This file is indexed.

/usr/include/trilinos/amesos_klu_decl.h is in libtrilinos-dev 10.4.0.dfsg-1ubuntu2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
/* ========================================================================== */
/* === klu include file ===================================================== */
/* ========================================================================== */

/* Include file for user programs that call klu_* routines */

#ifndef AMESOS_KLU_DECL_H
#define AMESOS_KLU_DECL_H

/* make it easy for C++ programs to include KLU */
#ifdef __cplusplus
extern "C" {
#endif

#include "amesos_amd.h"
#include "amesos_colamd.h"
#include "amesos_btf_decl.h"

/* -------------------------------------------------------------------------- */
/* Symbolic object - contains the pre-ordering computed by klu_analyze */
/* -------------------------------------------------------------------------- */

typedef struct
{
    /* A (P,Q) is in upper block triangular form.  The kth block goes from
     * row/col index R [k] to R [k+1]-1.  The estimated number of nonzeros
     * in the L factor of the kth block is Lnz [k]. 
     */

    /* only computed if the AMD ordering is chosen: */
    double symmetry ;	/* symmetry of largest block */
    double est_flops ;	/* est. factorization flop count */
    double lnz, unz ;	/* estimated nz in L and U, including diagonals */
    double *Lnz ;	/* size n, but only Lnz [0..nblocks-1] is used */

    /* computed for all orderings: */
    int
	n,		/* input matrix A is n-by-n */
	nz,		/* # entries in input matrix */
	*P, 		/* size n */
	*Q,		/* size n */
	*R,		/* size n+1, but only R [0..nblocks] is used */
	nzoff,		/* nz in off-diagonal blocks */
	nblocks,	/* number of blocks */
	maxblock,	/* size of largest block */
	ordering,	/* ordering used (AMD, COLAMD, or GIVEN) */
	do_btf ;	/* whether or not BTF preordering was requested */

    /* only computed if BTF preordering requested */
    int structural_rank ;   /* 0 to n-1 if the matrix is structurally rank
			* deficient.  -1 if not computed.  n if the matrix has
			* full structural rank */

} klu_symbolic ;

typedef struct		/* 64-bit version (otherwise same as above) */
{
    double symmetry, est_flops, lnz, unz ;
    double *Lnz ;
    UF_long n, nz, *P, *Q, *R, nzoff, nblocks, maxblock, ordering, do_btf,
	structural_rank ;

} klu_l_symbolic ;

/* -------------------------------------------------------------------------- */
/* Numeric object - contains the factors computed by klu_factor */
/* -------------------------------------------------------------------------- */

typedef struct
{
    /* LU factors of each block, the pivot row permutation, and the
     * entries in the off-diagonal blocks */

    int n ;		/* A is n-by-n */
    int nblocks ;	/* number of diagonal blocks */
    int lnz ;		/* actual nz in L, including diagonal */
    int unz ;		/* actual nz in U, including diagonal */
    int max_lnz_block ;	/* max actual nz in L in any one block, incl. diag */
    int max_unz_block ;	/* max actual nz in U in any one block, incl. diag */
    int *Pnum ;		/* size n. final pivot permutation */
    int *Pinv ;		/* size n. inverse of final pivot permutation */

    /* LU factors of each block */
    int *Lip ;		/* size n. pointers into LUbx[block] for L */
    int *Uip ;		/* size n. pointers into LUbx[block] for U */
    int *Llen ;		/* size n. Llen [k] = # of entries in kth column of L */
    int *Ulen ;		/* size n. Ulen [k] = # of entries in kth column of U */
    void **LUbx ;	/* L and U indices and entries (excl. diagonal of U) */
    size_t *LUsize ;	/* size of each LUbx [block], in sizeof (Unit) */
    void *Udiag ;	/* diagonal of U */

    /* scale factors; can be NULL if no scaling */
    double *Rs ;	/* size n. Rs [i] is scale factor for row i */

    /* permanent workspace for factorization and solve */
    size_t worksize ;	/* size (in bytes) of Work */
    void *Work ;	/* workspace */
    void *Xwork ;	/* alias into Numeric->Work */
    int *Iwork ;	/* alias into Numeric->Work */

    /* off-diagonal entries in a conventional compressed-column sparse matrix */
    int *Offp ;		/* size n+1, column pointers */
    int *Offi ;		/* size nzoff, row indices */
    void *Offx ;	/* size nzoff, numerical values */
    int nzoff ;

