This file is indexed.

/usr/include/trilinos/Trilinos_Util_CrsMatrixGallery.h is in libtrilinos-dev 10.4.0.dfsg-1ubuntu2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
// @HEADER
// ***********************************************************************
// 
//                 TriUtils: Trilinos Utilities Package
//                 Copyright (2001) Sandia Corporation
// 
// Under terms of Contract DE-AC04-94AL85000, there is a non-exclusive
// license for use of this work by or on behalf of the U.S. Government.
// 
// This library is free software; you can redistribute it and/or modify
// it under the terms of the GNU Lesser General Public License as
// published by the Free Software Foundation; either version 2.1 of the
// License, or (at your option) any later version.
//  
// This library is distributed in the hope that it will be useful, but
// WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
// Lesser General Public License for more details.
//  
// You should have received a copy of the GNU Lesser General Public
// License along with this library; if not, write to the Free Software
// Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307
// USA
// Questions? Contact Michael A. Heroux (maherou@sandia.gov) 
// 
// ***********************************************************************
// @HEADER

#ifndef __TRILINOS_UTILS_GALLERY_H
#define __TRILINOS_UTILS_GALLERY_H

class Epetra_Comm;
class Epetra_Map;
class Epetra_BlockMap;
class Vector;
#include "Epetra_CrsMatrix.h"
#include "Epetra_VbrMatrix.h"
class Epetra_Export;
class Epetra_LinearProblem;
#include <string>
#include <vector>
#include "Trilinos_Util_CommandLineParser.h"

namespace Trilinos_Util {

class CrsMatrixGallery 
{
public:

  //@{ \name Constructors/Destructor.
  //! Triutils_Gallery Constructor.
  /*! Creates a Triutils_Gallery instance.

  The first parameter is the name of the matrix. We refer to the Trilinos
  Tutorial for a detailed description of available matrices.

  \note The matrix name can be empty (""), and set later using, for example,
  Set("matrix_name","laplace_2d");
  
  An example of program using this class is reported below.

  \code
int main(int argc, char *argv[])
{

#ifdef HAVE_MPI
  MPI_Init(&argc,&argv);
  Epetra_MpiComm Comm (MPI_COMM_WORLD);
#else
  Epetra_SerialComm Comm;
#endif

  // create an Epetra matrix reading an H/B matrix
  Trilinos_Util_CrsMatrixGallery Gallery("hb", Comm);

  // set the name of the matrix
  Gallery.Set("matrix name", "bcsstk14.rsa");
  
  Epetra_CrsMatrix * A;
  Epetra_Vector * ExactSolution;
  Epetra_Vector * RHS;
  Epetra_Vector * StartingSolution;

  // at this point the matrix is read from file
  A = Gallery.GetMatrix();
  ExactSolution = Gallery.GetExactSolution();

  // at this point the RHS is allocated and filled
  RHS = Gallery.GetRHS();
  StartingSolution = Gallery.GetStartingSolution();
  
  // create linear problem
  Epetra_LinearProblem Problem(A,StartingSolution,RHS);
  // create AztecOO instance
  AztecOO Solver(Problem);

  Solver.SetAztecOption( AZ_precond, AZ_dom_decomp );  
  Solver.Iterate(1000,1E-9);

  // compute residual
  double residual;
  
  Gallery.ComputeResidual(&residual);
  if( Comm.MyPID()==0 ) cout << "||b-Ax||_2 = " << residual << endl;
  
  Gallery.ComputeDiffBetweenStartingAndExactSolutions(&residual);
  if( Comm.MyPID()==0 ) cout << "||x_exact - x||_2 = " << residual << endl;

 #ifdef HAVE_MPI
  MPI_Finalize() ;
#endif

return 0 ;
  } 
  \endcode

  Class CommandLineParser can be used as well. In this case, one may
  decide to use the following:
  \code
  Trilinos_Util::CommandLineParser CLP(argc,argv);
  // set a problem with no matrix name
  Trilinos_Util::CrsMatrixGallery Gallery("", Comm);
  // read parameters and settings from the shell line
  G.Set(CLP);
  // continue with your code...
  \endcode
  
  \param In
  comm - Epetra communicator
  */
  CrsMatrixGallery( const string name, const Epetra_Comm & comm );

  //! Creates an Triutils_Gallery object using a given map.
  /*! Create a Triutils_Gallery object using an Epetra_Map.
    Problem size must match the elements in map.

