/usr/include/trilinos/amesos_klu_version.h is in libtrilinos-dev 10.4.0.dfsg-1ubuntu2.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 | #ifndef AMESOS_KLU_VERSION_H
#define AMESOS_KLU_VERSION_H
#ifdef DLONG
#define Int UF_long
#define Int_id UF_long_id
#define Int_MAX UF_long_max
#else
#define Int int
#define Int_id "%d"
#define Int_MAX INT_MAX
#endif
#define NPRINT
#define BYTES(type,n) (sizeof (type) * (n))
#define CEILING(b,u) (((b)+(u)-1) / (u))
#define UNITS(type,n) (CEILING (BYTES (type,n), sizeof (Unit)))
#define DUNITS(type,n) (ceil (BYTES (type, (double) n) / sizeof (Unit)))
#define GET_I_POINTER(LU, Xip, Xi, k) \
{ \
Xi = (Int *) (LU + Xip [k]) ; \
}
#define GET_X_POINTER(LU, Xip, Xlen, Xx, k) \
{ \
Xx = (Entry *) (LU + Xip [k] + UNITS (Int, Xlen [k])) ; \
}
#define GET_POINTER(LU, Xip, Xlen, Xi, Xx, k, xlen) \
{ \
Unit *xp = LU + Xip [k] ; \
xlen = Xlen [k] ; \
Xi = (Int *) xp ; \
Xx = (Entry *) (xp + UNITS (Int, xlen)) ; \
}
/* function names */
#ifdef COMPLEX
#ifdef DLONG
#define KLU_scale amesos_klu_zl_scale
#define KLU_solve amesos_klu_zl_solve
#define KLU_tsolve amesos_klu_zl_tsolve
#define KLU_free_numeric amesos_klu_zl_free_numeric
#define KLU_factor amesos_klu_zl_factor
#define KLU_refactor amesos_klu_zl_refactor
#define KLU_kernel_factor amesos_klu_zl_kernel_factor
#define KLU_lsolve amesos_klu_zl_lsolve
#define KLU_ltsolve amesos_klu_zl_ltsolve
#define KLU_usolve amesos_klu_zl_usolve
#define KLU_utsolve amesos_klu_zl_utsolve
#define KLU_kernel amesos_klu_zl_kernel
#define KLU_valid amesos_klu_zl_valid
#define KLU_valid_LU amesos_klu_zl_valid_LU
#define KLU_sort amesos_klu_zl_sort
#define KLU_rgrowth amesos_klu_zl_rgrowth
#define KLU_rcond amesos_klu_zl_rcond
#define KLU_extract amesos_klu_zl_extract
#define KLU_condest amesos_klu_zl_condest
#define KLU_flops amesos_klu_zl_flops
#else
#define KLU_scale amesos_klu_z_scale
#define KLU_solve amesos_klu_z_solve
#define KLU_tsolve amesos_klu_z_tsolve
#define KLU_free_numeric amesos_klu_z_free_numeric
#define KLU_factor amesos_klu_z_factor
#define KLU_refactor amesos_klu_z_refactor
#define KLU_kernel_factor amesos_klu_z_kernel_factor
#define KLU_lsolve amesos_klu_z_lsolve
#define KLU_ltsolve amesos_klu_z_ltsolve
#define KLU_usolve amesos_klu_z_usolve
#define KLU_utsolve amesos_klu_z_utsolve
#define KLU_kernel amesos_klu_z_kernel
#define KLU_valid amesos_klu_z_valid
#define KLU_valid_LU amesos_klu_z_valid_LU
#define KLU_sort amesos_klu_z_sort
#define KLU_rgrowth amesos_klu_z_rgrowth
#define KLU_rcond amesos_klu_z_rcond
#define KLU_extract amesos_klu_z_extract
#define KLU_condest amesos_klu_z_condest
#define KLU_flops amesos_klu_z_flops
#endif
#else
#ifdef DLONG
#define KLU_scale amesos_klu_l_scale
#define KLU_solve amesos_klu_l_solve
#define KLU_tsolve amesos_klu_l_tsolve
#define KLU_free_numeric amesos_klu_l_free_numeric
#define KLU_factor amesos_klu_l_factor
#define KLU_refactor amesos_klu_l_refactor
#define KLU_kernel_factor amesos_klu_l_kernel_factor
#define KLU_lsolve amesos_klu_l_lsolve
#define KLU_ltsolve amesos_klu_l_ltsolve
#define KLU_usolve amesos_klu_l_usolve
#define KLU_utsolve amesos_klu_l_utsolve
#define KLU_kernel amesos_klu_l_kernel