} klu_numeric ;

typedef struct		/* 64-bit version (otherwise same as above) */
{
    UF_long n, nblocks, lnz, unz, max_lnz_block, max_unz_block, *Pnum, *Pinv,
	*Lip, *Uip, *Llen, *Ulen ;
    void **LUbx ;
    size_t *LUsize ;
    void *Udiag ;
    double *Rs ;
    size_t worksize ;
    void *Work, *Xwork ;
    UF_long *Iwork ;
    UF_long *Offp, *Offi ;
    void *Offx ;
    UF_long nzoff ;

} klu_l_numeric ;

/* -------------------------------------------------------------------------- */
/* KLU control parameters and statistics */
/* -------------------------------------------------------------------------- */

/* Common->status values */
#define KLU_OK 0
#define KLU_SINGULAR (1)	    /* status > 0 is a warning, not an error */
#define KLU_OUT_OF_MEMORY (-2)
#define KLU_INVALID (-3)
#define KLU_TOO_LARGE (-4)	    /* integer overflow has occured */

typedef struct klu_common_struct
{

    /* ---------------------------------------------------------------------- */
    /* parameters */
    /* ---------------------------------------------------------------------- */

    double tol ;	    /* pivot tolerance for diagonal preference */
    double memgrow ;	    /* realloc memory growth size for LU factors */
    double initmem_amd ;    /* init. memory size with AMD: c*nnz(L) + n */
    double initmem ;	    /* init. memory size: c*nnz(A) + n */
    double maxwork ;	    /* maxwork for BTF, <= 0 if no limit */

    int btf ;		    /* use BTF pre-ordering, or not */
    int ordering ;	    /* 0: AMD, 1: COLAMD, 2: user P and Q,
			     * 3: user function */
    int scale ;		    /* row scaling: -1: none (and no error check),
			     * 0: none, 1: sum, 2: max */

    /* memory management routines */
    void *(*malloc_memory) (size_t) ;		/* pointer to malloc */
    void *(*realloc_memory) (void *, size_t) ;  /* pointer to realloc */
    void (*free_memory) (void *) ;		/* pointer to free */
    void *(*calloc_memory) (size_t, size_t) ;	/* pointer to calloc */

    /* pointer to user ordering function */
    int (*user_order) (int, int *, int *, int *, struct klu_common_struct *) ;

    /* pointer to user data, passed unchanged as the last parameter to the
     * user ordering function (optional, the user function need not use this
     * information). */
    void *user_data ;

    int halt_if_singular ;	/* how to handle a singular matrix:
	* FALSE: keep going.  Return a Numeric object with a zero U(k,k).  A
	*   divide-by-zero may occur when computing L(:,k).  The Numeric object
	*   can be passed to klu_solve (a divide-by-zero will occur).  It can
	*   also be safely passed to klu_refactor.
	* TRUE: stop quickly.  klu_factor will free the partially-constructed
	*   Numeric object.  klu_refactor will not free it, but will leave the
	*   numerical values only partially defined.  This is the default. */

    /* ---------------------------------------------------------------------- */
    /* statistics */
    /* ---------------------------------------------------------------------- */

    int status ;	        /* KLU_OK if OK, < 0 if error */
    int nrealloc ;		/* # of reallocations of L and U */

    int structural_rank ;	/* 0 to n-1 if the matrix is structurally rank
	* deficient (as determined by maxtrans).  -1 if not computed.  n if the
	* matrix has full structural rank.  This is computed by klu_analyze
	* if a BTF preordering is requested. */

    int numerical_rank ;	/* First k for which a zero U(k,k) was found,
	* if the matrix was singular (in the range 0 to n-1).  n if the matrix
	* has full rank. This is not a true rank-estimation.  It just reports
	* where the first zero pivot was found.  -1 if not computed.
	* Computed by klu_factor and klu_refactor. */

    int singular_col ;		/* n if the matrix is not singular.  If in the
	* range 0 to n-1, this is the column index of the original matrix A that
	* corresponds to the column of U that contains a zero diagonal entry.
	* -1 if not computed.  Computed by klu_factor and klu_refactor. */

    int noffdiag ;	/* # of off-diagonal pivots, -1 if not computed */

    double flops ;	/* actual factorization flop count, from klu_flops */
    double rcond ;	/* crude reciprocal condition est., from klu_rcond */
    double condest ;	/* accurate condition est., from klu_condest */
    double rgrowth ;	/* reciprocal pivot rgrowth, from klu_rgrowth */
    double work ;	/* actual work done in BTF, in klu_analyze */

    size_t memusage ;	/* current memory usage, in bytes */
    size_t mempeak ;	/* peak memory usage, in bytes */

