/usr/include/trilinos/Vector3D.hpp is in libtrilinos-dev 10.4.0.dfsg-1ubuntu2.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 | /* *****************************************************************
MESQUITE -- The Mesh Quality Improvement Toolkit
Copyright 2004 Sandia Corporation and Argonne National
Laboratory. Under the terms of Contract DE-AC04-94AL85000
with Sandia Corporation, the U.S. Government retains certain
rights in this software.
This library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
This library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public License
(lgpl.txt) along with this library; if not, write to the Free Software
Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
diachin2@llnl.gov, djmelan@sandia.gov, mbrewer@sandia.gov,
pknupp@sandia.gov, tleurent@mcs.anl.gov, tmunson@mcs.anl.gov
***************************************************************** */
#ifndef MESQUITE_VECTOR3D_HPP
#define MESQUITE_VECTOR3D_HPP
#include "Mesquite.hpp"
#include <iosfwd>
#include <cassert>
#include <cstring>
#include <vector>
/*! \file Vector3D.hpp
\brief Vector object with exactly 3 dimensions.
This is as fast as a C array.
\author Darryl Melander
\author Thomas Leurent
*/
namespace MESQUITE_NS
{
class Matrix3D;
class MsqError;
/*!
\class Vector3D
\brief Vector3D is the object that effeciently stores information about
about three-deminsional vectors. It is also the parent class of
MsqVertex. */
class MESQUITE_EXPORT Vector3D
{
public:
// Constructors
Vector3D();
Vector3D( double xyz );
Vector3D( double x, double y, double z);
Vector3D(const double xyz[3]);
Vector3D(const Vector3D& to_copy);
// *** virtual destructor *** Do not use for Vector3D, we need to keep
// the deallocation of those objects very fast
// Functions to get the coordinates
double x() const;
double y() const;
double z() const;
void get_coordinates(double& x, double& y, double& z) const;
void get_coordinates(double xyz[3]) const;
const double& operator[](size_t index) const; // 0-based
// Functions to set the coordinates.
void x(const double x);
void y(const double y);
void z(const double z);
void set(const double x, const double y, const double z);
void set(const double xyz[3]);
void set(const Vector3D& to_copy);
// Subscripts on non-consts both get and set coords
double& operator[](size_t index); // 0-based
Vector3D& operator=(const Vector3D &to_copy);
Vector3D& operator=(const double &to_copy);
// Functions to modify existing coordinates
Vector3D operator-() const; //- unary negation.
Vector3D& operator*=(const double scalar);
Vector3D& operator/=(const double scalar);
Vector3D& operator*=(const Vector3D &rhs); //- cross product
Vector3D& operator+=(const Vector3D &rhs);
Vector3D& operator-=(const Vector3D &rhs);
// Binary operators (like a+b).
friend const Vector3D operator+(const Vector3D &lhs,
const Vector3D &rhs);
friend const Vector3D operator-(const Vector3D &lhs,
const Vector3D &rhs);
friend const Vector3D operator*(const Vector3D &lhs,
const double scalar); //!< lhs * scalar
friend const Vector3D operator*(const double scalar,
const Vector3D &rhs); //!< scalar * rhs
friend const Vector3D operator/(const Vector3D &lhs,
const double scalar); //- lhs / scalar
friend double operator%(const Vector3D &v1,
const Vector3D &v2); //!< dot product
friend double inner(const Vector3D v1[],
const Vector3D v2[], int n); //!< dot product for array
friend double operator%(const double scalar,
const Vector3D &v2); //!< scalar * sum_i v2[i]
friend double operator%(const Vector3D &v1,
const double scalar); //!< scalar * sum_i v1[i]
friend const Vector3D operator*(const Vector3D &v1,
const Vector3D &v2); //!< cross product
//! \f$ v = A*x \f$
friend void eqAx(Vector3D& v, const Matrix3D& A, const Vector3D& x);
//! \f$ v += A*x \f$
friend void plusEqAx(Vector3D& v, const Matrix3D& A, const Vector3D& x);
//! \f$ v += A^T*x \f$
friend void plusEqTransAx(Vector3D& v, const Matrix3D& A, const Vector3D& x);
friend void eqTransAx(Vector3D& v, const Matrix3D& A, const Vector3D& x);
// Comparison functions
friend bool operator==(const Vector3D &lhs, const Vector3D &rhs);
friend bool operator!=(const Vector3D &lhs, const Vector3D &rhs);
static double distance_between(const Vector3D& p1,
const Vector3D& p2);
int within_tolerance_box(const Vector3D &compare_to,
double tolerance) const;
//- Compare two Vector3Ds to see if they are spatially equal.
