/usr/include/trilinos/ml_MultiLevelPreconditioner.h is in libtrilinos-dev 10.4.0.dfsg-1ubuntu2.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 | /*!
* \file ml_MultiLevelPreconditioner.h
*
* \class MultiLevelPreconditioner
*
* \brief ML black-box preconditioner for Epetra_RowMatrix derived classes.
*
*/
/* ******************************************************************** */
/* See the file COPYRIGHT for a complete copyright notice, contact */
/* person and disclaimer. */
/* ******************************************************************** */
/*#############################################################################
# CVS File Information
# Current revision: $Revision$
# Branch: $Branch$
# Last modified: $Date$
# Modified by: $Author$
#############################################################################*/
#ifndef ML_MULTILEVELPRECONDITIONER_H
#define ML_MULTILEVELPRECONDITIONER_H
#include "ml_include.h"
#if defined(HAVE_ML_EPETRA) && defined(HAVE_ML_TEUCHOS)
// define the following to allow compilation without AztecOO
#ifndef HAVE_ML_AZTECOO
#ifndef AZ_PROC_SIZE
#define AZ_PROC_SIZE 1
#endif
#ifndef AZ_OPTIONS_SIZE
#define AZ_OPTIONS_SIZE 1
#endif
#ifndef AZ_PARAMS_SIZE
#define AZ_PARAMS_SIZE 1
#endif
#ifndef AZ_STATUS_SIZE
#define AZ_STATUS_SIZE 1
#endif
#endif
class Epetra_Map;
class Epetra_BlockMap;
class Epetra_MultiVector;
class Epetra_Comm;
class Epetra_CrsMatrix;
class Epetra_FECrsMatrix;
class Epetra_VbrMatrix;
#include "Epetra_SerialDenseMatrix.h"
#include "Epetra_SerialDenseVector.h"
#include "Epetra_SerialDenseSolver.h"
#define ML_MEM_SIZE 20
#define ML_MEM_INITIAL 0
#define ML_MEM_FINAL 1
#define ML_MEM_SMOOTHER 2
#define ML_MEM_COARSE 3
#define ML_MEM_HIERARCHY 4
#define ML_MEM_PREC_FIRST 5
#define ML_MEM_PREC_OTHER 6
#define ML_MEM_TOT1 7
#define ML_MEM_TOT2 8
#define ML_MEM_INITIAL_MALLOC 10
#define ML_MEM_FINAL_MALLOC 11
#define ML_MEM_SMOOTHER_MALLOC 12
#define ML_MEM_COARSE_MALLOC 13
#define ML_MEM_HIERARCHY_MALLOC 14
#define ML_MEM_PREC_FIRST_MALLOC 15
#define ML_MEM_PREC_OTHER_MALLOC 16
#define ML_MEM_TOT1_MALLOC 17
#define ML_MEM_TOT2_MALLOC 18
#include "Epetra_Operator.h"
#include "Epetra_RowMatrix.h"
#ifdef HAVE_ML_AZTECOO
#include "Epetra_MultiVector.h"
#include "Epetra_MsrMatrix.h"
#endif
#include "Teuchos_ParameterList.hpp"
#ifdef HAVE_ML_EPETRAEXT
#include "EpetraExt_SolverMap_CrsMatrix.h"
#endif
namespace ML_Epetra
{
//! Sets default parameters for aggregation-based preconditioners.
/*! This function, defined in the namespace ML_Epetra, can be used to set
default values in a user's defined Teuchos::ParameterList.
\param ProblemType (In) : a std::string, whose possible values are:
- "SA" : classical smoothed aggregation preconditioners;
- "NSSA" : default values for Petrov-Galerkin preconditioner for nonsymmetric systems
- "maxwell" : default values for aggregation preconditioner for eddy current systems
- "DD" : defaults for 2-level domain decomposition preconditioners based
on aggregation;
- "DD-LU" : Like "DD", but use exact LU decompositions on each subdomain;
- "DD-ML" : 3-level domain decomposition preconditioners, with coarser
spaces defined by aggregation;
- "DD-ML-LU" : Like "DD-ML", but with LU decompositions on each subdomain.
