This file is indexed.

/usr/include/trilinos/TopologyInfo.hpp is in libtrilinos-dev 10.4.0.dfsg-1ubuntu2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
/* ***************************************************************** 
    MESQUITE -- The Mesh Quality Improvement Toolkit

    Copyright 2004 Lawrence Livermore National Laboratory.  Under 
    the terms of Contract B545069 with the University of Wisconsin -- 
    Madison, Lawrence Livermore National Laboratory retains certain
    rights in this software.

    This library is free software; you can redistribute it and/or
    modify it under the terms of the GNU Lesser General Public
    License as published by the Free Software Foundation; either
    version 2.1 of the License, or (at your option) any later version.

    This library is distributed in the hope that it will be useful,
    but WITHOUT ANY WARRANTY; without even the implied warranty of
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
    Lesser General Public License for more details.

    You should have received a copy of the GNU Lesser General Public License 
    (lgpl.txt) along with this library; if not, write to the Free Software
    Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
 
    kraftche@cae.wisc.edu    
   
  ***************************************************************** */

#ifndef MESQUITE_TOPOLOGY_INFO_HPP
#define MESQUITE_TOPOLOGY_INFO_HPP

#include "Mesquite.hpp"
#include "Sample.hpp"
#include <string.h>

namespace MESQUITE_NS
{

class MsqError;

/** \brief Information about different element topologies */
class MESQUITE_EXPORT TopologyInfo
{
  public:
  
    static const char* name( EntityTopology topo )
      { return topo > MIXED ? 0 : instance.longNames[topo]; }
    static const char* short_name( EntityTopology topo )
      { return topo > MIXED ? 0 : instance.shortNames[topo]; }
    
      /** \brief Dimension of element topology */
    static unsigned dimension( EntityTopology topo )
      { return topo >= MIXED ? 0: instance.dimMap[topo]; }
    
      /** \brief Number of adjacent entities of a specified dimension 
       *
       * For a given element topology, get the number of adjacent entities
       * of the specified dimension.  
       */
    static unsigned adjacent( EntityTopology topo, unsigned dimension )
      { return (topo >= MIXED) ? 0 : instance.adjMap[topo][dimension]; }
    
      /** \brief Get number of sides a given topology type has 
       *
       * Get the number of sides for a given element topology.  Returns
       * the number of adjacent entities of one less dimension.  The number
       * of faces for a volume element and the number of edges for a face
       * element 
       */
    static unsigned sides( EntityTopology topo )
      { return (topo >= MIXED || instance.dimMap[topo] < 1) ? 0 : 
          instance.adjMap[topo][instance.dimMap[topo]-1]; }
    
      /** \brief Get the number of defining vertices for a given element topology 
       *
       * Get the number of corner vertices necessary to define an element
       * of the specified topology.  This is the number of nodes a linear
       * element of the specified topology will have.
       */
    static unsigned corners( EntityTopology topo )
      { return adjacent(topo, 0); }
    
      /** \brief Get the number of edges in a given topology */
    static unsigned edges( EntityTopology topo )
      { return adjacent(topo, 1); }
      
      /** \brief Get the number of faces in a given topology */
    static unsigned faces( EntityTopology topo )
      { return adjacent(topo, 2 ); }
      
      /** \brief Check which mid-nodes a higher-order element has.
       *
       * Assuming at most one mid-node per sub-entity per dimension
       * (i.e. at most one mid-node per edge, at most one mid-node per face, etc.)
       * determine which mid-nodes are present given the topology
       * and total number of nodes.
       */
    static void higher_order( EntityTopology topo, unsigned num_nodes,
                              bool& midedge, bool& midface, bool& midvol,
                              MsqError &err );
      