#define KLU_valid amesos_klu_l_valid
#define KLU_valid_LU amesos_klu_l_valid_LU
#define KLU_sort amesos_klu_l_sort
#define KLU_rgrowth amesos_klu_l_rgrowth
#define KLU_rcond amesos_klu_l_rcond
#define KLU_extract amesos_klu_l_extract
#define KLU_condest amesos_klu_l_condest
#define KLU_flops amesos_klu_l_flops
#else
#define KLU_scale amesos_klu_scale
#define KLU_solve amesos_klu_solve
#define KLU_tsolve amesos_klu_tsolve
#define KLU_free_numeric amesos_klu_free_numeric
#define KLU_factor amesos_klu_factor
#define KLU_refactor amesos_klu_refactor
#define KLU_kernel_factor amesos_klu_kernel_factor
#define KLU_lsolve amesos_klu_lsolve
#define KLU_ltsolve amesos_klu_ltsolve
#define KLU_usolve amesos_klu_usolve
#define KLU_utsolve amesos_klu_utsolve
#define KLU_kernel amesos_klu_kernel
#define KLU_valid amesos_klu_valid
#define KLU_valid_LU amesos_klu_valid_LU
#define KLU_sort amesos_klu_sort
#define KLU_rgrowth amesos_klu_rgrowth
#define KLU_rcond amesos_klu_rcond
#define KLU_extract amesos_klu_extract
#define KLU_condest amesos_klu_condest
#define KLU_flops amesos_klu_flops
#endif
#endif
#ifdef DLONG
#define KLU_analyze amesos_klu_l_analyze
#define KLU_analyze_given amesos_klu_l_analyze_given
#define KLU_alloc_symbolic amesos_klu_l_alloc_symbolic
#define KLU_free_symbolic amesos_klu_l_free_symbolic
#define KLU_defaults amesos_klu_l_defaults
#define KLU_free amesos_klu_l_free
#define KLU_malloc amesos_klu_l_malloc
#define KLU_realloc amesos_klu_l_realloc
#define KLU_add_size_t amesos_klu_l_add_size_t
#define KLU_mult_size_t amesos_klu_l_mult_size_t
#define KLU_symbolic klu_l_symbolic
#define KLU_numeric klu_l_numeric
#define KLU_common klu_l_common
#define BTF_order amesos_btf_l_order
#define BTF_strongcomp amesos_btf_l_strongcomp
#define AMD_order amesos_amd_l_order
#define COLAMD amesos_colamd_l
#define COLAMD_recommended amesos_colamd_l_recommended
#else
#define KLU_analyze amesos_klu_analyze
#define KLU_analyze_given amesos_klu_analyze_given
#define KLU_alloc_symbolic amesos_klu_alloc_symbolic
#define KLU_free_symbolic amesos_klu_free_symbolic
#define KLU_defaults amesos_klu_defaults
#define KLU_free amesos_klu_free
#define KLU_malloc amesos_klu_malloc
#define KLU_realloc amesos_klu_realloc
#define KLU_add_size_t amesos_klu_add_size_t
#define KLU_mult_size_t amesos_klu_mult_size_t
#define KLU_symbolic klu_symbolic
#define KLU_numeric klu_numeric
#define KLU_common klu_common
#define BTF_order amesos_btf_order
#define BTF_strongcomp amesos_btf_strongcomp
#define AMD_order amesos_amd_order
#define COLAMD amesos_colamd
#define COLAMD_recommended amesos_colamd_recommended
#endif
/* -------------------------------------------------------------------------- */
/* Numerical relop macros for correctly handling the NaN case */
/* -------------------------------------------------------------------------- */
/*
SCALAR_IS_NAN(x):
True if x is NaN. False otherwise. The commonly-existing isnan(x)
function could be used, but it's not in Kernighan & Ritchie 2nd edition
(ANSI C). It may appear in <math.h>, but I'm not certain about
portability. The expression x != x is true if and only if x is NaN,
according to the IEEE 754 floating-point standard.