} klu_common ;

typedef struct klu_l_common_struct /* 64-bit version (otherwise same as above)*/
{

    double tol, memgrow, initmem_amd, initmem, maxwork ;
    UF_long btf, ordering, scale ;
    void *(*malloc_memory) (size_t) ;
    void *(*realloc_memory) (void *, size_t) ;
    void (*free_memory) (void *) ;
    void *(*calloc_memory) (size_t, size_t) ;
    UF_long (*user_order) (UF_long, UF_long *, UF_long *, UF_long *,
	struct klu_l_common_struct *) ;
    void *user_data ;
    UF_long halt_if_singular ;
    UF_long status, nrealloc, structural_rank, numerical_rank, singular_col,
	noffdiag ;
    double flops, rcond, condest, rgrowth, work ;
    size_t memusage, mempeak ;

} klu_l_common ;

/* -------------------------------------------------------------------------- */
/* klu_defaults: sets default control parameters */
/* -------------------------------------------------------------------------- */

int amesos_klu_defaults
(
    klu_common *Common
) ;

UF_long amesos_klu_l_defaults (klu_l_common *Common) ;

/* -------------------------------------------------------------------------- */
/* klu_analyze:  orders and analyzes a matrix */
/* -------------------------------------------------------------------------- */

/* Order the matrix with BTF (or not), then order each block with AMD, COLAMD,
 * a natural ordering, or with a user-provided ordering function */

klu_symbolic *amesos_klu_analyze
(
    /* inputs, not modified */
    int n,		/* A is n-by-n */
    int Ap [ ],		/* size n+1, column pointers */
    int Ai [ ],		/* size nz, row indices */
    klu_common *Common
) ;

klu_l_symbolic *amesos_klu_l_analyze (UF_long, UF_long *, UF_long *,
    klu_l_common *Common) ;


/* -------------------------------------------------------------------------- */
/* klu_analyze_given: analyzes a matrix using given P and Q */
/* -------------------------------------------------------------------------- */

/* Order the matrix with BTF (or not), then use natural or given ordering
 * P and Q on the blocks.  P and Q are interpretted as identity
 * if NULL. */

klu_symbolic *amesos_klu_analyze_given
(
    /* inputs, not modified */
    int n,		/* A is n-by-n */
    int Ap [ ],		/* size n+1, column pointers */
    int Ai [ ],		/* size nz, row indices */
    int P [ ],		/* size n, user's row permutation (may be NULL) */
    int Q [ ],		/* size n, user's column permutation (may be NULL) */
    klu_common *Common
) ;

klu_l_symbolic *amesos_klu_l_analyze_given (UF_long, UF_long *, UF_long *, UF_long *,
    UF_long *, klu_l_common *) ;


/* -------------------------------------------------------------------------- */
/* klu_factor:  factors a matrix using the klu_analyze results */
/* -------------------------------------------------------------------------- */

klu_numeric *amesos_klu_factor	/* returns KLU_OK if OK, < 0 if error */
(
    /* inputs, not modified */
    int Ap [ ],		/* size n+1, column pointers */
    int Ai [ ],		/* size nz, row indices */
    double Ax [ ],	/* size nz, numerical values */
    klu_symbolic *Symbolic,
    klu_common *Common
) ;

klu_numeric *amesos_klu_z_factor      /* returns KLU_OK if OK, < 0 if error */
(
     /* inputs, not modified */
     int Ap [ ],        /* size n+1, column pointers */
     int Ai [ ],        /* size nz, row indices */
     double Ax [ ],	/* size 2*nz, numerical values (real,imag pairs) */
     klu_symbolic *Symbolic,
     klu_common *Common
) ;

/* long / real version */
klu_l_numeric *amesos_klu_l_factor (UF_long *, UF_long *, double *, klu_l_symbolic *,
    klu_l_common *) ;

/* long / complex version */
klu_l_numeric *amesos_klu_zl_factor (UF_long *, UF_long *, double *, klu_l_symbolic *,
    klu_l_common *) ;