    \param In
    name - definition of the problem to be created.

    \param In
    map - Epetra_Map
  */
  CrsMatrixGallery( const string name, const Epetra_Map & map );
  
  //! Triutils_Gallery destructor
  ~CrsMatrixGallery();

  //@}

  //@{ \name Setting methods
 
  //! Sets a gallery options using an interger value.
  int Set(const string parameter, const int value);

  //!  Sets a gallery options using a C++ string .
  int Set(const string parameter, const string value );

  //! Sets a gallery options using an double value.
  int Set(const string parameter, const double value);

  //! Sets a gallery options using an Epetra_Vector.
  /*! Sets a gallery options using an Epetra_Vector. The Epetra_Vector
  is copied into internal structures, and freed by the destructor.
  */
  int Set(const string parameter, const Epetra_Vector & value);

  //! Sets gallery options using values passed from the shell
  int Set(Trilinos_Util::CommandLineParser & CLP);

  //@}

  //@{ \name Extraction methods.

  //! Returns a pointer to the CrsMatrix.
  Epetra_CrsMatrix * GetMatrix();

  Epetra_CrsMatrix & GetMatrixRef();

  //! Returns a pointer to the exact solution.
  /*! Returns a pointer to the exact solution.
    
    Some choices are available to define the exact solution, using
    Set("exact solution", value). value can be:
    - constant: the exact solution vector is made up of 1's.
    - random: a random solution vector
    - linear: value at node i is defined as alpha*i. The double value
    alpha can be set via Set("alpha",DoubleVal).
  */
  Epetra_MultiVector * GetExactSolution();

  //! Returns a pointer to the starting solution (typically, for HB problems).
  /*! Returns a pointer to the starting solution. This is typically used
    while reading a HB problem. However, the user can set a starting
    solution using Set("starting solution", "value"). Value can be
    - zero
    - random 
  */
  Epetra_MultiVector * GetStartingSolution();
  
  //! Returns a pointer to the rhs corresponding to the selected exact solution.
  Epetra_MultiVector * GetRHS();

  //! Returns a pointer the internally stored Map.
  const Epetra_Map * GetMap();

  const Epetra_Map & GetMapRef();  

  // ==================== //
  // LINEAR PROBLEM STUFF //
  // ==================== //

  //! Returns a pointer to Epetra_LinearProblem
  Epetra_LinearProblem * GetLinearProblem();

  //! Computes the 2-norm of the residual
  void ComputeResidual(double* residual);

  //! Computes the 2-norm of the difference between the starting solution and the exact solution
  void ComputeDiffBetweenStartingAndExactSolutions(double* residual);

  //! Print out matrix and vectors
  void PrintMatrixAndVectors(ostream & os);

  void PrintMatrixAndVectors();

  //! Get pointers to double vectors containing coordinates of points.
  void GetCartesianCoordinates(double * & x, double * & y, double * & z);
  
  //! Print out detailed information about the problem at hand
  friend ostream & operator << (ostream& os,
				const Trilinos_Util::CrsMatrixGallery & G );
				
  //! Print matrix on file in MATLAB format
  int WriteMatrix( const string & FileName, const bool UseSparse=true );
  
  //@}

protected:

  //@{ \name Creation methods.
  
  //! Creates a map.
  /*! Creates an Epetra_Map. Before calling this function, the problem
  size must have been specified.

  CreateMap() allows some different maps. The type of map is set using
  Set("map",value). Value is a string, defined as:
  - linear: Creates a linear map. Elements are divided into continuous
  chunks among the processors.

  - box: used for problems defined on cartesian grids over a square. The
  nodes is subdivided into mx x my subdomains. mx and my are specified
  via Set("mx",IntValue) and Set("my",IntValue).

  - interlaces: elements are subdivided so that element i is assigned to
  process i%NumProcs.

