This file is indexed.

/usr/include/trilinos/Tifpack_Relaxation_decl.hpp is in libtrilinos-dev 10.4.0.dfsg-1ubuntu2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
/*@HEADER
// ***********************************************************************
//
//       Tifpack: Tempated Object-Oriented Algebraic Preconditioner Package
//                 Copyright (2009) Sandia Corporation
//
// Under terms of Contract DE-AC04-94AL85000, there is a non-exclusive
// license for use of this work by or on behalf of the U.S. Government.
//
// This library is free software; you can redistribute it and/or modify
// it under the terms of the GNU Lesser General Public License as
// published by the Free Software Foundation; either version 2.1 of the
// License, or (at your option) any later version.
//
// This library is distributed in the hope that it will be useful, but
// WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
// Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License along with this library; if not, write to the Free Software
// Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307
// USA
// Questions? Contact Michael A. Heroux (maherou@sandia.gov)
//
// ***********************************************************************
//@HEADER
*/

#ifndef TIFPACK_RELAXATION_DECL_HPP
#define TIFPACK_RELAXATION_DECL_HPP

#include "Tifpack_ConfigDefs.hpp"
#include "Tifpack_Preconditioner.hpp"
#include "Tifpack_Condest.hpp"
#include "Tifpack_Parameters.hpp"

#include <Tpetra_Vector.hpp>

#include <Teuchos_TestForException.hpp>
#include <Teuchos_RCP.hpp>
#include <Teuchos_Time.hpp>
#include <Teuchos_TypeNameTraits.hpp>
#include <Teuchos_ScalarTraits.hpp>

#include <string>
#include <iostream>
#include <sstream>

namespace Teuchos {
  // forward declaration
  class ParameterList;
}

namespace Tifpack {
enum RelaxationType {
  JACOBI,
  GS,
  SGS
};

//! Tifpack::Relaxation: defines relaxation preconditioners for Tpetra::RowMatrix objects.

/*! 
  The Tifpack::Relaxation class enables the construction of relaxation
  preconditioners for Tpetra::RowMatrix. Tifpack::Relaxation 
  is derived from Tifpack::Preconditioner, which is itself derived
  from Tpetra::Operator.
  Therefore this object can be used as preconditioner everywhere an
  apply() method is required in the preconditioning step.
 
This class enables the construction of the following simple preconditioners:
- Jacobi;
- Gauss-Seidel;
- Symmetric Gauss-Seidel.

<P>We now briefly describe the main features of the above preconditioners.
Consider a linear system of type
\f[
A x = b,
\f]
where \f$A\f$ is a square, real matrix, and \f$x, b\f$ are two real
vectors. We begin with the decomposition
\f[
A = D - E - F
\f]
where \f$D\f$ is the diagonal of A, \f$-E\f$ is the strict lower part, and
\f$-F\f$ is the strict upper part. It is assumed that the diagonal entries
of \f$A\f$ are different from zero.

<P>Given an starting solution \f$x_0\f$, an iteration of the (damped) Jacobi
method can be written in matrix form as follows:
\f[
x_{k+1} = \omega D^{-1}(E + F) x_k + D_{-1}b,
\f]
for \f$k < k_{max}\f$, and \f$\omega \f$ a damping parameter.

Using Tifpack::Jacobi, the user can apply the specified number of sweeps
(\f$k_{max}\f$), and the damping parameter. If only one sweep is used, then
the class simply applies the inverse of the diagonal of A to the input
vector.

<P>Given a starting solution \f$x_0\f$, an iteration of the (damped) GaussSeidel
method can be written in matrix form as follows:
\f[
(D - E) x_{k+1} = \omega F x_k + b,
\f]
for \f$k < k_{max}\f$, and \f$\omega \f$ a damping parameter. Equivalently,
the Gauss-Seidel preconditioner can be defined as
\f[
P_{GS}^{-1} = (D - E)^{-1}.
\f]
Clearly, the role of E and F can be interchanged. However,
Tifpack::GaussSeidel does not consider backward Gauss-Seidel methods.