/* -------------------------------------------------------------------------- */
/* klu_solve: solves Ax=b using the Symbolic and Numeric objects */
/* -------------------------------------------------------------------------- */

int amesos_klu_solve
(
    /* inputs, not modified */
    klu_symbolic *Symbolic,
    klu_numeric *Numeric,
    int ldim,		    /* leading dimension of B */
    int nrhs,		    /* number of right-hand-sides */

    /* right-hand-side on input, overwritten with solution to Ax=b on output */
    double B [ ],	    /* size ldim*nrhs */
    klu_common *Common
) ;

int amesos_klu_z_solve
(
     /* inputs, not modified */
     klu_symbolic *Symbolic,
     klu_numeric *Numeric,
     int ldim,               /* leading dimension of B */
     int nrhs,               /* number of right-hand-sides */

     /* right-hand-side on input, overwritten with solution to Ax=b on output */
     double B [ ],	    /* size 2*ldim*nrhs */
     klu_common *Common
) ;

UF_long amesos_klu_l_solve (klu_l_symbolic *, klu_l_numeric *, UF_long, UF_long,
    double *, klu_l_common *) ;

UF_long amesos_klu_zl_solve (klu_l_symbolic *, klu_l_numeric *, UF_long, UF_long,
    double *, klu_l_common *) ;


/* -------------------------------------------------------------------------- */
/* klu_tsolve: solves A'x=b using the Symbolic and Numeric objects */
/* -------------------------------------------------------------------------- */

int amesos_klu_tsolve
(
    /* inputs, not modified */
    klu_symbolic *Symbolic,
    klu_numeric *Numeric,
    int ldim,		    /* leading dimension of B */
    int nrhs,		    /* number of right-hand-sides */

    /* right-hand-side on input, overwritten with solution to Ax=b on output */
    double B [ ],	    /* size ldim*nrhs */
    klu_common *Common
) ;

int amesos_klu_z_tsolve
(
    /* inputs, not modified */
    klu_symbolic *Symbolic,
    klu_numeric *Numeric,
    int ldim,		    /* leading dimension of B */
    int nrhs,		    /* number of right-hand-sides */

    /* right-hand-side on input, overwritten with solution to Ax=b on output */
    double B [ ],	    /* size 2*ldim*nrhs */
    int conj_solve,	    /* TRUE: conjugate solve, FALSE: solve A.'x=b */
    klu_common *Common
     
) ;

UF_long amesos_klu_l_tsolve (klu_l_symbolic *, klu_l_numeric *, UF_long, UF_long,
    double *, klu_l_common *) ;

UF_long amesos_klu_zl_tsolve (klu_l_symbolic *, klu_l_numeric *, UF_long, UF_long,
    double *, UF_long, klu_l_common * ) ;


/* -------------------------------------------------------------------------- */
/* klu_refactor: refactorizes matrix with same ordering as klu_factor */
/* -------------------------------------------------------------------------- */

int amesos_klu_refactor	    /* return TRUE if successful, FALSE otherwise */
(
    /* inputs, not modified */
    int Ap [ ],		/* size n+1, column pointers */
    int Ai [ ],		/* size nz, row indices */
    double Ax [ ],	/* size nz, numerical values */
    klu_symbolic *Symbolic,
    /* input, and numerical values modified on output */
    klu_numeric *Numeric,
    klu_common *Common
) ;

int amesos_klu_z_refactor	    /* return TRUE if successful, FALSE otherwise */
(
     /* inputs, not modified */
     int Ap [ ],	/* size n+1, column pointers */
     int Ai [ ],	/* size nz, row indices */
     double Ax [ ],	/* size 2*nz, numerical values */
     klu_symbolic *Symbolic,
     /* input, and numerical values modified on output */
     klu_numeric *Numeric,
     klu_common *Common
) ;

UF_long amesos_klu_l_refactor (UF_long *, UF_long *, double *, klu_l_symbolic *,
    klu_l_numeric *, klu_l_common *) ;

UF_long amesos_klu_zl_refactor (UF_long *, UF_long *, double *, klu_l_symbolic *,
    klu_l_numeric *, klu_l_common *) ;


/* -------------------------------------------------------------------------- */
/* klu_free_symbolic: destroys the Symbolic object */
/* -------------------------------------------------------------------------- */

int amesos_klu_free_symbolic
(
    klu_symbolic **Symbolic,
    klu_common *Common
) ;

UF_long amesos_klu_l_free_symbolic (klu_l_symbolic **, klu_l_common *) ;


