComputePreconditioner(true)
    It is supposed that the pointer to the Epetra_RowMatrix remains constant. Currently,
    it is not possible to modify this pointer (other than creating a new preconditioner)
  */
  
  int ComputePreconditioner(const bool CheckFiltering = false);

  //! Computes an empty multilevel hierarchy ignoring any aggregation specific information.
  /*! Computes an empty multilevel hierarchy ignoring any aggregation specific information
      that might be in the user defined parameters (as specified in the input ParameterList), 
      or takes default values otherwise.  Allocated data can be freed used DestroyPreconditioner(),
      or by the destructor.
  */

  //! Recomputed the preconditioner (not implemented for Maxwell).
  int ReComputePreconditioner();

  //! Print the individual operators in the multigrid hierarchy.
  void Print(int level = -2);

  int ComputeAdaptivePreconditioner(int TentativeNullSpaceSize,
                                    double* TentativeNullSpace);

  //! Queries whether multilevel hierarchy has been computed or not.
  int IsPreconditionerComputed()  const
  {
    return(IsComputePreconditionerOK_);
  }

  // following functions are required to derive Epetra_RowMatrix objects.

  //! Sets ownership.
  int SetOwnership(bool ownership){ ownership_ = ownership; return(-1);};

  //! Sets use transpose (not implemented).
  int SetUseTranspose(bool UseTranspose){return(-1);}

  //! Returns the infinity norm (not implemented).
  double NormInf() const {return(0.0);};

  //! Returns the current UseTranspose setting.
  bool UseTranspose() const {return(false);};
  
  //! Returns true if the \e this object can provide an approximate Inf-norm, false otherwise.
  bool HasNormInf() const{return(false);};
  
  //! Returns a pointer to the Epetra_Comm communicator associated with this operator.
  const Epetra_Comm& Comm() const{return(*Comm_);};
  
  //! Returns the Epetra_Map object associated with the domain of this operator.
  const Epetra_Map& OperatorDomainMap() const {return(*DomainMap_);};
  
  //! Returns the Epetra_Map object associated with the range of this operator.
  const Epetra_Map& OperatorRangeMap() const {return(*RangeMap_);};
  //@}

  //! Destroys all structures allocated in \c ComputePreconditioner() if the preconditioner has been computed.
  int DestroyPreconditioner();

  //! Returns a reference to the internally stored RowMatrix.
  const Epetra_RowMatrix& RowMatrix() const
  {
    return(*RowMatrix_);
  }

  //! Returns a reference to RowMatrix->Map().
  const Epetra_BlockMap& Map() const
  {
    return(RowMatrix_->Map());
  }

  //! Returns the global number of rows in the matrix.
  int NumGlobalRows() const
  {
    return(RowMatrix_->NumGlobalRows());
  }
  
  //! Returns the global number of columns in the matrix.
  int NumGlobalCols() const
  {
    return(RowMatrix_->NumGlobalCols());
  }
  
  //! Returns the local number of rows in the matrix.
  int NumMyRows() const
  {
    return(RowMatrix_->NumMyRows());
  }
  
  //! Returns the local number of columns in the matrix.
  int NumMyCols() const
  {
    return(RowMatrix_->NumMyCols());
  }

  //! Prints the computational stencil for the specified row and equation (for 2D Cartesian grids only)
  /*! For problems defined on 2D Cartesian grids (with node numbering increasing
   * along the x-axis), this function prints out the stencil in an intelligible
   * form.
   * \param nx (In) : number of nodes along the X-axis
   * \param ny (In) : number of nodes along the Y-axis
   * \param NodeID (In) : (local) ID of node that will be used to print the
   *   stencil. If set to -1, the code will automatically chose an internal node.
   *   Default: -1.
   * \param EquationID (In) : ID of the equation that will be used to print the
   *   stencil (default = 0)  
   */
  int PrintStencil2D(const int nx, const int ny, 
		     int NodeID = -1,
		     const int EquationID = 0);

  //! Cheap analysis of each level matrix.
  int AnalyzeHierarchy(const bool AnalyzeMatrices, 
                       const int PreCycles, const int PostCycles,
                       const int MLCycles);