SCALAR_IS_ZERO(x):
True if x is zero. False if x is nonzero, NaN, or +/- Inf.
This is (x == 0) if the compiler is IEEE 754 compliant.
SCALAR_IS_NONZERO(x):
True if x is nonzero, NaN, or +/- Inf. False if x zero.
This is (x != 0) if the compiler is IEEE 754 compliant.
SCALAR_IS_LTZERO(x):
True if x is < zero or -Inf. False if x is >= 0, NaN, or +Inf.
This is (x < 0) if the compiler is IEEE 754 compliant.
*/
/* These all work properly, according to the IEEE 754 standard ... except on */
/* a PC with windows. Works fine in Linux on the same PC... */
#define SCALAR_IS_NAN(x) ((x) != (x))
#define SCALAR_IS_ZERO(x) ((x) == 0.)
#define SCALAR_IS_NONZERO(x) ((x) != 0.)
#define SCALAR_IS_LTZERO(x) ((x) < 0.)
/* scalar absolute value macro. If x is NaN, the result is NaN: */
#define SCALAR_ABS(x) ((SCALAR_IS_LTZERO (x)) ? -(x) : (x))
/* print a scalar (avoid printing "-0" for negative zero). */
#ifdef NPRINT
#define PRINT_SCALAR(a)
#else
#define PRINT_SCALAR(a) \
{ \
if (SCALAR_IS_NONZERO (a)) \
{ \
PRINTF ((" (%g)", (a))) ; \
} \
else \
{ \
PRINTF ((" (0)")) ; \
} \
}
#endif
/* -------------------------------------------------------------------------- */
/* Real floating-point arithmetic */
/* -------------------------------------------------------------------------- */
#ifndef COMPLEX
typedef double Unit ;
#define Entry double
#define SPLIT(s) (1)
#define REAL(c) (c)
#define IMAG(c) (0.)
#define ASSIGN(c,s1,s2,p,split) { (c) = (s1)[p] ; }
#define CLEAR(c) { (c) = 0. ; }
#define CLEAR_AND_INCREMENT(p) { *p++ = 0. ; }
#define IS_NAN(a) SCALAR_IS_NAN (a)
#define IS_ZERO(a) SCALAR_IS_ZERO (a)
#define IS_NONZERO(a) SCALAR_IS_NONZERO (a)
#define SCALE_DIV(c,s) { (c) /= (s) ; }
#define SCALE_DIV_ASSIGN(a,c,s) { a = c / s ; }
#define SCALE(c,s) { (c) *= (s) ; }
#define ASSEMBLE(c,a) { (c) += (a) ; }
#define ASSEMBLE_AND_INCREMENT(c,p) { (c) += *p++ ; }
#define DECREMENT(c,a) { (c) -= (a) ; }
#define MULT(c,a,b) { (c) = (a) * (b) ; }
#define MULT_CONJ(c,a,b) { (c) = (a) * (b) ; }
#define MULT_SUB(c,a,b) { (c) -= (a) * (b) ; }
#define MULT_SUB_CONJ(c,a,b) { (c) -= (a) * (b) ; }
#define DIV(c,a,b) { (c) = (a) / (b) ; }
#define RECIPROCAL(c) { (c) = 1.0 / (c) ; }
#define DIV_CONJ(c,a,b) { (c) = (a) / (b) ; }
#define APPROX_ABS(s,a) { (s) = SCALAR_ABS (a) ; }
#define ABS(s,a) { (s) = SCALAR_ABS (a) ; }
#define PRINT_ENTRY(a) PRINT_SCALAR (a)
#define CONJ(a,x) a = x
/* for flop counts */
#define MULTSUB_FLOPS 2. /* c -= a*b */
#define DIV_FLOPS 1. /* c = a/b */
#define ABS_FLOPS 0. /* c = abs (a) */
#define ASSEMBLE_FLOPS 1. /* c += a */
#define DECREMENT_FLOPS 1. /* c -= a */
#define MULT_FLOPS 1. /* c = a*b */
#define SCALE_FLOPS 1. /* c = a/s */
#else
/* -------------------------------------------------------------------------- */
/* Complex floating-point arithmetic */
/* -------------------------------------------------------------------------- */
/*
Note: An alternative to this Double_Complex type would be to use a
struct { double r ; double i ; }. The problem with that method
(used by the Sun Performance Library, for example) is that ANSI C provides
no guarantee about the layout of a struct. It is possible that the sizeof
the struct above would be greater than 2 * sizeof (double). This would
mean that the complex BLAS could not be used. The method used here avoids
that possibility. ANSI C *does* guarantee that an array of structs has
the same size as n times the size of one struct.