// Return TRUE if difference in x, y, and z are all within tolerance.
// Essentially checks to see if 'this' lies within a box centered on
// 'compare_to' with sides of length ('tolerance' * 2).
// Length functions
inline double length_squared() const;
inline double length() const;
friend double length(const Vector3D* v,int n); //!< L2 norm for an array of Vector3Ds
friend double Linf(const Vector3D* v,int n); //!< L inf norm for array of Vector3Ds
inline void set_length(const double new_length);
inline void normalize();
Vector3D operator~() const { return *this * (1.0/length()); }
// Utility functions. All angle functions work in radians.
static double interior_angle(const Vector3D &a,
const Vector3D &b,
MsqError& err);
//- Interior angle: acos((a%b)/(|a||b|))
static Vector3D interpolate(const double param, const Vector3D &p1,
const Vector3D &p2);
//- Interpolate between two points. Returns (1-param)*v1 + param*v2.
const double* to_array() const
{ return mCoords; }
protected:
double mCoords[3];
};
// Constructors
inline Vector3D::Vector3D()
{
mCoords[0] = 0;
mCoords[1] = 0;
mCoords[2] = 0;
}
inline Vector3D::Vector3D( double x )
{
mCoords[0] = x;
mCoords[1] = x;
mCoords[2] = x;
}
inline Vector3D::Vector3D( double x,
double y,
double z)
{
mCoords[0] = x;
mCoords[1] = y;
mCoords[2] = z;
}
inline Vector3D::Vector3D(const double xyz[3])
{ std::memcpy(mCoords, xyz, 3*sizeof(double)); }
inline Vector3D::Vector3D(const Vector3D& to_copy)
{ std::memcpy(mCoords, to_copy.mCoords, 3*sizeof(double)); }
// Functions to get coordinates
inline double Vector3D::x() const
{ return mCoords[0]; }
inline double Vector3D::y() const
{ return mCoords[1]; }
inline double Vector3D::z() const
{ return mCoords[2]; }
inline void Vector3D::get_coordinates(double &x, double &y, double &z) const
{
x = mCoords[0];
y = mCoords[1];
z = mCoords[2];
}
inline void Vector3D::get_coordinates(double xyz[3]) const
{ std::memcpy(xyz, mCoords, 3*sizeof(double)); }
inline const double& Vector3D::operator[](size_t index) const
{
return mCoords[index];
}
// Functions to set coordinates
inline void Vector3D::x( const double x )
{ mCoords[0] = x; }
inline void Vector3D::y( const double y )
{ mCoords[1] = y; }
inline void Vector3D::z( const double z )
{ mCoords[2] = z; }
inline void Vector3D::set(const double x,
const double y,
const double z)
{
mCoords[0] = x;
mCoords[1] = y;
mCoords[2] = z;
}
inline void Vector3D::set(const double xyz[3])
{ std::memcpy(mCoords, xyz, 3*sizeof(double)); }
inline void Vector3D::set(const Vector3D& to_copy)
{ std::memcpy(mCoords, to_copy.mCoords, 3*sizeof(double)); }
inline double& Vector3D::operator[](size_t index)
{ return mCoords[index]; }
inline Vector3D& Vector3D::operator=(const Vector3D &to_copy)
{
mCoords[0] = to_copy.mCoords[0];
mCoords[1] = to_copy.mCoords[1];
mCoords[2] = to_copy.mCoords[2];
// memcpy(mCoords, to_copy.mCoords, 3*sizeof(double));
return *this;
}
inline Vector3D& Vector3D::operator=(const double &to_copy)
{
mCoords[0] = to_copy;
mCoords[1] = to_copy;
mCoords[2] = to_copy;
return *this;
}
// Functions that modify existing coordinates
inline Vector3D Vector3D::operator-() const
{
return Vector3D(-mCoords[0], -mCoords[1], -mCoords[2]);
}
inline Vector3D& Vector3D::operator*=(const double scalar)
{
mCoords[0] *= scalar;
mCoords[1] *= scalar;
mCoords[2] *= scalar;
return *this;
}
//! divides each Vector3D entry by the given scalar.
