This file is indexed.

/usr/include/trilinos/Tpetra_CrsMatrixSolveOp_def.hpp is in libtrilinos-dev 10.4.0.dfsg-1ubuntu2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
//@HEADER
// ************************************************************************
// 
//               Tpetra: Templated Linear Algebra Services Package 
//                 Copyright (2008) Sandia Corporation
// 
// Under terms of Contract DE-AC04-94AL85000, there is a non-exclusive
// license for use of this work by or on behalf of the U.S. Government.
// 
// This library is free software; you can redistribute it and/or modify
// it under the terms of the GNU Lesser General Public License as
// published by the Free Software Foundation; either version 2.1 of the
// License, or (at your option) any later version.
//  
// This library is distributed in the hope that it will be useful, but
// WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
// Lesser General Public License for more details.
//  
// You should have received a copy of the GNU Lesser General Public
// License along with this library; if not, write to the Free Software
// Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307
// USA
// Questions? Contact Michael A. Heroux (maherou@sandia.gov) 
// 
// ************************************************************************
//@HEADER

#ifndef TPETRA_CRSMATRIXSOLVEOP_DEF_HPP
#define TPETRA_CRSMATRIXSOLVEOP_DEF_HPP

#include "Tpetra_CrsMatrix.hpp"

#ifdef DOXYGEN_USE_ONLY
  #include "Tpetra_CrsMatrixSolveOp_decl.hpp"
#endif

/*! \file Tpetra_CrsMatrixSolveOp_def.hpp 

    The implementations for the members of Tpetra::CrsMatrixSolveOp and related non-member constructors.
 */

namespace Tpetra {

  template <class OpScalar, class MatScalar, class LocalOrdinal, class GlobalOrdinal, class Node, class LocalMatOps>
  CrsMatrixSolveOp<OpScalar,MatScalar,LocalOrdinal,GlobalOrdinal,Node,LocalMatOps>::CrsMatrixSolveOp(const Teuchos::RCP<const CrsMatrix<MatScalar,LocalOrdinal,GlobalOrdinal,Node,LocalMatOps> > &A) 
  : matrix_(A) {
  }

  template <class OpScalar, class MatScalar, class LocalOrdinal, class GlobalOrdinal, class Node, class LocalMatOps>
  CrsMatrixSolveOp<OpScalar,MatScalar,LocalOrdinal,GlobalOrdinal,Node,LocalMatOps>::~CrsMatrixSolveOp() {
  }


  template <class OpScalar, class MatScalar, class LocalOrdinal, class GlobalOrdinal, class Node, class LocalMatOps>
  void 
  CrsMatrixSolveOp<OpScalar,MatScalar,LocalOrdinal,GlobalOrdinal,Node,LocalMatOps>::apply(
              const MultiVector<OpScalar,LocalOrdinal,GlobalOrdinal,Node> & X,
                    MultiVector<OpScalar,LocalOrdinal,GlobalOrdinal,Node> & Y,
                    Teuchos::ETransp mode, OpScalar alpha, OpScalar beta) const 
  {
    TEST_FOR_EXCEPTION(!matrix_->isFillComplete(), std::runtime_error, 
        Teuchos::typeName(*this) << "::apply(): underlying matrix is not fill-complete.");
    TEST_FOR_EXCEPTION(X.getNumVectors() != Y.getNumVectors(), std::runtime_error,
        Teuchos::typeName(*this) << "::apply(X,Y): X and Y must have the same number of vectors.");
    TEST_FOR_EXCEPTION(matrix_->isLowerTriangular() == false && matrix_->isUpperTriangular() == false, std::runtime_error,
        Teuchos::typeName(*this) << "::apply() requires either upper or lower triangular structure in underlying matrix.");
    TEST_FOR_EXCEPTION( alpha != Teuchos::ScalarTraits<OpScalar>::one() || beta != Teuchos::ScalarTraits<OpScalar>::zero(), std::runtime_error,
        Teuchos::typeName(*this) << "::apply(): non-trivial alpha,beta not supported at this time.");
    if (mode == Teuchos::NO_TRANS) {
      applyNonTranspose(X,Y);
    }
    else {
      applyTranspose(X,Y);
    }
  }

  ///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
  template <class OpScalar, class MatScalar, class LocalOrdinal, class GlobalOrdinal, class Node, class LocalMatOps>
  void 
  CrsMatrixSolveOp<OpScalar,MatScalar,LocalOrdinal,GlobalOrdinal,Node,LocalMatOps>::applyNonTranspose(
      const MultiVector<OpScalar,LocalOrdinal,GlobalOrdinal,Node> & X_in, 
            MultiVector<OpScalar,LocalOrdinal,GlobalOrdinal,Node> & Y_in) const 
  {
    // Solve U X = Y  or  L X = Y
    // X belongs to domain map, while Y belongs to range map
    typedef Teuchos::ScalarTraits<OpScalar> ST;
    using Teuchos::null;

    const size_t numVectors = X_in.getNumVectors();
    Teuchos::RCP<const Import<LocalOrdinal,GlobalOrdinal,Node> > importer = matrix_->getGraph()->getImporter();
    Teuchos::RCP<const Export<LocalOrdinal,GlobalOrdinal,Node> > exporter = matrix_->getGraph()->getExporter();
    Teuchos::RCP<const MV> X;

    // it is okay if X and Y reference the same data, because we can perform a triangular solve in-situ.
    // however, we require that column access to each is strided.