/* -------------------------------------------------------------------------- */
/* klu_free_numeric: destroys the Numeric object */
/* -------------------------------------------------------------------------- */

/* Note that klu_free_numeric and klu_z_free_numeric are identical; each can
 * free both kinds of Numeric objects (real and complex) */

int amesos_klu_free_numeric
(
    klu_numeric **Numeric,
    klu_common *Common
) ;

int amesos_klu_z_free_numeric
(
     klu_numeric **Numeric,
     klu_common *Common
) ;

UF_long amesos_klu_l_free_numeric (klu_l_numeric **, klu_l_common *) ;
UF_long amesos_klu_zl_free_numeric (klu_l_numeric **, klu_l_common *) ;


/* -------------------------------------------------------------------------- */
/* klu_sort: sorts the columns of the LU factorization */
/* -------------------------------------------------------------------------- */

/* this is not needed except for the MATLAB interface */

int amesos_klu_sort
(
    /* inputs, not modified */
    klu_symbolic *Symbolic,
    /* input/output */
    klu_numeric *Numeric,
    klu_common *Common
) ;

int amesos_klu_z_sort
(
    /* inputs, not modified */
    klu_symbolic *Symbolic,
    /* input/output */
    klu_numeric *Numeric,
    klu_common *Common
) ;

UF_long amesos_klu_l_sort (klu_l_symbolic *, klu_l_numeric *, klu_l_common *) ;
UF_long amesos_klu_zl_sort (klu_l_symbolic *, klu_l_numeric *, klu_l_common *) ;


/* -------------------------------------------------------------------------- */
/* klu_flops: determines # of flops performed in numeric factorzation */
/* -------------------------------------------------------------------------- */

int amesos_klu_flops
(
    /* inputs, not modified */
    klu_symbolic *Symbolic,
    klu_numeric *Numeric,
    /* input/output */
    klu_common *Common
) ;

int amesos_klu_z_flops
(
    /* inputs, not modified */
    klu_symbolic *Symbolic,
    klu_numeric *Numeric,
    /* input/output */
    klu_common *Common
) ;

UF_long amesos_klu_l_flops (klu_l_symbolic *, klu_l_numeric *, klu_l_common *) ;
UF_long amesos_klu_zl_flops (klu_l_symbolic *, klu_l_numeric *, klu_l_common *) ;



/* -------------------------------------------------------------------------- */
/* klu_rgrowth : compute the reciprocal pivot growth */
/* -------------------------------------------------------------------------- */

/* Pivot growth is computed after the input matrix is permuted, scaled, and
 * off-diagonal entries pruned.  This is because the LU factorization of each
 * block takes as input the scaled diagonal blocks of the BTF form.  The
 * reciprocal pivot growth in column j of an LU factorization of a matrix C
 * is the largest entry in C divided by the largest entry in U; then the overall
 * reciprocal pivot growth is the smallest such value for all columns j.  Note
 * that the off-diagonal entries are not scaled, since they do not take part in
 * the LU factorization of the diagonal blocks.
 *
 * In MATLAB notation:
 *
 * rgrowth = min (max (abs ((R \ A(p,q)) - F)) ./ max (abs (U))) */

int amesos_klu_rgrowth
(
    int Ap [ ],
    int Ai [ ],
    double Ax [ ],
    klu_symbolic *Symbolic,
    klu_numeric *Numeric,
    klu_common *Common		/* Common->rgrowth = reciprocal pivot growth */
) ;

int amesos_klu_z_rgrowth
(
    int Ap [ ],
    int Ai [ ],
    double Ax [ ],
    klu_symbolic *Symbolic,
    klu_numeric *Numeric,
    klu_common *Common		/* Common->rgrowth = reciprocal pivot growth */
) ;

UF_long amesos_klu_l_rgrowth (UF_long *, UF_long *, double *, klu_l_symbolic *,
    klu_l_numeric *, klu_l_common *) ;

UF_long amesos_klu_zl_rgrowth (UF_long *, UF_long *, double *, klu_l_symbolic *,
    klu_l_numeric *, klu_l_common *) ;


/* -------------------------------------------------------------------------- */
/* klu_condest */
/* -------------------------------------------------------------------------- */

