This file is indexed.

/usr/include/trilinos/ml_ElementByElement_SingleElement.h is in libtrilinos-dev 10.4.0.dfsg-1ubuntu2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
/* ******************************************************************** */
/* See the file COPYRIGHT for a complete copyright notice, contact      */
/* person and disclaimer.                                               */        
/* ******************************************************************** */
#ifndef ML_ELEMENT_BY_ELEMENT_SINGLE_ELEMENT_H
#define ML_ELEMENT_BY_ELEMENT_SINGLE_ELEMENT_H

#include "ml_include.h"
#ifdef HAVE_ML_EPETRA
#ifdef HAVE_MPI
#include "Epetra_MpiComm.h"
#else
#include "Epetra_SerialComm.h"
#endif
#include "Epetra_Operator.h"
#include "Epetra_BlockMap.h"
#include "Epetra_Map.h"
#include "Epetra_Vector.h"
#include "Epetra_MultiVector.h"
#include "Epetra_FECrsGraph.h"
#include <vector>
#include "ml_epetra.h"

namespace ML_Epetra {

class ElementByElement_SingleElement: public Epetra_Operator 
{
  public:
    ElementByElement_SingleElement(Epetra_Comm& Comm,
                                   const int NumMyFEs,
                                   const int NumVerticesPerFE,
                                   int* MyFEs,
                                   const int NumPDEEqns,
                                   Epetra_SerialDenseMatrix* FEMatrix,
                                   const int NumMyBoundaryRows,
                                   int* MyBoundaryRows,
                                   const double* MyBoundaryValues,
                                   const Epetra_Map& GraphMap,
                                   const int MaxEntriesPerGraphRow = 0) :
      NumMyFEs_(NumMyFEs),
      NumVerticesPerFE_(NumVerticesPerFE),
      MyFEs_(MyFEs),
      NumPDEEqns_(NumPDEEqns),
      FEMatrix_(FEMatrix),
      NumMyBoundaryRows_(NumMyBoundaryRows),
      MyBoundaryRows_(MyBoundaryRows),
      MyBoundaryValues_(MyBoundaryValues),
      Comm_(Comm),
      Graph_(0)
    {
      // build the graph using GraphMap

      Graph_ = new Epetra_FECrsGraph(Copy, GraphMap, MaxEntriesPerGraphRow);

      for (int ie = 0; ie < NumMyFEs; ++ie)
      {
        const int* ptr = &(MyFEs_[ie * NumVerticesPerFE]);
        Graph_->InsertGlobalIndices(NumVerticesPerFE, ptr,
                                    NumVerticesPerFE, ptr);
      }

      Graph_->GlobalAssemble();

      // convert MyFEs into local column map ordering

      for (int ie = 0; ie < NumMyFEs; ++ie)
      {
        int* ptr = &(MyFEs_[ie * NumVerticesPerFE]);
        for (int i = 0; i < NumVerticesPerFE; ++i)
        {
          ptr[i] = Graph_->ColMap().LID(ptr[i]);
          assert (ptr[i] != -1);
        }
      }

      // build the map for the operator, which is the "extended" 
      // version of GraphMap
      
      std::vector<int> MyGlobalElements2(Graph_->ColMap().NumMyElements() * NumPDEEqns);
      int* MyGlobalElements = Graph_->RowMap().MyGlobalElements();
      int NumMyElements = Graph_->RowMap().NumMyElements();

      for (int i = 0; i < NumMyElements; ++i)
        for (int j = 0; j < NumPDEEqns; ++j)
          MyGlobalElements2[i * NumPDEEqns + j] = MyGlobalElements[i] * NumPDEEqns + j;
      OperatorMap_ = new Epetra_Map(-1, NumMyElements * NumPDEEqns,
                                    &MyGlobalElements2[0], 0, Comm_);
      
      // expand the column map as well
      
      MyGlobalElements = Graph_->ColMap().MyGlobalElements();
      NumMyElements = Graph_->ColMap().NumMyElements();

      for (int i = 0; i < NumMyElements; ++i)
        for (int j = 0; j < NumPDEEqns; ++j)
          MyGlobalElements2[i * NumPDEEqns + j] = MyGlobalElements[i] * NumPDEEqns + j;
      OperatorColMap_ = new Epetra_Map(-1, NumMyElements * NumPDEEqns,
                                       &MyGlobalElements2[0], 0, Comm_);

      ColImporter_ = new Epetra_Import(*OperatorColMap_, *OperatorMap_);

      // memory allocation for element-by-element multiplication
      
      DenseX.Reshape(NumPDEEqns * NumVerticesPerFE, NumMyFEs_);
      DenseY.Reshape(NumPDEEqns * NumVerticesPerFE, NumMyFEs_);

      // now arrange the boundary conditions. I make the assumption that
      // each BC row has been specified on a different processor.