    // set up import/export temporary multivectors
    if (importer != null) {
      if (importMV_ != null && importMV_->getNumVectors() != numVectors) importMV_ = null;
      if (importMV_ == null) {
        importMV_ = Teuchos::rcp( new MV(matrix_->getColMap(),numVectors) );
      }
    }
    if (exporter != null) {
      if (exportMV_ != null && exportMV_->getNumVectors() != numVectors) exportMV_ = null;
      if (exportMV_ == null) {
        exportMV_ = Teuchos::rcp( new MV(matrix_->getRowMap(),numVectors) );
      }
    }

    // solve(NO_TRANS): RangeMap -> DomainMap
    // lclMatSolve_: RowMap -> ColMap
    // importer: DomainMap -> ColMap
    // exporter: RowMap -> RangeMap
    // 
    // solve = reverse(exporter)  o   lclMatSolve_  o reverse(importer)
    //         RangeMap   ->    RowMap     ->     ColMap         ->    DomainMap
    // If we have a non-trivial exporter, we must import elements that are permuted or are on other processors
    if (exporter != null) {
      exportMV_->doImport(X_in, *exporter, INSERT);
      X = exportMV_;
    }
    else if (X_in.isConstantStride() == false) {
      // cannot handle non-constant stride right now
      // generate a copy of X_in
      X = Teuchos::rcp(new MV(X_in));
    }
    else {
      // just temporary, so this non-owning RCP is okay
      X = Teuchos::rcp( &X_in, false );
    }

    // If we have a non-trivial importer, we must export elements that are permuted or belong to other processors
    // We will compute solution into the to-be-exported MV
    if (importer != null) {
      matrix_->template solve<OpScalar,OpScalar>(*X,*importMV_,Teuchos::NO_TRANS);
      // Make sure target is zero: necessary because we are adding.
      Y_in.putScalar(ST::zero());  
      Y_in.doExport(*importMV_, *importer, ADD);
    }
    // otherwise, solve into Y
    else {
      // can't solve into non-strided multivector
      if (Y_in.isConstantStride() == false) {
        // generate a strided copy of Y
        MV Y(Y_in);
        matrix_->template solve<OpScalar,OpScalar>(*X,Y,Teuchos::NO_TRANS);
        Y_in = Y;
      }
      else {
        matrix_->template solve<OpScalar,OpScalar>(*X,Y_in,Teuchos::NO_TRANS);
      }
    }
  }

  ///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
  template <class OpScalar, class MatScalar, class LocalOrdinal, class GlobalOrdinal, class Node, class LocalMatOps>
  void 
  CrsMatrixSolveOp<OpScalar,MatScalar,LocalOrdinal,GlobalOrdinal,Node,LocalMatOps>::applyTranspose(
               const MultiVector<OpScalar,LocalOrdinal,GlobalOrdinal,Node> & X_in, 
                     MultiVector<OpScalar,LocalOrdinal,GlobalOrdinal,Node> &Y_in) const 
  {
    typedef Teuchos::ScalarTraits<OpScalar> ST;
    using Teuchos::null;

    const size_t numVectors = X_in.getNumVectors();
    Teuchos::RCP<const Import<LocalOrdinal,GlobalOrdinal,Node> > importer = matrix_->getGraph()->getImporter();
    Teuchos::RCP<const Export<LocalOrdinal,GlobalOrdinal,Node> > exporter = matrix_->getGraph()->getExporter();
    Teuchos::RCP<const MV> X;

    // it is okay if X and Y reference the same data, because we can perform a triangular solve in-situ.
    // however, we require that column access to each is strided.

    // set up import/export temporary multivectors
    if (importer != null) {
      if (importMV_ != null && importMV_->getNumVectors() != numVectors) importMV_ = null;
      if (importMV_ == null) {
        importMV_ = Teuchos::rcp( new MV(matrix_->getColMap(),numVectors) );
      }
    }
    if (exporter != null) {
      if (exportMV_ != null && exportMV_->getNumVectors() != numVectors) exportMV_ = null;
      if (exportMV_ == null) {
        exportMV_ = Teuchos::rcp( new MV(matrix_->getRowMap(),numVectors) );
      }
    }