      /** \brief Check which mid-nodes a higher-order element has.
       *
       * Assuming at most one mid-node per sub-entity per dimension
       * (i.e. at most one mid-node per edge, at most one mid-node per face, etc.)
       * determine which mid-nodes are present given the topology
       * and total number of nodes.  This function is similar to the
       * previous one, except that that it returns a set of bits, one per
       * side dimension, rather than separate bool values.  If the bit at position
       * one (the second least significant bit) has a value of one, then the
       * element has mid-edge nodes.  If the bit at position two (the third to
       * least signficiant bit) has a value of one then the element has mid-face
       * nodes.
       *\code
       *  int ho = TopologyInfo::higher_order( topo, num_nodes, err );
       *  bool have_midedge = !!(ho & 1<<1);
       *  bool have_midface = !!(ho & 1<<2);
       *  bool have_midvol  = !!(ho & 1<<3);
       *\endocde
       *
       * The advantange of this form of the function over the previous is 
       * that a) it is possible to check for mid-nodes on sub-entities of
       * a varialbe dimension 'd':
       *\code
       *  if (ho & (1<<d)) { ... }
       *\code
       * and b) it is convienent to test if an element has any higher-order
       * nodes:
       *\code
       *  int ho = TopologyInfo::higher_order( topo, num_nodes, err );
       *  if (!ho) // if linear element
       *    { ... }
       *\endocde        
       */
    static int higher_order( EntityTopology topo, unsigned num_nodes, MsqError &err );
    
      /**\brief Given a side, return index of mid-vertex for that side.
       *
       * Given a side specification (e.g. the first edge), return the
       * index of of the correponding mid-side node in the canoncial
       * ordering of the element connectivity.  Returns -1 if the element
       * doesn't have the specified mid-side node. 
       *
       *\param topo   The element topology
       *\param num_nodes  The number of nodes in the element type.
       *\param side_dimension  The dimension of the side (e.g. 1 = edge, 2 = face)
       *\param side_number     The number of the side (e.g. 0 for first edge/face, etc.)
       *\return  Index (zero-based position) of higher-order node in canonical 
       *         ordering of element connectivity, or -1 of element type contains
       *         no such node.
       */
    static int higher_order_from_side( EntityTopology topo,
                                       unsigned num_nodes,
                                       unsigned side_dimension,
                                       unsigned side_number,
                                       MsqError& err );
    
      /**\brief Get side given a higher-order node */
    static void side_from_higher_order( EntityTopology topo,
                                        unsigned num_nodes,
                                        unsigned node_number,
                                        unsigned& side_dim_out,
                                        unsigned& side_num_out,
                                        MsqError& err );

    /** Get logical position given an element type node node index*/
    static inline
    Sample sample_from_node( EntityTopology topo,
                             unsigned num_nodes,
                             unsigned node_number,
                             MsqError& err )
    {
      unsigned dim, num;
      side_from_higher_order( topo, num_nodes, node_number, dim, num, err );
      return Sample(dim, num);
    }
    /** Get node index from logical position */
    static inline
    int node_from_sample( EntityTopology topo, 
                          unsigned num_nodes,
                          Sample sample,
                          MsqError& err )
    {
      return higher_order_from_side( topo, num_nodes, sample.dimension,
                                     sample.number, err );
    }
      /**\brief Get indices of edge ends in element connectivity array 
       *
       * Given an edge number in (0,edges(type)], return which positions
       * in the connectivity list for the element type correspond to the
       * end vertices of that edge.
       */
    static const unsigned* edge_vertices( EntityTopology topo,
                                          unsigned edge_number,
                                          MsqError& err );
    static const unsigned* edge_vertices( EntityTopology topo,
                                          unsigned edge_number );
    
     /**\brief Get face corner indices in element connectivity array 
       *
       * Given an face number in (0,faces(type)], return which positions
       * in the connectivity list for the element type correspond to the
       * vertices of that face, ordered in a counter-clockwise cycle
       * around a vector pointing out of the element for an ideal element.
       */
    static const unsigned* face_vertices( EntityTopology topo,
                                          unsigned face_number,
                                          unsigned& num_vertices_out,
                                          MsqError& err );
    static const unsigned* face_vertices( EntityTopology topo,
                                          unsigned face_number,
                                          unsigned& num_vertices_out );