      MyGlobalElements2.resize(NumMyBoundaryRows_);
      for (int i = 0; i < NumMyBoundaryRows_; ++i)
        MyGlobalElements2[i] = MyBoundaryRows_[i];

      Epetra_Map BoundaryMap(-1, NumMyBoundaryRows_, &MyGlobalElements2[0], 0, Comm_);

      Epetra_Vector BoundaryVector(BoundaryMap);

      for (int i = 0; i < NumMyBoundaryRows_; ++i)
        BoundaryVector[i] = MyBoundaryValues_[i];

      // now build a map containing the boundaries for ghost nodes only
      int count = 0;
      for (int i = 0; i < NumMyBoundaryRows_; ++i)
      {
        if (GraphMap.LID(MyBoundaryRows_[i]) == -1)
          MyGlobalElements2[++count] = MyBoundaryRows_[i];
      }

      ColBoundaryMap_ = new Epetra_Map(-1, count, &MyGlobalElements2[0], 0, Comm_);

      ColBoundaryVector_ = new Epetra_Vector(*ColBoundaryMap_);

      Epetra_Import Importer(*ColBoundaryMap_, BoundaryMap);
      ColBoundaryVector_->Import(BoundaryVector, Importer, Insert);

      ColBoundaryImporter_ = new Epetra_Import(*OperatorColMap_, *ColBoundaryMap_);

      for (int i = 0; i < NumMyBoundaryRows_; ++i)
        MyBoundaryRows_[i] = OperatorColMap_->LID(MyBoundaryRows_[i]);
    }

    ~ElementByElement_SingleElement()
    {
      delete Graph_;
      delete OperatorMap_;
      delete OperatorColMap_;
      delete ColImporter_;
      delete ColBoundaryMap_;
      delete ColBoundaryVector_;
      delete ColBoundaryImporter_;
    }

    const Epetra_CrsGraph& Graph() const
    {
      return(*Graph_);
    }

    int SetUseTranspose(bool UseTranspose)
    {
      if (UseTranspose)
        ML_CHK_ERR(-1);
      return(0);
    }
  
    int Apply(const Epetra_MultiVector& X, Epetra_MultiVector& Y) const
    {
      assert (X.NumVectors() == 1); // FIXME

      // import ghost nodes
      Epetra_MultiVector ColX(*OperatorColMap_, X.NumVectors());
      ML_CHK_ERR(ColX.Import(X, *ColImporter_, Insert));
      // fix boundary conditions
      ML_CHK_ERR(SetMyBoundaryRows(ColX));
      ML_CHK_ERR(ColX.Import(*ColBoundaryVector_, *ColBoundaryImporter_, Insert));

      // now redistribute the vector into Dense
      for (int ie = 0; ie < NumMyFEs_; ++ie)
      {
        const int* ptr = &(MyFEs_[ie * NumVerticesPerFE_]);
        for (int i = 0; i < NumVerticesPerFE_; ++i)
        {
          for (int j = 0; j < NumPDEEqns_; ++j)
            DenseX(i * NumPDEEqns_ + j, ie) = ColX[0][ptr[i] * NumPDEEqns_ + j];
        }
      }

      DenseY.Multiply('N', 'N', 1.0, *FEMatrix_, DenseX, 0.0);

      ColX.PutScalar(0.0);

      // put values back into Y
      for (int ie = 0; ie < NumMyFEs_; ++ie)
      {
        const int* ptr = &(MyFEs_[ie * NumVerticesPerFE_]);
        for (int i = 0; i < NumVerticesPerFE_; ++i)
        {
          for (int j = 0; j < NumPDEEqns_; ++j)
            ColX[0][ptr[i] * NumPDEEqns_ + j] += DenseY(i * NumPDEEqns_ + j, ie);
        }
      }
      
      Y.PutScalar(0.0);
      ML_CHK_ERR(Y.Export(ColX, *ColImporter_, Add));
      ML_CHK_ERR(ResetMyBoundaryRows(Y));
      return(0);
    }
  
    int ApplyInverse(const Epetra_MultiVector& X, Epetra_MultiVector& Y) const
    {
      ML_CHK_ERR(-1);
    }
  
    double NormInf() const
    {
      return(-1.0);
    }
  
    const char* Label() const
    {
      return("ML_Epetra::ElementByElementMatrix");
    }
  
    bool UseTranspose() const
    {
      return(false);
    }
  
    bool HasNormInf() const
    {
      return(false);
    }
  
    const Epetra_Comm& Comm() const
    {
      return(Comm_);
    }
  
    const Epetra_Map& OperatorDomainMap() const
    {
      return(*OperatorMap_);
    }

    const Epetra_Map& OperatorRangeMap() const
    {
      return(*OperatorMap_);
    }

    const Epetra_BlockMap& Map() const
    {
      return(*OperatorMap_);
    }

    int SetMyBoundaryRows(Epetra_MultiVector& Y) const
    {
      assert (Y.NumVectors() == 1);

      for (int i = 0; i < NumMyBoundaryRows_; ++i)
        Y[0][MyBoundaryRows_[i]] = MyBoundaryValues_[i];
      return(0);
    }

    int ResetMyBoundaryRows(Epetra_MultiVector& Y) const
    {
      assert (Y.NumVectors() == 1);

      for (int i = 0; i < NumMyBoundaryRows_; ++i)
        Y[0][MyBoundaryRows_[i]] = 0.0;
      return(0);
    }

  private:
    const int NumMyFEs_;
    const int NumVerticesPerFE_;
    int* MyFEs_;
    const int NumPDEEqns_;
    const Epetra_SerialDenseMatrix* FEMatrix_;
    const int NumMyBoundaryRows_;
    int* MyBoundaryRows_;
    const double* MyBoundaryValues_;
    const Epetra_Comm& Comm_;
    Epetra_FECrsGraph* Graph_;
    Epetra_Map* OperatorMap_;
    Epetra_Map* OperatorColMap_;
    Epetra_Import* ColImporter_;
    mutable Epetra_SerialDenseMatrix DenseX, DenseY;
    Epetra_Map* ColBoundaryMap_;
    Epetra_Vector* ColBoundaryVector_;
    Epetra_Import* ColBoundaryImporter_;

}; // class ElementByElementMatrix

} // namespace ML_Epetra

#endif // HAVE_ML_EPETRA
#endif // ML_ELEMENT_BY_ELEMENT_SINGLE_ELEMENT_H