\param List (Out) : list which will populated by the default parameters
\param options (In/Out) : integer array, of size \c AZ_OPTIONS_SIZE, that will be
populated with suitable values. A pointer to \c options will be stick into
the parameters list. Note that this array is still required to apply the
preconditioner! Do not delete options, nor let it go out of scope. The default value is
0, meaning that \c SetDefaults() will allocate the array.
\param params (In/Out) : double array, of size \c AZ_PARAMS_SIZE. See comments
for \c options.
\param OverWrite (In) : boolean. If false, any pre-existing values in the
parameter list will be preserved. Default value is true, i.e., any
pre-existing values may be overwritten.
*/
int SetDefaults(std::string ProblemType, Teuchos::ParameterList & List,
int * options = 0, double * params = 0, const bool OverWrite=true);
//! Sets default parameters for aggregation-based 2-level domain decomposition preconditioners.
int SetDefaultsDD(Teuchos::ParameterList & List,
Teuchos::RCP<std::vector<int> > &options,
Teuchos::RCP<std::vector<double> > ¶ms,
bool Overwrite=true);
//! Sets default parameters for aggregation-based 2-level domain decomposition preconditioners, using LU on each subdomain
int SetDefaultsDD_LU(Teuchos::ParameterList & List,
Teuchos::RCP<std::vector<int> > &options,
Teuchos::RCP<std::vector<double> > ¶ms,
bool Overwrite=true);
//! Sets default parameters for aggregation-based 3-level domain decomposition preconditioners.
int SetDefaultsDD_3Levels(Teuchos::ParameterList & List,
Teuchos::RCP<std::vector<int> > &options,
Teuchos::RCP<std::vector<double> > ¶ms,
bool Overwrite=true);
//! Sets default parameters for aggregation-based 3-level domain decomposition preconditioners with LU.
int SetDefaultsDD_3Levels_LU(Teuchos::ParameterList & List,
Teuchos::RCP<std::vector<int> > &options,
Teuchos::RCP<std::vector<double> > ¶ms,
bool Overwrite=true);
//! Sets default parameters for the eddy current equations equations.
int SetDefaultsMaxwell(Teuchos::ParameterList & List,
Teuchos::RCP<std::vector<int> > &options,
Teuchos::RCP<std::vector<double> > ¶ms,
bool Overwrite=true);
//! Sets default parameters for classical smoothed aggregation.
int SetDefaultsSA(Teuchos::ParameterList & List,
Teuchos::RCP<std::vector<int> > &options,
Teuchos::RCP<std::vector<double> > ¶ms,
bool Overwrite=true);
//! Sets defaults for energy minimization preconditioning for nonsymmetric problems.
int SetDefaultsNSSA(Teuchos::ParameterList & List,
Teuchos::RCP<std::vector<int> > &options,
Teuchos::RCP<std::vector<double> > ¶ms,
bool Overwrite=true);
//! Reads in parameter list options from file.
int ReadXML(const string &FileName, Teuchos::ParameterList &List,
const Epetra_Comm &Comm);
//! Enumerated type indicating the type of AMG solver to be used.
enum AMGType {
ML_SA_FAMILY, /*< Smoothed aggregation solver including EMIN,NSA */
ML_MAXWELL, /*< Old Maxwell solver */
ML_COMPOSITE /*< Composite AMG: block diagonal prolongator */
};
/*!
\brief MultiLevelPreconditioner: a class to define black-box multilevel preconditioners using aggregation methods.
Class ML_Epetra::MultiLevelPreconditioner defined black-box algebraic
multilevel preconditioners of matrices defined as Epetra_RowMatrix derived
objects. The resulting preconditioner can be used in AztecOO, and in any
other solver that accepts Epetra_Operator derived objects, and apply the
action of the given Epetra_Operator using ApplyInverse().
Please refer to the user's guide for a detailed introduction to
this class, examples, and description of input parameters.