    /**\brief Get corner indices of side 
     *
     * Get the indices into element connectivity list for the 
     * corners/ends of the specified side of the element.  
     * edge_vertices() and face_vertices() are special cases
     * of this method.  
     *
     * If the passed dimension equals that of the specified topology,
     * the side number is ignored and all the corners of the 
     * element are returned.  Fails if side dimension
     * greater than the dimension of the specified topology type.
     */
    static const unsigned* side_vertices( EntityTopology topo,
                                          unsigned side_dimension, 
                                          unsigned side_number,
                                          unsigned& num_verts_out,
                                          MsqError& err );
    static const unsigned* side_vertices( EntityTopology topo,
                                          unsigned side_dimension, 
                                          unsigned side_number,
                                          unsigned& num_verts_out );

     
      
      /**\brief Return which side the specified mid-node lies on 
       *
       * Given an non-linear element type (specified by the
       * topology and length of the connectiivty array) and the 
       * index of a node in the element's connectivity array,
       * return the lower-dimension entity (side) of the element
       * the mid-node lies on.
       *
       *\param topo  Element topology
       *\param connectivity_length Number of nodes in element
       *\param node_index Which node of the element
       *\param side_dimension_out The dimension of the side containing the
       *             midnode (0 = vertex, 1 = edge, 2 = face, 3 = volume)
       *\param side_number_out The canonical number of the side 
       */
    static void side_number( EntityTopology topo, 
                             unsigned connectivity_length,
                             unsigned node_index,
                             unsigned& side_dimension_out,
                             unsigned& side_number_out,
                             MsqError& err );

    /**\brief  Get adjacent corner vertices
     *
     * Given the index of a vertex in an element, get the list of 
     * indices corresponding to the adjacent corner vertices.
     *
     * Adjcent corner vertex indices are returned in the proper
     * order for constructing the active matrix for the corner.
     *
     * Given the array v of all vertices in the patch, the array v_i
     * containing the connectivity list for an element as
     * indices into v, and adj as the result of this function for some
     * corner of the element, the corresponding active matrix A for
     * that corner can be constructed as:
     *  Matrix3D A;
     *  A.set_column( 0, v[v_i[adj[0]]] - v[v_i[0]] );
     *  A.set_column( 1, v[v_i[adj[1]]] - v[v_i[0]] );
     *  A.set_column( 2, v[v_i[adj[2]]] - v[v_i[0]] );
     *
     *\param topo  The element type
     *\param index The index of a corner vertex
     *\param num_adj_out The number of adjacent vertices (output)
     *\return The array of vertex indices
     */
    static const unsigned* adjacent_vertices( EntityTopology topo,
                                              unsigned index,
                                              unsigned& num_adj_out );
     
    /**\brief  Get reverse adjacency offsets
     *
     * Get reverse mapping of results from adjacent_vertices().
     *
     * Let i be the input vertex index.  For each vertex index j
     * for which the result of adjacent_vertices() contains i, return
     * the offset into that result at which i would occur.  The
     * results are returned in the same order as each j is returned
     * in the results of adjacent_vertices(...,i,...).  Thus the
     * combination of the results of adjacent_vertices(...,i,...)
     * and this method provide a reverse mapping of the results of
     * adjacent_vertices(...,j,...) for i in all j.
     * 
     * Given:
     *   const unsigned *a, *b, *r;
     *   unsigned n, nn, c = corners(type);
     *   a = adjacent_vertices( type, i, n );            // for any i < c
     *   r = reverse_vertex_adjacency_offsets( type, i, n );
     *   b = adjacent_vertices( type, a[k], nn );        // for any k < n
     * Then:
     *   b[r[k]] == i
     */
    static const unsigned* reverse_vertex_adjacency_offsets( 
                                              EntityTopology topo,
                                              unsigned index,
                                              unsigned& num_idx_out );
    
      /**\brief Find which edge of an element has the passed vertex indices
      *
      * Find which edge of the element cooresponds to a list of positions
      * in the canonical element ordering.
      *\param topo            The element type
      *\param edge_vertices   The array of side vertex indices
      *\param reversed_out    True if edge is reversed wrt edge_vertices
      *\return                The edge number.
      */
    static unsigned find_edge( EntityTopology topo,
                               const unsigned* edge_vertices,
                               bool& reversed_out,
                               MsqError& err );
    