/* Computes a reasonably accurate estimate of the 1-norm condition number, using
 * Hager's method, as modified by Higham and Tisseur (same method as used in
 * MATLAB's condest */

int amesos_klu_condest
(
    int Ap [ ],		    /* size n+1, column pointers, not modified */
    double Ax [ ],	    /* size nz = Ap[n], numerical values, not modified*/
    klu_symbolic *Symbolic, /* symbolic analysis, not modified */
    klu_numeric *Numeric,   /* numeric factorization, not modified */
    klu_common *Common	    /* result returned in Common->condest */
) ;

int amesos_klu_z_condest
(
    int Ap [ ],
    double Ax [ ],	    /* size 2*nz */
    klu_symbolic *Symbolic,
    klu_numeric *Numeric,
    klu_common *Common	    /* result returned in Common->condest */
) ;

UF_long amesos_klu_l_condest (UF_long *, double *, klu_l_symbolic *, klu_l_numeric *,
    klu_l_common *) ;

UF_long amesos_klu_zl_condest (UF_long *, double *, klu_l_symbolic *, klu_l_numeric *,
    klu_l_common *) ;


/* -------------------------------------------------------------------------- */
/* klu_rcond: compute min(abs(diag(U))) / max(abs(diag(U))) */
/* -------------------------------------------------------------------------- */

int amesos_klu_rcond
(
    klu_symbolic *Symbolic,	    /* input, not modified */
    klu_numeric *Numeric,	    /* input, not modified */
    klu_common *Common		    /* result in Common->rcond */
) ;

int amesos_klu_z_rcond
(
    klu_symbolic *Symbolic,	    /* input, not modified */
    klu_numeric *Numeric,	    /* input, not modified */
    klu_common *Common		    /* result in Common->rcond */
) ;

UF_long amesos_klu_l_rcond (klu_l_symbolic *, klu_l_numeric *, klu_l_common *) ;

UF_long amesos_klu_zl_rcond (klu_l_symbolic *, klu_l_numeric *, klu_l_common *) ;



/* -------------------------------------------------------------------------- */
/* klu_scale */
/* -------------------------------------------------------------------------- */

int amesos_klu_scale		/* return TRUE if successful, FALSE otherwise */
(
    /* inputs, not modified */
    int scale,		/* <0: none, no error check; 0: none, 1: sum, 2: max */
    int n,
    int Ap [ ],		/* size n+1, column pointers */
    int Ai [ ],		/* size nz, row indices */
    double Ax [ ],
    /* outputs, not defined on input */
    double Rs [ ],
    /* workspace, not defined on input or output */
    int W [ ],		/* size n, can be NULL */
    klu_common *Common
) ;

int amesos_klu_z_scale		/* return TRUE if successful, FALSE otherwise */
(
    /* inputs, not modified */
    int scale,		/* <0: none, no error check; 0: none, 1: sum, 2: max */
    int n,
    int Ap [ ],		/* size n+1, column pointers */
    int Ai [ ],		/* size nz, row indices */
    double Ax [ ],
    /* outputs, not defined on input */
    double Rs [ ],
    /* workspace, not defined on input or output */
    int W [ ],		/* size n, can be NULL */
    klu_common *Common
) ;

UF_long amesos_klu_l_scale (UF_long, UF_long, UF_long *, UF_long *, double *,
    double *, UF_long *, klu_l_common *) ;

UF_long amesos_klu_zl_scale (UF_long, UF_long, UF_long *, UF_long *, double *,
    double *, UF_long *, klu_l_common *) ;


/* -------------------------------------------------------------------------- */
/* klu_extract  */
/* -------------------------------------------------------------------------- */

int amesos_klu_extract	    /* returns TRUE if successful, FALSE otherwise */
(
    /* inputs: */
    klu_numeric *Numeric,
    klu_symbolic *Symbolic,

    /* outputs, either allocated on input, or ignored otherwise */

    /* L */
    int *Lp,	    /* size n+1 */
    int *Li,	    /* size Numeric->lnz */
    double *Lx,	    /* size Numeric->lnz */

    /* U */
    int *Up,	    /* size n+1 */
    int *Ui,	    /* size Numeric->unz */
    double *Ux,	    /* size Numeric->unz */

    /* F */
    int *Fp,	    /* size n+1 */
    int *Fi,	    /* size Numeric->nzoff */
    double *Fx,	    /* size Numeric->nzoff */