This file requires ML to be configured with the following options:
- \c --enable-epetra
- \c --enable-teuchos
The following option is suggested:
- \c --enable-amesos
- \c --enable-ifpack
Some part of this class needs the following options:
- \c --enable-aztecoo
- \c --enable-anasazi
It is important to note that ML is more restrictive than Epetra for
the definition of maps. It is required that RowMatrixRowMap() is equal
to OperatorRangeMap(). This is because ML needs to perform matrix-std::vector
product, as well as getrow() functions, on the same data distribution.
Also, for square matrices, OperatorDomainMap() must be as
OperatorRangeMap().
Several examples are provided in the \c examples subdirectories:
- \ref ml_preconditioner_cpp is an introductory
example;
- \ref ml_2level_DD_cpp shows how to
define a 2-level domain decomposition preconditioner using
this class;
- \ref ml_viz_cpp details how to visualize the aggregates;
- \ref ml_maxwell_cpp reports how to
use this class for Maxwell problems.
\note
Namespace ML_Epetra contains another Epetra_Operator derived class,
ML_Epetra::MultiLevelOperator.
- you should use MultiLevelOperator
when your code already defines the required ML objects, with the optimal
choice of parameters, and you just want to wrap the already defined ML
preconditioners for AztecOO problems;
- you should use MultiLevelPreconditioner
when you have an Epetra_RowMatrix, and you don't want to code the
conversion to ML_Operator, the creation of the hierarchy and the
aggregates, and/or you want to experiment various combinations of the
parameters, simply changing some parameters in a Teuchos::ParameterList.
Defaults parameters can be specified using function SetDefaults().
\author Marzio Sala, SNL 9214
*/
class MultiLevelPreconditioner : public virtual Epetra_Operator {
public:
//@{ \name Constructors.
//! Constructs a MultiLevelPreconditioner with default values.
MultiLevelPreconditioner(const Epetra_RowMatrix & RowMatrix,
const bool ComputePrec = true);
//! Constructs a MultiLevelPreconditioner. Retrieves parameters from \c List.
MultiLevelPreconditioner(const Epetra_RowMatrix & RowMatrix,
const Teuchos::ParameterList & List,
const bool ComputePrec = true);
//! Constructs a MultiLevelPreconditioner from an ML_Operator. Retrieves parameters from \c List.
MultiLevelPreconditioner(ML_Operator* Operator,
const Teuchos::ParameterList& List,
const bool ComputePrec = true);
//! Constructs a MultiLevelPreconditioner which is actually a composite AMG hierarchy using an array of ML_Operator's and an array of parameter lists.
MultiLevelPreconditioner(ML_Operator *Operator,
const Teuchos::ParameterList& List,
Epetra_RowMatrix **DiagOperators,
Teuchos::ParameterList *DiagLists,
int NBlocks = 1,
const bool ComputePrec = true);
//! \brief MultiLevelPreconditioner constructor for Maxwell's equations.
/*! Takes the stiffness and mass terms of the matrix combined.
\param EdgeMatrix - (In) Linear matrix to be solved.
\param GradMatrix - (In) Node-to-edge connectivity matrix, a.k.a,
topological gradient
\param NodeMatrix - (In) Auxiliary nodal finite element matrix
\param List - (In) Teuchos parameter list containing solver options.
\param ComputePrec - (In) Optional argument that specifies whether to
create preconditioner immediately.
Default is true.
\param UseNodeMatrixForSmoother - (In) Use the nodal matrix for the nodal
portion of the Hipmair smoother (if used).
*/
MultiLevelPreconditioner(const Epetra_RowMatrix& EdgeMatrix,
const Epetra_RowMatrix& GradMatrix,
const Epetra_RowMatrix& NodeMatrix,
const Teuchos::ParameterList& List,
const bool ComputePrec = true,
const bool UseNodeMatrixForSmoother = false);
//! \brief MultiLevelPreconditioner constructor for Maxwell's equations.
/*! Takes the stiffness and mass terms of the matrix separately.
\param CurlCurlMatrix - (In) The curl-curl (stiffness) term of the
matrix to be solved.