  //! Analyze the effect of each level's smoother on a random std::vector.
  int AnalyzeSmoothers(const int NumPreCycles = 1,
                       const int NumPostCycles = 1);

  //! Analyze the effect of the coarse solver on a random std::vector.
  int AnalyzeCoarse();

  //! Analyze the effect of the ML cycle on a random std::vector.
  int AnalyzeCycle(const int NumCycles = 1);

  //! Test several smoothers on fine-level matrix.
  int TestSmoothers(Teuchos::ParameterList& InputList,
		    const bool IsSymmetric = false);

  //! Test several smoothers on fine-level matrix using the current parameters.
  int TestSmoothers(const bool IsSymmetric = false) {
    return(TestSmoothers(List_,IsSymmetric));
  }

  //! Returns a pointer to the internally stored ml pointer
  const ML* GetML(const int WhichML= -1) const
  {
    if (WhichML < 0)
      return ml_;
    else if (WhichML == 0)
      return ml_nodes_;
    else
      return(0);
  }

  //! Returns a pointer to the internally stored agg pointer
  const ML_Aggregate* GetML_Aggregate() const 
  {
    return agg_;
  }

  //! Generic interface to visualization methods.
  int Visualize(bool VizAggre, bool VizPreSmoother,
		bool VizPostSmoother, bool VizCycle,
		int NumApplPreSmoother, int NumApplPostSmoother,
		int NumCycleSmoother);

  //! Visualizes the shape of the aggregates.
  int VisualizeAggregates();

  //! Visualizes the effect of smoothers on a random std::vector.
  int VisualizeSmoothers(int NumPrecCycles = 1,
			 int NumPostCycles = 1);

  //! Visualizes the effect of the ML cycle on a random std::vector.
  int VisualizeCycle(int NumCycles = 1);

  /*! Creates label for this object (printed out by AztecOO).  This does not
      allocate/reallocate any memory.
  */
  int CreateLabel();

  void ReportTime();

//@}

private:

  //! Copy constructor (NOT DEFINED)
  MultiLevelPreconditioner(const MultiLevelPreconditioner & rhs) 
  {};

  //! operator = (NOT DEFINED)
  MultiLevelPreconditioner & operator = (const MultiLevelPreconditioner & rhs)
  {
    return *this;
  };

  //@{ \name Internal setting functions
  //! Initializes object with defauls values.
  int Initialize();

  //! Sets smoothers.
  int SetSmoothers();

  //! Sets coarse level solvers.
  int SetCoarse();

  //! Sets aggregation schemes.
  int SetAggregation();

  //! Sets preconditioner type (usually, V-cycle).
  int SetPreconditioner();

  //! Sets the null space for non-Maxwell problems.
  int SetNullSpace();

  //! Checks correctness of null space (discrete gradient) for Maxwell problems.
  //! The curl-curl and mass matrices must be supplied separately.
  void CheckNullSpace();

  //! Applies boundary conditions to gradient matrix.  (Maxwell's equations)
  void Apply_BCsToGradient( const Epetra_RowMatrix & EdgeMatrix,
                            const Epetra_RowMatrix & T);

  //! Transforms Epetra matrix column map (if necessary) to be compatible with
  /*! how ML handles column indices.  Any matrix that cannot be dynamically
      cast to an Epetra_CrsMatrix will not be changed.

      \param A - (In) Matrix that is to be transformed.
      \param transform - (In) EpetraExt widget that does the transformation.
      \param matrixName - (In) Optional label for the incoming matrix.
   */

#ifdef HAVE_ML_EPETRAEXT
  Epetra_RowMatrix* ModifyEpetraMatrixColMap( const Epetra_RowMatrix &A,
                                   EpetraExt::CrsMatrix_SolverMap &transform,
                                   const char* matrixName );
#endif
  //! Destroys Preconditioner if it not needed anymore. This includes some 'filtering' checks.

  int ConditionallyDestroyPreconditioner(const bool CheckPreconditioner);

  //! Set the finest level matrix in the MG hierarchy

  int SetFinestLevelMatrix();

  //! Set pointers indicating correspondence between array entries and MG levels

  int SetLevelIds(int Direction);