inline Vector3D& Vector3D::operator/=(const double scalar)
{
mCoords[0] /= scalar;
mCoords[1] /= scalar;
mCoords[2] /= scalar;
return *this;
}
inline Vector3D& Vector3D::operator*=(const Vector3D &rhs)
{
double new_coords[3] =
{mCoords[1]*rhs.mCoords[2] - mCoords[2]*rhs.mCoords[1],
mCoords[2]*rhs.mCoords[0] - mCoords[0]*rhs.mCoords[2],
mCoords[0]*rhs.mCoords[1] - mCoords[1]*rhs.mCoords[0]
};
std::memcpy(mCoords, new_coords, 3*sizeof(double));
return *this;
}
inline Vector3D& Vector3D::operator+=(const Vector3D &rhs)
{
mCoords[0] += rhs.mCoords[0];
mCoords[1] += rhs.mCoords[1];
mCoords[2] += rhs.mCoords[2];
return *this;
}
inline Vector3D& Vector3D::operator-=(const Vector3D &rhs)
{
mCoords[0] -= rhs.mCoords[0];
mCoords[1] -= rhs.mCoords[1];
mCoords[2] -= rhs.mCoords[2];
return *this;
}
// Binary operators
inline const Vector3D operator+(const Vector3D &lhs,
const Vector3D &rhs)
{
return Vector3D(lhs.x() + rhs.x(),
lhs.y() + rhs.y(),
lhs.z() + rhs.z());
}
inline const Vector3D operator-(const Vector3D &lhs,
const Vector3D &rhs)
{
return Vector3D(lhs.x() - rhs.x(),
lhs.y() - rhs.y(),
lhs.z() - rhs.z());
}
inline const Vector3D operator*(const Vector3D &lhs,
const double scalar)
{
return Vector3D(lhs.x() * scalar,
lhs.y() * scalar,
lhs.z() * scalar);
}
inline const Vector3D operator*(const double scalar,
const Vector3D &rhs)
{
return Vector3D(rhs.x() * scalar,
rhs.y() * scalar,
rhs.z() * scalar);
}
inline const Vector3D operator/(const Vector3D &lhs,
const double scalar)
{
assert (scalar != 0);
return Vector3D(lhs.x() / scalar,
lhs.y() / scalar,
lhs.z() / scalar);
}
inline double operator%(const Vector3D &lhs,
const Vector3D &rhs) // Dot Product
{
return( lhs.mCoords[0] * rhs.mCoords[0] +
lhs.mCoords[1] * rhs.mCoords[1] +
lhs.mCoords[2] * rhs.mCoords[2] );
}
/*! Dot product for arrays of Vector3Ds. see also operator% .*/
inline double inner(const Vector3D lhs[],
const Vector3D rhs[], int n)
{
int i;
double dot=0;
for (i=0; i<n; ++i)
dot+= lhs[i].mCoords[0] * rhs[i].mCoords[0] +
lhs[i].mCoords[1] * rhs[i].mCoords[1] +
lhs[i].mCoords[2] * rhs[i].mCoords[2];
return dot;
}
/*! Dot product for arrays of Vector3Ds. see also operator% .*/
inline double inner(const std::vector<Vector3D>& lhs,
const std::vector<Vector3D>& rhs)
{
double dot = 0;
assert(lhs.size() == rhs.size());
for (size_t i = 0; i < lhs.size(); ++i)
dot = lhs[i] % rhs[i];
return dot;
}
inline double operator%(const double scalar,
const Vector3D &rhs) // Dot Product
{
return( scalar * (rhs.mCoords[0] + rhs.mCoords[1] + rhs.mCoords[2]) );
}
inline double operator%(const Vector3D &lhs,
const double scalar) // Dot Product
{
return( scalar * (lhs.mCoords[0] + lhs.mCoords[1] + lhs.mCoords[2]) );
}
inline const Vector3D operator*(const Vector3D &lhs,
const Vector3D &rhs) // Cross Product
{
return Vector3D(lhs.mCoords[1]*rhs.mCoords[2]-lhs.mCoords[2]*rhs.mCoords[1],
lhs.mCoords[2]*rhs.mCoords[0]-lhs.mCoords[0]*rhs.mCoords[2],
lhs.mCoords[0]*rhs.mCoords[1]-lhs.mCoords[1]*rhs.mCoords[0]);
}
// output operator