\param MassMatrix - (In) The mass term of the matrix to be solved.
\param GradMatrix - (In) Node-to-edge connectivity matrix, a.k.a,
topological gradient
\param NodeMatrix - (In) Auxiliary nodal finite element matrix
\param List - (In) Teuchos parameter list containing solver options.
\param ComputePrec - (In) Optional argument that specifies whether to
create preconditioner immediately.
Default is true.
*/
MultiLevelPreconditioner(const Epetra_RowMatrix & CurlCurlMatrix,
const Epetra_RowMatrix & MassMatrix,
const Epetra_RowMatrix & TMatrix,
const Epetra_RowMatrix & NodeMatrix,
const Teuchos::ParameterList & List,
const bool ComputePrec = true);
#ifdef HAVE_ML_AZTECOO
//! MultiLevelPreconditioner constructor for Maxwell's equations.
/*! Takes the stiffness and mass terms of the matrix combined. The edge
matrix is of type Epetra_Msr, a light-weight wrapper for old-style Aztec
MSR matrices. This is intended as transition code for Aztec users.
\param EdgeMatrix - (In) Linear matrix to be solved.
\param GradMatrix - (In) Node-to-edge connectivity matrix, a.k.a,
topological gradient
\param NodeMatrix - (In) Auxiliary nodal finite element matrix
\param proc_config - (In) Aztec array specifying processor layout.
\param List - (In) Teuchos parameter list containing solver options.
\param ComputePrec - (In) Optional argument that specifies whether to
create preconditioner immediately.
Default is true.
*/
MultiLevelPreconditioner(const Epetra_MsrMatrix & EdgeMatrix,
ML_Operator * GradMatrix,
AZ_MATRIX * NodeMatrix,
int * proc_config,
const Teuchos::ParameterList & List,
const bool ComputePrec = true);
#endif
//@}
//@{ \name Destructor.
//! Destroys the preconditioner.
virtual ~MultiLevelPreconditioner() {
if (IsComputePreconditionerOK_)
DestroyPreconditioner();
}
//@}
//@{ \name Query functions
//! Prints label associated to this object.
const char* Label() const{return(Label_);};
//! Prints unused parameters in the input ParameterList on standard output.
void PrintUnused() const
{
List_.unused(std::cout);
}
//! Prints unused parameters in the input ParameterList on the specified stream.
void PrintUnused(std::ostream & os) const
{
List_.unused(os);
}
//! Prints unused parameters in the input ParameterList to std::cout on proc \c MyPID.
/*! Mispelled parameters are simply ignored. Therefore, it is often the best
* choice to print out the parameters that have not been used in the
* construction phase.
* - \param MyPID (In) : ID of process that should print the unused parameters.
*/
void PrintUnused(const int MyPID) const;
//! Gets a reference to the internally stored parameters' list.
Teuchos::ParameterList& GetList()
{
return List_;
}
// Get a copy of the internally stored output list.
Teuchos::ParameterList GetOutputList()
{
return OutputList_;
}
//! Prints on \c std::cout the values of the internally stored parameter list
void PrintList();
//! Copies \c List into the internally stored parameter list object.
int SetParameterList(const Teuchos::ParameterList& List);
//@}
//@{ \name Mathematical functions.
//! Apply the inverse of the preconditioner to an Epetra_MultiVector (NOT AVAILABLE)
int Apply(const Epetra_MultiVector& X, Epetra_MultiVector& Y) const {
return(-1);}
//! Apply the preconditioner to an Epetra_MultiVector X, puts the result in Y
int ApplyInverse(const Epetra_MultiVector& X, Epetra_MultiVector& Y) const;
//@}
//@{ \name Atribute access functions
//! Computes the multilevel hierarchy.
/*! Computes the multilevel hierarchy. This function retrives the user's defines parameters (as
specified in the input ParameterList), or takes default values otherwise, and creates the ML
objects for aggregation and hierarchy. Allocated data can be freed used DestroyPreconditioner(),
or by the destructor,
In a Newton-type procedure, several linear systems have to be solved, Often, these systems
are not too different. In this case, it might be convenient to keep the already
computed preconditioner (with hierarchy, coarse solver, smoothers), and use it to
precondition the next linear system. ML offers a way to determine whether the
already available preconditioner is "good enough" for the next linear system.