The ANSI C99 version of the C language includes a "double _Complex" type.
It should be possible in that case to do the following:
#define Entry double _Complex
and remove the Double_Complex struct. The macros, below, could then be
replaced with instrinsic operators. Note that the #define Real and
#define Imag should also be removed (they only appear in this file).
For the MULT, MULT_SUB, MULT_SUB_CONJ, and MULT_CONJ macros,
the output argument c cannot be the same as any input argument.
*/
typedef struct
{
double component [2] ; /* real and imaginary parts */
} Double_Complex ;
typedef Double_Complex Unit ;
#define Entry Double_Complex
#define Real component [0]
#define Imag component [1]
/* for flop counts */
#define MULTSUB_FLOPS 8. /* c -= a*b */
#define DIV_FLOPS 9. /* c = a/b */
#define ABS_FLOPS 6. /* c = abs (a), count sqrt as one flop */
#define ASSEMBLE_FLOPS 2. /* c += a */
#define DECREMENT_FLOPS 2. /* c -= a */
#define MULT_FLOPS 6. /* c = a*b */
#define SCALE_FLOPS 2. /* c = a/s or c = a*s */
/* -------------------------------------------------------------------------- */
/* real part of c */
#define REAL(c) ((c).Real)
/* -------------------------------------------------------------------------- */
/* imag part of c */
#define IMAG(c) ((c).Imag)
/* -------------------------------------------------------------------------- */
/* Return TRUE if a complex number is in split form, FALSE if in packed form */
#define SPLIT(sz) ((sz) != (double *) NULL)
/* c = (s1) + (s2)*i, if s2 is null, then X is in "packed" format (compatible
* with Entry and ANSI C99 double _Complex type). */
/*#define ASSIGN(c,s1,s2,p,split) \
{ \
if (split) \
{ \
(c).Real = (s1)[p] ; \
(c).Imag = (s2)[p] ; \
} \
else \
{ \
(c) = ((Entry *)(s1))[p] ; \
} \
}*/
/* -------------------------------------------------------------------------- */
#define CONJ(a, x) \
{ \
a.Real = x.Real ; \
a.Imag = -x.Imag ; \
}
/* c = 0 */
#define CLEAR(c) \
{ \
(c).Real = 0. ; \
(c).Imag = 0. ; \
}
/* -------------------------------------------------------------------------- */
/* *p++ = 0 */
#define CLEAR_AND_INCREMENT(p) \
{ \
p->Real = 0. ; \
p->Imag = 0. ; \
p++ ; \
}
/* -------------------------------------------------------------------------- */
/* True if a == 0 */
#define IS_ZERO(a) \
(SCALAR_IS_ZERO ((a).Real) && SCALAR_IS_ZERO ((a).Imag))
/* -------------------------------------------------------------------------- */
/* True if a is NaN */
#define IS_NAN(a) \
(SCALAR_IS_NAN ((a).Real) || SCALAR_IS_NAN ((a).Imag))
/* -------------------------------------------------------------------------- */
/* True if a != 0 */
#define IS_NONZERO(a) \
(SCALAR_IS_NONZERO ((a).Real) || SCALAR_IS_NONZERO ((a).Imag))
/* -------------------------------------------------------------------------- */
/* a = c/s */
#define SCALE_DIV_ASSIGN(a,c,s) \
{ \
a.Real = c.Real / s ; \
a.Imag = c.Imag / s ; \
}
/* c /= s */
#define SCALE_DIV(c,s) \
{ \
(c).Real /= (s) ; \