  - random: assign each node to a random process
  
  - greedy: (only for HB matrices) implements a greedy algorithm to
    decompose the graph of the HB matrix among the processes
    
  */
  void CreateMap();
  
  //! Creates the CrdMatrix.
  void CreateMatrix();

  //! Creates the exact solution.
  void CreateExactSolution();

  //! Creates the starting solution.
  void CreateStartingSolution();

  //! Create the RHS corresponding to the desired exact solution.  
  void CreateRHS();
  
  // Create an identity matrix.
  void CreateEye();

  // Creates a diagonal matrix. Elements on the diagonal are called `a'.
  void CreateMatrixDiag();
    
  // Creates a tridiagonal matrix. Elements on the diagonal are called `a',
  // elements on the sub-diagonal 'b', and on the super-diagonal 'c'.
  void CreateMatrixTriDiag();
  
  // Create a matrix for a Laplacian in 1D
  void CreateMatrixLaplace1d();
  
  void CreateMatrixLaplace1dNeumann();
  
  void CreateMatrixCrossStencil2d();

  void CreateMatrixCrossStencil2dVector();

  void CreateMatrixLaplace2d();

  void CreateMatrixLaplace2d_BC();

  void CreateMatrixLaplace2d_9pt();

  void CreateMatrixStretched2d();

  void CreateMatrixRecirc2d();

  void CreateMatrixRecirc2dDivFree();
  
  void CreateMatrixLaplace2dNeumann();
  
  void CreateMatrixUniFlow2d();
  
  void CreateMatrixLaplace3d();

  void CreateMatrixCrossStencil3d();

  void CreateMatrixCrossStencil3dVector();

  void CreateMatrixLehmer();

  void CreateMatrixMinij();

  void CreateMatrixRis();

  void CreateMatrixHilbert();

  void CreateMatrixJordblock();

  void CreateMatrixCauchy();

  void CreateMatrixFiedler();

  void CreateMatrixHanowa();

  void CreateMatrixKMS();
  
  void CreateMatrixParter();

  void CreateMatrixPei();

  void CreateMatrixOnes();

  void CreateMatrixVander();
  
  // read an HB matrix. This function requires other Trilinos util files
  void ReadMatrix();

  // returns the neighbors of a given node. The node is supposed to be on
  // a 2D Cartesian grid 
  void  GetNeighboursCartesian2d( const int i, const int nx, const int ny,
				  int & left, int & right, 
				  int & lower, int & upper);
  // returns the neighbors of a given node. The node is supposed to be on
  // a 3D Cartesian grid   
  void  GetNeighboursCartesian3d( const int i, const int nx, const int ny, const int nz,
				  int & left, int & right, int & lower, int & upper,
				  int & below, int & above );

  // put to NULL or default values all internal data
  void ZeroOutData();

  void SetupCartesianGrid2D();

  void SetupCartesianGrid3D();

  void ExactSolQuadXY(double x, double y, double & u);
  
  void ExactSolQuadXY(double x, double y, double & u,
		      double & ux, double & uy,
		      double & uxx, double & uyy);
  
  
  //@}
  
  // ======================== //
  // I N T E R N A L  D A T A //
  // ======================== //
  
  const Epetra_Comm * comm_;

  // matrix and vectors (scalar)
  Epetra_CrsMatrix * matrix_;
  Epetra_MultiVector * ExactSolution_;
  Epetra_MultiVector * StartingSolution_;
  Epetra_MultiVector * rhs_;
  Epetra_Map * map_;

  // linear problem
  Epetra_LinearProblem * LinearProblem_;

  // information about the problem to generate
  string name_;
  int NumGlobalElements_;
  int NumMyElements_;
  int * MyGlobalElements_;
  string MapType_;
  bool ContiguousMap_;
  std::vector<int> MapMap_;
  string ExactSolutionType_;
  string StartingSolutionType_;
  string ExpandType_;
  string RhsType_;
  
  // parameters
  int nx_, ny_, nz_;
  int mx_, my_, mz_;

  double lx_, ly_, lz_;
  
  int NumPDEEqns_;
  int NumVectors_;
  
  Epetra_Vector * VectorA_, * VectorB_, * VectorC_, * VectorD_, * VectorE_, *VectorF_, * VectorG_;
  
  double a_, b_, c_, d_, e_, f_, g_;
  double alpha_, beta_, gamma_, delta_;
  double conv_, diff_, source_;
  double epsilon_;
  
  string FileName_;