MESQUITE_EXPORT std::ostream& operator<<(std::ostream &s, const Mesquite::Vector3D &v);
inline double Vector3D::distance_between(const Vector3D &p1,
const Vector3D &p2)
{
Vector3D v = p2 - p1;
return v.length();
}
inline int Vector3D::within_tolerance_box(const Vector3D &compare_to,
double tolerance) const
{
return ((std::fabs(this->mCoords[0] - compare_to.mCoords[0]) < tolerance) &&
(std::fabs(this->mCoords[1] - compare_to.mCoords[1]) < tolerance) &&
(std::fabs(this->mCoords[2] - compare_to.mCoords[2]) < tolerance));
}
// Length functions
inline double Vector3D::length_squared() const
{
return (mCoords[0]*mCoords[0] +
mCoords[1]*mCoords[1] +
mCoords[2]*mCoords[2]);
}
inline double Vector3D::length() const
{
return std::sqrt(mCoords[0]*mCoords[0] +
mCoords[1]*mCoords[1] +
mCoords[2]*mCoords[2]);
}
inline double inner_product( const Vector3D* v1, const Vector3D* v2, size_t n )
{
double result = 0.0;
const Vector3D* const end = v1 + n;
while (v1 < end) {
result += *v1 % *v2;
++v1;
++v2;
}
return result;
}
inline double length_squared( const Vector3D* v, int n )
{
double sum = 0.0;
for (int i = 0; i < n; ++i)
sum += v[i].length_squared();
return sum;
}
inline double length_squared( const std::vector<Vector3D>& v )
{
double sum = 0.0;
for (size_t i = 0; i < v.size(); ++i)
sum += v[i].length_squared();
return sum;
}
inline double length(const Vector3D* v,int n) // norm for an array of Vector3Ds
{
return std::sqrt( length_squared( v, n ) );
}
inline double length( const std::vector<Vector3D>& v )
{
return std::sqrt( length_squared( v ) );
}
inline double Linf(const Vector3D* v,int n) // max entry for an array of Vector3Ds
{
double max=0;
//loop over the length of the array
for(int i=0;i<n;++i){
if ( max < std::fabs(v[i][0]) ) max=std::fabs(v[i][0]) ;
if ( max < std::fabs(v[i][1]) ) max=std::fabs(v[i][1]) ;
if ( max < std::fabs(v[i][2]) ) max=std::fabs(v[i][2]) ;
}
//return the value of the largest entry in the array
return max;
}
inline double Linf( const std::vector<Vector3D>& v ) // max entry for an array of Vector3Ds
{
double max=0;
//loop over the length of the array
for(size_t i=0;i<v.size();++i){
if ( max < std::fabs(v[i][0]) ) max=std::fabs(v[i][0]) ;
if ( max < std::fabs(v[i][1]) ) max=std::fabs(v[i][1]) ;
if ( max < std::fabs(v[i][2]) ) max=std::fabs(v[i][2]) ;
}
//return the value of the largest entry in the array
return max;
}
inline void Vector3D::set_length(const double new_length)
{
double factor = new_length / length();
*this *= factor;
}
inline void Vector3D::normalize()
{ set_length(1.0); }
// Utility functions.
inline Vector3D Vector3D::interpolate(const double param,
const Vector3D &p1,
const Vector3D &p2)
{
return (1-param)*p1 + param*p2;
}
inline bool operator==( const Vector3D& v1, const Vector3D&v2 )
{ return v1.mCoords[0] == v2.mCoords[0] &&
v1.mCoords[1] == v2.mCoords[1] &&
v1.mCoords[2] == v2.mCoords[2]; }
inline bool operator!=( const Vector3D& v1, const Vector3D&v2 )
{ return v1.mCoords[0] != v2.mCoords[0] ||
v1.mCoords[1] != v2.mCoords[1] ||
v1.mCoords[2] != v2.mCoords[2]; }
} // namespace Mesquite
#endif
|