(c).Imag /= (s) ; \
}
/* -------------------------------------------------------------------------- */
/* c *= s */
#define SCALE(c,s) \
{ \
(c).Real *= (s) ; \
(c).Imag *= (s) ; \
}
/* -------------------------------------------------------------------------- */
/* c += a */
#define ASSEMBLE(c,a) \
{ \
(c).Real += (a).Real ; \
(c).Imag += (a).Imag ; \
}
/* -------------------------------------------------------------------------- */
/* c += *p++ */
#define ASSEMBLE_AND_INCREMENT(c,p) \
{ \
(c).Real += p->Real ; \
(c).Imag += p->Imag ; \
p++ ; \
}
/* -------------------------------------------------------------------------- */
/* c -= a */
#define DECREMENT(c,a) \
{ \
(c).Real -= (a).Real ; \
(c).Imag -= (a).Imag ; \
}
/* -------------------------------------------------------------------------- */
/* c = a*b, assert because c cannot be the same as a or b */
#define MULT(c,a,b) \
{ \
ASSERT (&(c) != &(a) && &(c) != &(b)) ; \
(c).Real = (a).Real * (b).Real - (a).Imag * (b).Imag ; \
(c).Imag = (a).Imag * (b).Real + (a).Real * (b).Imag ; \
}
/* -------------------------------------------------------------------------- */
/* c = a*conjugate(b), assert because c cannot be the same as a or b */
#define MULT_CONJ(c,a,b) \
{ \
ASSERT (&(c) != &(a) && &(c) != &(b)) ; \
(c).Real = (a).Real * (b).Real + (a).Imag * (b).Imag ; \
(c).Imag = (a).Imag * (b).Real - (a).Real * (b).Imag ; \
}
/* -------------------------------------------------------------------------- */
/* c -= a*b, assert because c cannot be the same as a or b */
#define MULT_SUB(c,a,b) \
{ \
ASSERT (&(c) != &(a) && &(c) != &(b)) ; \
(c).Real -= (a).Real * (b).Real - (a).Imag * (b).Imag ; \
(c).Imag -= (a).Imag * (b).Real + (a).Real * (b).Imag ; \
}
/* -------------------------------------------------------------------------- */
/* c -= a*conjugate(b), assert because c cannot be the same as a or b */
#define MULT_SUB_CONJ(c,a,b) \
{ \
ASSERT (&(c) != &(a) && &(c) != &(b)) ; \
(c).Real -= (a).Real * (b).Real + (a).Imag * (b).Imag ; \
(c).Imag -= (a).Imag * (b).Real - (a).Real * (b).Imag ; \
}
/* -------------------------------------------------------------------------- */
/* c = a/b, be careful to avoid underflow and overflow */
#ifdef MATHWORKS
#define DIV(c,a,b) \
{ \
(void) utDivideComplex ((a).Real, (a).Imag, (b).Real, (b).Imag, \
&((c).Real), &((c).Imag)) ; \
}
#else
/* This uses ACM Algo 116, by R. L. Smith, 1962. */
/* c can be the same variable as a or b. */
/* Ignore NaN case for double relop br>=bi. */
#define DIV(c,a,b) \
{ \
double r, den, ar, ai, br, bi ; \
br = (b).Real ; \
bi = (b).Imag ; \
ar = (a).Real ; \
ai = (a).Imag ; \
if (SCALAR_ABS (br) >= SCALAR_ABS (bi)) \
{ \
r = bi / br ; \
den = br + r * bi ; \
(c).Real = (ar + ai * r) / den ; \
(c).Imag = (ai - ar * r) / den ; \
} \
else \
{ \
r = br / bi ; \
den = r * br + bi ; \
(c).Real = (ar * r + ai) / den ; \
(c).Imag = (ai * r - ar) / den ; \
} \
}
#endif
/* -------------------------------------------------------------------------- */