The user should proceed as follows:
- define \c "reuse: enable" == \c true
- solve the first linear system. ML tries to estimate the rate of convergence, and record it;
- change the values of the linear system matrix (but NOT its structure)
- compute the new preconditioner as \c ComputePreconditioner(true)
It is supposed that the pointer to the Epetra_RowMatrix remains constant. Currently,
it is not possible to modify this pointer (other than creating a new preconditioner)
*/
int ComputePreconditioner(const bool CheckFiltering = false);
//! Computes an empty multilevel hierarchy ignoring any aggregation specific information.
/*! Computes an empty multilevel hierarchy ignoring any aggregation specific information
that might be in the user defined parameters (as specified in the input ParameterList),
or takes default values otherwise. Allocated data can be freed used DestroyPreconditioner(),
or by the destructor.
*/
//! Recomputed the preconditioner (not implemented for Maxwell).
int ReComputePreconditioner();
//! Print the individual operators in the multigrid hierarchy.
void Print(int level = -2);
int ComputeAdaptivePreconditioner(int TentativeNullSpaceSize,
double* TentativeNullSpace);
//! Queries whether multilevel hierarchy has been computed or not.
int IsPreconditionerComputed() const
{
return(IsComputePreconditionerOK_);
}
// following functions are required to derive Epetra_RowMatrix objects.
//! Sets ownership.
int SetOwnership(bool ownership){ ownership_ = ownership; return(-1);};
//! Sets use transpose (not implemented).
int SetUseTranspose(bool UseTranspose){return(-1);}
//! Returns the infinity norm (not implemented).
double NormInf() const {return(0.0);};
//! Returns the current UseTranspose setting.
bool UseTranspose() const {return(false);};
//! Returns true if the \e this object can provide an approximate Inf-norm, false otherwise.
bool HasNormInf() const{return(false);};
//! Returns a pointer to the Epetra_Comm communicator associated with this operator.
const Epetra_Comm& Comm() const{return(*Comm_);};
//! Returns the Epetra_Map object associated with the domain of this operator.
const Epetra_Map& OperatorDomainMap() const {return(*DomainMap_);};
//! Returns the Epetra_Map object associated with the range of this operator.
const Epetra_Map& OperatorRangeMap() const {return(*RangeMap_);};
//@}
//! Destroys all structures allocated in \c ComputePreconditioner() if the preconditioner has been computed.
int DestroyPreconditioner();
//! Returns a reference to the internally stored RowMatrix.
const Epetra_RowMatrix& RowMatrix() const
{
return(*RowMatrix_);
}
//! Returns a reference to RowMatrix->Map().
const Epetra_BlockMap& Map() const
{
return(RowMatrix_->Map());
}
//! Returns the global number of rows in the matrix.
int NumGlobalRows() const
{
return(RowMatrix_->NumGlobalRows());
}
//! Returns the global number of columns in the matrix.
int NumGlobalCols() const
{
return(RowMatrix_->NumGlobalCols());
}
//! Returns the local number of rows in the matrix.
int NumMyRows() const
{
return(RowMatrix_->NumMyRows());
}
//! Returns the local number of columns in the matrix.
int NumMyCols() const
{
return(RowMatrix_->NumMyCols());
}
//! Prints the computational stencil for the specified row and equation (for 2D Cartesian grids only)
/*! For problems defined on 2D Cartesian grids (with node numbering increasing
* along the x-axis), this function prints out the stencil in an intelligible
* form.
* \param nx (In) : number of nodes along the X-axis
* \param ny (In) : number of nodes along the Y-axis
* \param NodeID (In) : (local) ID of node that will be used to print the
* stencil. If set to -1, the code will automatically chose an internal node.
* Default: -1.