    /* P, row permutation */
    int *P,	    /* size n */

    /* Q, column permutation */
    int *Q,	    /* size n */

    /* Rs, scale factors */
    double *Rs,	    /* size n */

    /* R, block boundaries */
    int *R,	    /* size Symbolic->nblocks+1 (nblocks is at most n) */

    klu_common *Common
) ;


int amesos_klu_z_extract	    /* returns TRUE if successful, FALSE otherwise */
(
    /* inputs: */
    klu_numeric *Numeric,
    klu_symbolic *Symbolic,

    /* outputs, all of which must be allocated on input */

    /* L */
    int *Lp,	    /* size n+1 */
    int *Li,	    /* size nnz(L) */
    double *Lx,	    /* size nnz(L) */
    double *Lz,	    /* size nnz(L) for the complex case, ignored if real */

    /* U */
    int *Up,	    /* size n+1 */
    int *Ui,	    /* size nnz(U) */
    double *Ux,	    /* size nnz(U) */
    double *Uz,	    /* size nnz(U) for the complex case, ignored if real */

    /* F */
    int *Fp,	    /* size n+1 */
    int *Fi,	    /* size nnz(F) */
    double *Fx,	    /* size nnz(F) */
    double *Fz,	    /* size nnz(F) for the complex case, ignored if real */

    /* P, row permutation */
    int *P,	    /* size n */

    /* Q, column permutation */
    int *Q,	    /* size n */

    /* Rs, scale factors */
    double *Rs,	    /* size n */

    /* R, block boundaries */
    int *R,	    /* size Symbolic->nblocks+1 (nblocks is at most n) */

    klu_common *Common
) ;

UF_long amesos_klu_l_extract (klu_l_numeric *, klu_l_symbolic *,
    UF_long *, UF_long *, double *,
    UF_long *, UF_long *, double *,
    UF_long *, UF_long *, double *,
    UF_long *, UF_long *, double *, UF_long *, klu_l_common *) ;

UF_long amesos_klu_zl_extract (klu_l_numeric *, klu_l_symbolic *,
    UF_long *, UF_long *, double *, double *,
    UF_long *, UF_long *, double *, double *,
    UF_long *, UF_long *, double *, double *,
    UF_long *, UF_long *, double *, UF_long *, klu_l_common *) ;


/* -------------------------------------------------------------------------- */
/* KLU memory management routines */
/* -------------------------------------------------------------------------- */

void *amesos_klu_malloc	/* returns pointer to the newly malloc'd block */
(
    /* ---- input ---- */
    size_t n,		/* number of items */
    size_t size,	/* size of each item */
    /* --------------- */
    klu_common *Common
) ;

void *amesos_klu_free		/* always returns NULL */
(
    /* ---- in/out --- */
    void *p,		/* block of memory to free */
    size_t n,		/* number of items */
    size_t size,	/* size of each item */
    /* --------------- */
    klu_common *Common
) ;

void *amesos_klu_realloc	/* returns pointer to reallocated block */
(
    /* ---- input ---- */
    size_t nnew,	/* requested # of items in reallocated block */
    size_t nold,	/* current size of block, in # of items */
    size_t size,	/* size of each item */
    /* ---- in/out --- */
    void *p,		/* block of memory to realloc */
    /* --------------- */
    klu_common *Common
) ;

void *amesos_klu_l_malloc (size_t, size_t, klu_l_common *) ;
void *amesos_klu_l_free (void *, size_t, size_t, klu_l_common *) ;
void *amesos_klu_l_realloc (size_t, size_t, size_t, void *, klu_l_common *) ;


/* ========================================================================== */
/* === KLU version ========================================================== */
/* ========================================================================== */

/* All versions of KLU include these definitions.
 * As an example, to test if the version you are using is 1.2 or later:
 *
 *	if (KLU_VERSION >= KLU_VERSION_CODE (1,2)) ...
 *
 * This also works during compile-time:
 *
 *	#if (KLU >= KLU_VERSION_CODE (1,2))
 *	    printf ("This is version 1.2 or later\n") ;
 *	#else
 *	    printf ("This is an early version\n") ;
 *	#endif
 */

#define KLU_DATE "May 31, 2007"
#define KLU_VERSION_CODE(main,sub) ((main) * 1000 + (sub))
#define KLU_MAIN_VERSION 1
#define KLU_SUB_VERSION 0
#define KLU_SUBSUB_VERSION 0
#define KLU_VERSION KLU_VERSION_CODE(KLU_MAIN_VERSION,KLU_SUB_VERSION)

#ifdef __cplusplus
}
#endif
#endif