      /**\brief Find which face of an element has the passed vertex indices
       *
       * Find which face of the element cooresponds to a list of positions
       * in the canonical element ordering.
       *\param topo           The element type
       *\param face_vertices  The array of face vertex indices
       *\param num_face_vertices   The length of face_vertices
       *\param reversed_out   True if face is reversed wrt face_vertices
       *\return               The face number.
       */
    static unsigned find_face( EntityTopology topo,
                               const unsigned* face_vertices,
                               unsigned num_face_vertices,
                               bool& reversed_out,
                               MsqError& err );
  
      /**\brief Find which side of an element has the passed vertex indices
       *
       * Find which side of the element cooresponds to a list of positions
       * in the canonical element ordering.
       *\param topo           The element type
       *\param side_vertices  The array of side vertex indices
       *\param num_vertices   The length of side_vertices
       *\param dimension_out  The dimension of the side
       *\param number_out     The enumerated index for the side
       *\param reversed_out   True if side is reversed wrt side_vertices
       */
    static void find_side( EntityTopology topo, 
                           const unsigned* side_vertices,
                           unsigned num_vertices,
                           unsigned& dimension_out,
                           unsigned& number_out,
                           bool& reversed_out,
                           MsqError& err );

      /**\brief Test if two elements share lower-order topology
       *
       * Test if two elements share lower-order topology (e.g.
       * whether or not two tetrahedra share an edge.)
       *
       * That is compare the 'element_1_side_number'-th lower order 
       * topology of dimension 'side_dimension' on element 1 with the 
       * 'element_2_side_number'-th lower order topology of dimension 
       *'side_dimension' on element 2
       *
       *\param element_1_vertices    The connectivity of the first element
       *\param element_1_topology    The type of the first element
       *\param element_1_side_number Which lower-order topology to compare
       *\param element_2_vertices    The connectivity of the second element
       *\param element_2_topology    The type of the second element
       *\param element_2_side_number Whcih lower-order topology to compare
       *\param side_dimension        The dimension of the lower-order topology
       */
    static bool compare_sides( const size_t* element_1_vertices,
                               EntityTopology element_1_topology,
                               unsigned element_1_side_number,
                               const size_t* element_2_vertices,
                               EntityTopology element_2_topology,
                               unsigned element_2_side_number,
                               unsigned side_dimension,
                               MsqError& err );

  private:
 
    enum {
      MAX_CORNER = 8,
      MAX_EDGES = 12,
      MAX_FACES = 6,
      MAX_FACE_CONN = 5,
      MAX_VERT_ADJ = 4,
      FIRST_FACE = TRIANGLE,
      LAST_FACE = QUADRILATERAL,
      FIRST_VOL= TETRAHEDRON,
      LAST_VOL = PYRAMID
    };
    
    unsigned char dimMap[MIXED];    /**< Get dimension of entity given topology */
    unsigned char adjMap[MIXED][4]; /**< Get number of adj entities of dimension 0, 1 and dimension 2 */
    /** Vertex indices for element edges */
    unsigned edgeMap[LAST_VOL-FIRST_FACE+1][MAX_EDGES][2] ;
    /** Vertex indices for element faces */
    unsigned faceMap[LAST_VOL-FIRST_VOL+1][MAX_FACES][MAX_FACE_CONN];
    /** Vertex-Vertex adjacency map */
    unsigned vertAdjMap[LAST_VOL-FIRST_FACE+1][MAX_CORNER][MAX_VERT_ADJ+1];
    /** Reverse Vertex-Vertex adjacency index map */
    unsigned revVertAdjIdx[LAST_VOL-FIRST_FACE+1][MAX_CORNER][MAX_VERT_ADJ+1];

    const char* longNames[MIXED+1];
    const char* shortNames[MIXED+1];

    TopologyInfo();
    
    static TopologyInfo instance;
  
};

} //namespace Mesquite

#endif