  //! Set eigenvalue scheme to be used by ML for spectral radius 

  int SetEigenScheme();

  //! Dump various output matrices for debugging

  int MatrixDumper();

  //! Recompute complexities and print them.

  int ComputeAndPrintComplexities();

  //! Sets prolongator smoother parameters.
  int SetSmoothingDamping();

  //! Sets damping parameter for classical smoothed aggregation.
  int SetSmoothingDampingClassic();

#define OLD_AUX
#ifdef OLD_AUX
  int CreateAuxiliaryMatrixCrs(Epetra_FECrsMatrix * & FakeMatrix);

  int CreateAuxiliaryMatrixVbr(Epetra_VbrMatrix * & FakeMatrix);
#endif

  int SetupCoordinates();

  void PrintMem(char *fmt, int size, int, int);

  void PrintMemoryUsage();

  int SetFiltering();

  void RandomAndZero(double *, double *, int);
  
  //! Checks whether the previously computed preconditioner is still valuable for the newly available linear system.
  /*! Used only when \c "reuse: enable" is \c true, and
   * ComputePreconditioner(true) is called. */
  bool CheckPreconditionerKrylov();

  void VectorNorms(double*, int, double*,double*);

  //@}

  //@{ \name Internal data
  
  //! Pointer to ML_Struct
  ML* ml_;
  //! ML communicator, convenient to have separately from ml_,
  //  ml_nodes_, one or all of which may be null.
  ML_Comm* ml_comm_;

  //! indicates the type of AMG solver to be used: ML_SA_FAMILY, ML_MAXWELL, ML_COMPOSITE
  AMGType AMGSolver_;

  //! ML_Aggregate, contains aggregate information
  ML_Aggregate* agg_;
  //! Label for this object
  char* Label_;
  //! User-provided label for identifying preconditioner ctor/dtor, in the case
  //  of multiple instances of ML_Epetra::MultiLevelPreconditioner.
  std::string mlpLabel_;

  //! pointer to linear system matrix
  const Epetra_RowMatrix* RowMatrix_;

  //! AfineML_ points to the original ML operator passed in to the block
  //  matrix/composite version of the constructor.
  ML_Operator *AfineML_;

  //! Multigrid hierarchies applied to submatrices and used in a composite
  //  form to define the overall AMG hierarchy 

  ML_Epetra::MultiLevelPreconditioner **SubMatMLPrec_;

  //! specifies whether a hierarchy already exists or not.
  bool IsComputePreconditionerOK_;
  
  //! Number of levels
  int NumLevels_;
  //! Domain Map
  const Epetra_Map* DomainMap_;
  //! Range Map
  const Epetra_Map* RangeMap_;
  //! Epetra communicator object
  const Epetra_Comm* Comm_;
  bool  ownership_;
  //! proc_config for Aztec smoothers
  int   ProcConfig_[AZ_PROC_SIZE];
  //! options for Aztec smoothers
  Teuchos::RCP<std::vector<int> >    SmootherOptions_;
  //! params for Aztec smoothers
  Teuchos::RCP<std::vector<double> > SmootherParams_;
  //! status for Aztec smoothers
  double SmootherStatus_[AZ_STATUS_SIZE];

  //! List containing all input parameters.
  Teuchos::ParameterList List_;
  //! List containing all output parameters
  Teuchos::ParameterList OutputList_;      

  //! Maximum number of levels
  int MaxLevels_;

  //! Number of applications of the ML cycle
  int CycleApplications_;

  //! If \c true, zero starting solution is used in the application of the cycle.
  bool ZeroStartingSolution_;

  //! Integer array used to easily handle ML_INCREASING and ML_DECREASING
  /*! Integer array, of size MaxLevels_, that contain the ML level ID
    for the first logical level, and so on for all levels. The ML level ID
    of logical level L is LevelID_[L].
    In this interface, all levels move from 0 to MaxLevels-1.
    ML's level for interface's level i is LevelID_[i]
  */
  std::vector<int> LevelID_;

  //! If not NULL, contains the allocated null space std::vector 
  double* NullSpaceToFree_;              