/* c = 1/c, be careful to avoid underflow and overflow */
/* Not used if MATHWORKS is defined. */
/* This uses ACM Algo 116, by R. L. Smith, 1962. */
/* Ignore NaN case for double relop cr>=ci. */
#define RECIPROCAL(c) \
{ \
double r, den, cr, ci ; \
cr = (c).Real ; \
ci = (c).Imag ; \
if (SCALAR_ABS (cr) >= SCALAR_ABS (ci)) \
{ \
r = ci / cr ; \
den = cr + r * ci ; \
(c).Real = 1.0 / den ; \
(c).Imag = - r / den ; \
} \
else \
{ \
r = cr / ci ; \
den = r * cr + ci ; \
(c).Real = r / den ; \
(c).Imag = - 1.0 / den ; \
} \
}
/* -------------------------------------------------------------------------- */
/* c = a/conjugate(b), be careful to avoid underflow and overflow */
#ifdef MATHWORKS
#define DIV_CONJ(c,a,b) \
{ \
(void) utDivideComplex ((a).Real, (a).Imag, (b).Real, (-(b).Imag), \
&((c).Real), &((c).Imag)) ; \
}
#else
/* This uses ACM Algo 116, by R. L. Smith, 1962. */
/* c can be the same variable as a or b. */
/* Ignore NaN case for double relop br>=bi. */
#define DIV_CONJ(c,a,b) \
{ \
double r, den, ar, ai, br, bi ; \
br = (b).Real ; \
bi = (b).Imag ; \
ar = (a).Real ; \
ai = (a).Imag ; \
if (SCALAR_ABS (br) >= SCALAR_ABS (bi)) \
{ \
r = (-bi) / br ; \
den = br - r * bi ; \
(c).Real = (ar + ai * r) / den ; \
(c).Imag = (ai - ar * r) / den ; \
} \
else \
{ \
r = br / (-bi) ; \
den = r * br - bi; \
(c).Real = (ar * r + ai) / den ; \
(c).Imag = (ai * r - ar) / den ; \
} \
}
#endif
/* -------------------------------------------------------------------------- */
/* approximate absolute value, s = |r|+|i| */
#define APPROX_ABS(s,a) \
{ \
(s) = SCALAR_ABS ((a).Real) + SCALAR_ABS ((a).Imag) ; \
}
/* -------------------------------------------------------------------------- */
/* exact absolute value, s = sqrt (a.real^2 + amag^2) */
#ifdef MATHWORKS
#define ABS(s,a) \
{ \
(s) = utFdlibm_hypot ((a).Real, (a).Imag) ; \
}
#else
/* Ignore NaN case for the double relops ar>=ai and ar+ai==ar. */
#define ABS(s,a) \
{ \
double r, ar, ai ; \
ar = SCALAR_ABS ((a).Real) ; \
ai = SCALAR_ABS ((a).Imag) ; \
if (ar >= ai) \
{ \
if (ar + ai == ar) \
{ \
(s) = ar ; \
} \
else \
{ \
r = ai / ar ; \
(s) = ar * sqrt (1.0 + r*r) ; \
} \
} \
else \
{ \
if (ai + ar == ai) \
{ \
(s) = ai ; \
} \
else \
{ \
r = ar / ai ; \
(s) = ai * sqrt (1.0 + r*r) ; \
} \
} \
}
#endif
/* -------------------------------------------------------------------------- */
/* print an entry (avoid printing "-0" for negative zero). */
#ifdef NPRINT
#define PRINT_ENTRY(a)
#else
#define PRINT_ENTRY(a) \
{ \
if (SCALAR_IS_NONZERO ((a).Real)) \
{ \
PRINTF ((" (%g", (a).Real)) ; \
} \
else \
{ \
PRINTF ((" (0")) ; \
} \
if (SCALAR_IS_LTZERO ((a).Imag)) \
{ \
PRINTF ((" - %gi)", -(a).Imag)) ; \
} \
else if (SCALAR_IS_ZERO ((a).Imag)) \
{ \
PRINTF ((" + 0i)")) ; \
} \
else \
{ \
PRINTF ((" + %gi)", (a).Imag)) ; \
} \
}
#endif
/* -------------------------------------------------------------------------- */
#endif /* #ifndef COMPLEX */
#endif
|