* \param EquationID (In) : ID of the equation that will be used to print the
* stencil (default = 0)
*/
int PrintStencil2D(const int nx, const int ny,
int NodeID = -1,
const int EquationID = 0);
//! Cheap analysis of each level matrix.
int AnalyzeHierarchy(const bool AnalyzeMatrices,
const int PreCycles, const int PostCycles,
const int MLCycles);
//! Analyze the effect of each level's smoother on a random std::vector.
int AnalyzeSmoothers(const int NumPreCycles = 1,
const int NumPostCycles = 1);
//! Analyze the effect of the coarse solver on a random std::vector.
int AnalyzeCoarse();
//! Analyze the effect of the ML cycle on a random std::vector.
int AnalyzeCycle(const int NumCycles = 1);
//! Test several smoothers on fine-level matrix.
int TestSmoothers(Teuchos::ParameterList& InputList,
const bool IsSymmetric = false);
//! Test several smoothers on fine-level matrix using the current parameters.
int TestSmoothers(const bool IsSymmetric = false) {
return(TestSmoothers(List_,IsSymmetric));
}
//! Returns a pointer to the internally stored ml pointer
const ML* GetML(const int WhichML= -1) const
{
if (WhichML < 0)
return ml_;
else if (WhichML == 0)
return ml_nodes_;
else
return(0);
}
//! Returns a pointer to the internally stored agg pointer
const ML_Aggregate* GetML_Aggregate() const
{
return agg_;
}
//! Generic interface to visualization methods.
int Visualize(bool VizAggre, bool VizPreSmoother,
bool VizPostSmoother, bool VizCycle,
int NumApplPreSmoother, int NumApplPostSmoother,
int NumCycleSmoother);
//! Visualizes the shape of the aggregates.
int VisualizeAggregates();
//! Visualizes the effect of smoothers on a random std::vector.
int VisualizeSmoothers(int NumPrecCycles = 1,
int NumPostCycles = 1);
//! Visualizes the effect of the ML cycle on a random std::vector.
int VisualizeCycle(int NumCycles = 1);
/*! Creates label for this object (printed out by AztecOO). This does not
allocate/reallocate any memory.
*/
int CreateLabel();
void ReportTime();
//@}
private:
//! Copy constructor (NOT DEFINED)
MultiLevelPreconditioner(const MultiLevelPreconditioner & rhs)
{};
//! operator = (NOT DEFINED)
MultiLevelPreconditioner & operator = (const MultiLevelPreconditioner & rhs)
{
return *this;
};
//@{ \name Internal setting functions
//! Initializes object with defauls values.
int Initialize();
//! Sets smoothers.
int SetSmoothers();
//! Sets coarse level solvers.
int SetCoarse();
//! Sets aggregation schemes.
int SetAggregation();
//! Sets preconditioner type (usually, V-cycle).
int SetPreconditioner();
//! Sets the null space for non-Maxwell problems.
int SetNullSpace();
//! Checks correctness of null space (discrete gradient) for Maxwell problems.
//! The curl-curl and mass matrices must be supplied separately.
void CheckNullSpace();
//! Applies boundary conditions to gradient matrix. (Maxwell's equations)
void Apply_BCsToGradient( const Epetra_RowMatrix & EdgeMatrix,
const Epetra_RowMatrix & T);
//! Transforms Epetra matrix column map (if necessary) to be compatible with
/*! how ML handles column indices. Any matrix that cannot be dynamically
cast to an Epetra_CrsMatrix will not be changed.
\param A - (In) Matrix that is to be transformed.
\param transform - (In) EpetraExt widget that does the transformation.
\param matrixName - (In) Optional label for the incoming matrix.