  //! all std::cout's have this prefix (default'd in Initialize() )
  std::string PrintMsg_;
  //! all std::cerr's have this prefix (default'd in Initialize() )
  char ErrorMsg_[80];
  //! true if information has to be printed on this process
  bool verbose_;
  //! Number of PDE equations.
  int NumPDEEqns_;
  //! Number of iterations to use in profiling
  int profileIterations_;

  //@}

  //@{ \name Composite AMG variables

  //! Number of blocks making up composite operator

  int NBlocks_;

  //! Array of Diagonal Operators
 
  Epetra_RowMatrix **DiagOperators_;

  //! Array of Parameter lists for diagonal operators
 
  Teuchos::ParameterList *DiagLists_;

  //@}

  //@{ \name Maxwell variables

  //! Main matrix for Maxwell
  const Epetra_RowMatrix* EdgeMatrix_;
  //! stiffness and mass matrices
  const Epetra_RowMatrix* CurlCurlMatrix_;
  //! true if we summed curl-curl and mass
  bool CreatedEdgeMatrix_;
  const Epetra_RowMatrix* MassMatrix_;
  //! aux matrix for Maxwell
  const Epetra_RowMatrix* NodeMatrix_;
  //! T^T A T Matrix for use with Maxwell
  ML_Operator* TtATMatrixML_;
  bool UseNodeMatrixForSmoother_;
  bool CreatedNodeMatrix_;
  //! Auxiliary matrix used in intermediate step
  ML_Operator* ML_Kn_;
  bool CreatedML_Kn_;
  //! T matrix for Maxwell
  const Epetra_RowMatrix* TMatrix_;
#ifdef HAVE_ML_EPETRAEXT
  //! Structure for compatibility between Epetra and ML column maps.
  EpetraExt::CrsMatrix_SolverMap RowMatrixColMapTrans_;
  //! Structure for compatibility between Epetra and ML column maps.
  EpetraExt::CrsMatrix_SolverMap NodeMatrixColMapTrans_;
  //! Structure for compatibility between Epetra and ML column maps.
  EpetraExt::CrsMatrix_SolverMap TMatrixColMapTrans_;
  //! Structure for compatibility between Epetra and ML column maps.
  EpetraExt::CrsMatrix_SolverMap CurlCurlMatrixColMapTrans_;
  //! Structure for compatibility between Epetra and ML column maps.
  EpetraExt::CrsMatrix_SolverMap MassMatrixColMapTrans_;
  //! Structure for compatibility between Epetra and ML column maps.
  EpetraExt::CrsMatrix_SolverMap TtATMatrixColMapTrans_;
#endif
  bool CreatedTMatrix_;
  ML_Operator* TMatrixML_;
  ML_Operator* TMatrixTransposeML_;
  ML_Operator** Tmat_array, ** Tmat_trans_array;
  ML_Operator** MassMatrix_array; // If curlcurl & mass are separate
  ML_Operator** CurlCurlMatrix_array;  // If curlcurl & mass are separate
  //! Auxiliary ML structure for Maxwell's equations.
  ML* ml_nodes_;

  void** nodal_args_,** edge_args_;

  //@}

  //@{ \name Variables for Timing
  //! Number of applications
  int NumApplications_;
  //! CPU time for all applications of the preconditioner
  double ApplicationTime_;
  bool FirstApplication_;
  //@ CPU time for first application
  double FirstApplicationTime_;
  //! Number of construction phases
  int NumConstructions_;
  //! CPU time for construction of the preconditioner.
  double ConstructionTime_;

  //@}
  
  // other stuff for old ML's compatibility
  Epetra_CrsMatrix* RowMatrixAllocated_;
  bool  AllocatedRowMatrix_; // used for composite constructor only

  bool AnalyzeMemory_;
  
  int memory_[ML_MEM_SIZE];

  // filtering stuff
  std::vector<double> flt_NullSpace_;
  ML* flt_ml_;
  ML_Aggregate* flt_agg_;
  
  // for reuse of preconditioning
  double RateOfConvergence_;

}; // class MultiLevelPreconditioner
 
} // namespace ML_Epetra

#endif /* defined HAVE_ML_EPETRA and HAVE_ML_TEUCHOS */

#endif /* define ML_MULTILEVELPRECONDITIONER_H */