  // others
  string ErrorMsg;
  string OutputMsg;
  bool verbose_;
  
};

// ========================= //
// extension to VBR matrices //
// ==========================//

class VbrMatrixGallery : public CrsMatrixGallery
{

public:

  VbrMatrixGallery(const string name, const Epetra_Map & map) :
    CrsMatrixGallery(name,map),
    VbrMatrix_(0),
    VbrExactSolution_(0),
    VbrStartingSolution_(0),
    VbrRhs_(0),
    BlockMap_(0),
    MaxBlkSize_(1),
    VbrLinearProblem_(0)
   {} ;

  VbrMatrixGallery(const string name, const Epetra_Comm & Comm) :
    CrsMatrixGallery(name,Comm),
    VbrMatrix_(0),
    VbrExactSolution_(0),
    VbrStartingSolution_(0),
    VbrRhs_(0),
    BlockMap_(0),
    MaxBlkSize_(1),
    VbrLinearProblem_(0)
  {} ;

  ~VbrMatrixGallery(); 
  
  // ========= //
  // VBR STUFF //
  // ========= //
  
  //! Returns a pointer the internally stored BlockMap.
  const Epetra_BlockMap * GetBlockMap();

  const Epetra_BlockMap & GetBlockMapRef();
  
  //! Returns a VbrMatrix, starting from the CsrMatrix.
  /*! Returns a VbrMatrix, starting from the CsrMatrix. This vbr matrix
    is formally equivalent to the CrsMatrix returned by
    GetMatrix(). However, each node of the CrsMatrix is replicated
    num_PDE_eqns times (this value is passed in input, or set via Set("num pde
    eqns",IntValue)).
  */
  Epetra_VbrMatrix * GetVbrMatrix(const int NumPDEEqns);

  //! Returns a VbrMatrix, starting from the CsrMatrix.
  Epetra_VbrMatrix * GetVbrMatrix();

  Epetra_VbrMatrix & GetVbrMatrixRef();

  //! Returns a pointer to the RHS for the selected Vbr exact solution
  /*!  Returns a pointer to the RHS  corresponding to the selected exact solution to the linear systems defined by the Epetra_VbrMatrix.
   */
  Epetra_MultiVector * GetVbrRHS();

  //! Returns a pointer to the selected Vbr exact solution
  Epetra_MultiVector * GetVbrExactSolution();

  //! Returns a pointer to the starting solution for Vbr problems
  Epetra_MultiVector * GetVbrStartingSolution();


  // create the Vbr matrix. 
  void CreateVbrMatrix(void);  

  //! Returns a pointer to Epetra_LinearProblem for VBR
  Epetra_LinearProblem * GetVbrLinearProblem();

  //! Computes the 2-norm of the residual for the VBR problem
  void ComputeResidualVbr(double* residual);

  //! Computes the 2-norm of the difference between the starting solution and the exact solution for the VBR problem  
  void ComputeDiffBetweenStartingAndExactSolutionsVbr(double* residual);

  //! Print out Vbr matrix and vectors
  void PrintVbrMatrixAndVectors(ostream & os);

  void PrintVbrMatrixAndVectors();

protected:

  // Creates a block map, based on map, wich NumPDEEqns equations on each node.
  void CreateBlockMap(void);
  
  //! Creates the exact solution for a Epetra_VbrMatrix.
  void CreateVbrExactSolution(void);

  //! Creates the starting solution for Vbr.
  void CreateVbrStartingSolution();
  
  //!  Create the RHS corresponding to the desired exact solution for the Vbr problem.
  void CreateVbrRHS();

  // matrix and vectors (vbr)
  Epetra_VbrMatrix * VbrMatrix_;
  Epetra_MultiVector * VbrExactSolution_;
  Epetra_MultiVector * VbrStartingSolution_;
  Epetra_MultiVector * VbrRhs_;
  Epetra_BlockMap * BlockMap_;
  int MaxBlkSize_;

  // linear problem  
  Epetra_LinearProblem * VbrLinearProblem_;

};

} // namespace Trilinos_Util
#endif