*/
#ifdef HAVE_ML_EPETRAEXT
Epetra_RowMatrix* ModifyEpetraMatrixColMap( const Epetra_RowMatrix &A,
EpetraExt::CrsMatrix_SolverMap &transform,
const char* matrixName );
#endif
//! Destroys Preconditioner if it not needed anymore. This includes some 'filtering' checks.
int ConditionallyDestroyPreconditioner(const bool CheckPreconditioner);
//! Set the finest level matrix in the MG hierarchy
int SetFinestLevelMatrix();
//! Set pointers indicating correspondence between array entries and MG levels
int SetLevelIds(int Direction);
//! Set eigenvalue scheme to be used by ML for spectral radius
int SetEigenScheme();
//! Dump various output matrices for debugging
int MatrixDumper();
//! Recompute complexities and print them.
int ComputeAndPrintComplexities();
//! Sets prolongator smoother parameters.
int SetSmoothingDamping();
//! Sets damping parameter for classical smoothed aggregation.
int SetSmoothingDampingClassic();
#define OLD_AUX
#ifdef OLD_AUX
int CreateAuxiliaryMatrixCrs(Epetra_FECrsMatrix * & FakeMatrix);
int CreateAuxiliaryMatrixVbr(Epetra_VbrMatrix * & FakeMatrix);
#endif
int SetupCoordinates();
void PrintMem(char *fmt, int size, int, int);
void PrintMemoryUsage();
int SetFiltering();
void RandomAndZero(double *, double *, int);
//! Checks whether the previously computed preconditioner is still valuable for the newly available linear system.
/*! Used only when \c "reuse: enable" is \c true, and
* ComputePreconditioner(true) is called. */
bool CheckPreconditionerKrylov();
void VectorNorms(double*, int, double*,double*);
//@}
//@{ \name Internal data
//! Pointer to ML_Struct
ML* ml_;
//! ML communicator, convenient to have separately from ml_,
// ml_nodes_, one or all of which may be null.
ML_Comm* ml_comm_;
//! indicates the type of AMG solver to be used: ML_SA_FAMILY, ML_MAXWELL, ML_COMPOSITE
AMGType AMGSolver_;
//! ML_Aggregate, contains aggregate information
ML_Aggregate* agg_;
//! Label for this object
char* Label_;
//! User-provided label for identifying preconditioner ctor/dtor, in the case
// of multiple instances of ML_Epetra::MultiLevelPreconditioner.
std::string mlpLabel_;
//! pointer to linear system matrix
const Epetra_RowMatrix* RowMatrix_;
//! AfineML_ points to the original ML operator passed in to the block
// matrix/composite version of the constructor.
ML_Operator *AfineML_;
//! Multigrid hierarchies applied to submatrices and used in a composite
// form to define the overall AMG hierarchy
ML_Epetra::MultiLevelPreconditioner **SubMatMLPrec_;
//! specifies whether a hierarchy already exists or not.
bool IsComputePreconditionerOK_;
//! Number of levels
int NumLevels_;
//! Domain Map
const Epetra_Map* DomainMap_;
//! Range Map
const Epetra_Map* RangeMap_;
//! Epetra communicator object
const Epetra_Comm* Comm_;
bool ownership_;
//! proc_config for Aztec smoothers
int ProcConfig_[AZ_PROC_SIZE];
//! options for Aztec smoothers
Teuchos::RCP<std::vector<int> > SmootherOptions_;
//! params for Aztec smoothers
Teuchos::RCP<std::vector<double> > SmootherParams_;
//! status for Aztec smoothers
double SmootherStatus_[AZ_STATUS_SIZE];
//! List containing all input parameters.
Teuchos::ParameterList List_;
//! List containing all output parameters
Teuchos::ParameterList OutputList_;
//! Maximum number of levels
int MaxLevels_;
//! Number of applications of the ML cycle
int CycleApplications_;
//! If \c true, zero starting solution is used in the application of the cycle.
bool ZeroStartingSolution_;
//! Integer array used to easily handle ML_INCREASING and ML_DECREASING
/*! Integer array, of size MaxLevels_, that contain the ML level ID
for the first logical level, and so on for all levels. The ML level ID
of logical level L is LevelID_[L].
In this interface, all levels move from 0 to MaxLevels-1.