    // solve(TRANS): DomainMap -> RangeMap
    // lclMatSolve_(TRANS): ColMap -> RowMap
    // importer: DomainMap -> ColMap
    // exporter: RowMap -> RangeMap
    // 
    // solve = importer o   lclMatSolve_  o  exporter
    //         Domainmap -> ColMap     ->      RowMap -> RangeMap
    // If we have a non-trivial importer, we must import elements that are permuted or are on other processors
    if (importer != null) {
      importMV_->doImport(X_in,*importer,INSERT);
      X = importMV_;
    }
    else if (X_in.isConstantStride() == false) {
      // cannot handle non-constant stride right now
      // generate a copy of X_in
      X = Teuchos::rcp(new MV(X_in));
    }
    else {
      // just temporary, so this non-owning RCP is okay
      X = Teuchos::rcp( &X_in, false );
    }


    // If we have a non-trivial exporter, we must export elements that are permuted or belong to other processors
    // We will compute solution into the to-be-exported MV; get a view
    if (exporter != null) {
      matrix_->template solve<OpScalar,OpScalar>(*X,*exportMV_,Teuchos::CONJ_TRANS);
      // Make sure target is zero: necessary because we are adding
      Y_in.putScalar(ST::zero());  
      Y_in.doExport(*importMV_, *importer, ADD);
    }
    // otherwise, solve into Y
    else {
      if (Y_in.isConstantStride() == false) {
        // generate a strided copy of Y
        MV Y(Y_in);
        matrix_->template solve<OpScalar,OpScalar>(*X,Y,Teuchos::CONJ_TRANS);
        Y_in = Y;
      }
      else {
        matrix_->template solve<OpScalar,OpScalar>(*X,Y_in,Teuchos::CONJ_TRANS);
      }
    }
  }

  template <class OpScalar, class MatScalar, class LocalOrdinal, class GlobalOrdinal, class Node, class LocalMatOps>
  bool 
  CrsMatrixSolveOp<OpScalar,MatScalar,LocalOrdinal,GlobalOrdinal,Node,LocalMatOps>::hasTransposeApply() const {
    return true;
  }

  template <class OpScalar, class MatScalar, class LocalOrdinal, class GlobalOrdinal, class Node, class LocalMatOps>
  const Teuchos::RCP<const Map<LocalOrdinal,GlobalOrdinal,Node> > & 
  CrsMatrixSolveOp<OpScalar,MatScalar,LocalOrdinal,GlobalOrdinal,Node,LocalMatOps>::getDomainMap() const {
    return matrix_->getRangeMap();
  }

  template <class OpScalar, class MatScalar, class LocalOrdinal, class GlobalOrdinal, class Node, class LocalMatOps>
  const Teuchos::RCP<const Map<LocalOrdinal,GlobalOrdinal,Node> > & 
  CrsMatrixSolveOp<OpScalar,MatScalar,LocalOrdinal,GlobalOrdinal,Node,LocalMatOps>::getRangeMap() const {
    return matrix_->getDomainMap();
  }

} // end of namespace Tpetra

template <class OpScalar, class MatScalar, class LocalOrdinal, class GlobalOrdinal, class Node, class LocalMatOps>
Teuchos::RCP< Tpetra::CrsMatrixSolveOp<OpScalar,MatScalar,LocalOrdinal,GlobalOrdinal,Node,LocalMatOps> >
Tpetra::createCrsMatrixSolveOp(const Teuchos::RCP<const Tpetra::CrsMatrix<MatScalar,LocalOrdinal,GlobalOrdinal,Node,LocalMatOps> > &A) {
  return Teuchos::rcp(new Tpetra::CrsMatrixSolveOp<OpScalar,MatScalar,LocalOrdinal,GlobalOrdinal,Node,LocalMatOps>(A) );
}

//
// Explicit instantiation macro
//
// Must be expanded from within the Tpetra namespace!
//

//! Explicit instantiation macro supporting the CrsMatrixSolveOp class. Instantiates the class, the non-member constructor, and the necessary CrsMatrix::solve() member.
#define TPETRA_CRSMATRIX_SOLVEOP_INSTANT(OPSCALAR,MATSCALAR,LO,GO,NODE) \
  \
  template class CrsMatrixSolveOp< OPSCALAR , MATSCALAR , LO , GO , NODE >; \
  \
  template Teuchos::RCP< Tpetra::CrsMatrixSolveOp<OPSCALAR,MATSCALAR,LO,GO,NODE> > \
  createCrsMatrixSolveOp(const Teuchos::RCP<const Tpetra::CrsMatrix<MATSCALAR,LO,GO,NODE> > &A); \
  \
  template void CrsMatrix<MATSCALAR,LO,GO,NODE>::solve<OPSCALAR,OPSCALAR>( \
        const MultiVector<OPSCALAR,LO,GO,NODE> &X, \
              MultiVector<OPSCALAR,LO,GO,NODE> &Y, \
              Teuchos::ETransp mode) const; \


#endif // TPETRA_CRSMATRIXSOLVEOP_DEF_HPP