ML's level for interface's level i is LevelID_[i]
*/
std::vector<int> LevelID_;
//! If not NULL, contains the allocated null space std::vector
double* NullSpaceToFree_;
//! all std::cout's have this prefix (default'd in Initialize() )
std::string PrintMsg_;
//! all std::cerr's have this prefix (default'd in Initialize() )
char ErrorMsg_[80];
//! true if information has to be printed on this process
bool verbose_;
//! Number of PDE equations.
int NumPDEEqns_;
//! Number of iterations to use in profiling
int profileIterations_;
//@}
//@{ \name Composite AMG variables
//! Number of blocks making up composite operator
int NBlocks_;
//! Array of Diagonal Operators
Epetra_RowMatrix **DiagOperators_;
//! Array of Parameter lists for diagonal operators
Teuchos::ParameterList *DiagLists_;
//@}
//@{ \name Maxwell variables
//! Main matrix for Maxwell
const Epetra_RowMatrix* EdgeMatrix_;
//! stiffness and mass matrices
const Epetra_RowMatrix* CurlCurlMatrix_;
//! true if we summed curl-curl and mass
bool CreatedEdgeMatrix_;
const Epetra_RowMatrix* MassMatrix_;
//! aux matrix for Maxwell
const Epetra_RowMatrix* NodeMatrix_;
//! T^T A T Matrix for use with Maxwell
ML_Operator* TtATMatrixML_;
bool UseNodeMatrixForSmoother_;
bool CreatedNodeMatrix_;
//! Auxiliary matrix used in intermediate step
ML_Operator* ML_Kn_;
bool CreatedML_Kn_;
//! T matrix for Maxwell
const Epetra_RowMatrix* TMatrix_;
#ifdef HAVE_ML_EPETRAEXT
//! Structure for compatibility between Epetra and ML column maps.
EpetraExt::CrsMatrix_SolverMap RowMatrixColMapTrans_;
//! Structure for compatibility between Epetra and ML column maps.
EpetraExt::CrsMatrix_SolverMap NodeMatrixColMapTrans_;
//! Structure for compatibility between Epetra and ML column maps.
EpetraExt::CrsMatrix_SolverMap TMatrixColMapTrans_;
//! Structure for compatibility between Epetra and ML column maps.
EpetraExt::CrsMatrix_SolverMap CurlCurlMatrixColMapTrans_;
//! Structure for compatibility between Epetra and ML column maps.
EpetraExt::CrsMatrix_SolverMap MassMatrixColMapTrans_;
//! Structure for compatibility between Epetra and ML column maps.
EpetraExt::CrsMatrix_SolverMap TtATMatrixColMapTrans_;
#endif
bool CreatedTMatrix_;
ML_Operator* TMatrixML_;
ML_Operator* TMatrixTransposeML_;
ML_Operator** Tmat_array, ** Tmat_trans_array;
ML_Operator** MassMatrix_array; // If curlcurl & mass are separate
ML_Operator** CurlCurlMatrix_array; // If curlcurl & mass are separate
//! Auxiliary ML structure for Maxwell's equations.
ML* ml_nodes_;
void** nodal_args_,** edge_args_;
//@}
//@{ \name Variables for Timing
//! Number of applications
int NumApplications_;
//! CPU time for all applications of the preconditioner
double ApplicationTime_;
bool FirstApplication_;
//@ CPU time for first application
double FirstApplicationTime_;
//! Number of construction phases
int NumConstructions_;
//! CPU time for construction of the preconditioner.
double ConstructionTime_;
//@}
// other stuff for old ML's compatibility
Epetra_CrsMatrix* RowMatrixAllocated_;
bool AllocatedRowMatrix_; // used for composite constructor only
bool AnalyzeMemory_;
int memory_[ML_MEM_SIZE];
// filtering stuff
std::vector<double> flt_NullSpace_;
ML* flt_ml_;
ML_Aggregate* flt_agg_;
// for reuse of preconditioning
double RateOfConvergence_;
}; // class MultiLevelPreconditioner
} // namespace ML_Epetra
#endif /* defined HAVE_ML_EPETRA and HAVE_ML_TEUCHOS */
#endif /* define ML_MULTILEVELPRECONDITIONER_H */
|