<P>For a list of supported parameters, please refer to the Relaxation::setParameters method.

    \author Michael Heroux, SNL 9214.

    \date Last modified on 22-Jan-05.
*/
template<class MatrixType>
class Relaxation : virtual public Tifpack::Preconditioner<typename MatrixType::scalar_type,typename MatrixType::local_ordinal_type,typename MatrixType::global_ordinal_type,typename MatrixType::node_type> {

public:
  typedef typename MatrixType::scalar_type Scalar;
  typedef typename MatrixType::local_ordinal_type LocalOrdinal;
  typedef typename MatrixType::global_ordinal_type GlobalOrdinal;
  typedef typename MatrixType::node_type Node;
  typedef typename Teuchos::ScalarTraits<Scalar>::magnitudeType magnitudeType;

  // \name Constructors and Destructors
  //@{

  //! Relaxation constructor with given Tpetra::RowMatrix input.
  explicit Relaxation(const Teuchos::RCP<const Tpetra::RowMatrix<Scalar,LocalOrdinal,GlobalOrdinal,Node> >& Matrix);

  //! Relaxation Destructor.
  virtual ~Relaxation();

  //@}

  //@{ \name Preconditioner computation methods

  //! Sets all the parameters for the preconditioner
  /**
     Valid parameters include the following:
     <ul>
      <li> "relaxation: type"<br>
        Valid values (string):<br>
        <ul>
         <li> "Jacobi"
         <li> "Gauss-Seidel"
         <li> "Symmetric Gauss-Seidel"
        </ul>
      <li> "relaxation: sweeps" (int)
      <li> "relaxation: damping factor" (floating-point)
      <li> "relaxation: min diagonal value" (floating-point)
      <li> "relaxation: zero starting solution" (bool)
      <li> "relaxation: backward mode" (bool)
     </ul>
  */
  void setParameters(const Teuchos::ParameterList& params);

  //! Initialize
  void initialize();

  //! Returns \c true if the preconditioner has been successfully initialized.
  inline bool isInitialized() const {
    return(IsInitialized_);
  }

  //! compute the preconditioner for the specified matrix, diagonal perturbation thresholds and relaxation parameters.
  void compute();

  //! Return true if compute() has been called.
  inline bool isComputed() const {
    return(IsComputed_);
  }

  //@}

  //! @name Methods implementing a Tpetra::Operator interface.
  //@{ 

  //! Applies the preconditioner to X, returns the result in Y.
  /*! 
    \param
    X - (In) A Tpetra::MultiVector of dimension NumVectors to be preconditioned.
    \param
    Y - (InOut) A Tpetra::MultiVector of dimension NumVectors containing result.

    \return Integer error code, set to 0 if successful.

    \warning This routine is NOT AztecOO compliant.
  */
  void apply(const Tpetra::MultiVector<Scalar,LocalOrdinal,GlobalOrdinal,Node>& X,
             Tpetra::MultiVector<Scalar,LocalOrdinal,GlobalOrdinal,Node>& Y,
             Teuchos::ETransp mode = Teuchos::NO_TRANS,
                 Scalar alpha = Teuchos::ScalarTraits<Scalar>::one(),
                 Scalar beta = Teuchos::ScalarTraits<Scalar>::zero()) const;

  //! Returns the Tpetra::Map object associated with the domain of this operator.
  const Teuchos::RCP<const Tpetra::Map<LocalOrdinal,GlobalOrdinal,Node> >& getDomainMap() const;

  //! Returns the Tpetra::Map object associated with the range of this operator.
  const Teuchos::RCP<const Tpetra::Map<LocalOrdinal,GlobalOrdinal,Node> >& getRangeMap() const;

  bool hasTransposeApply() const;

  //! Applies the matrix to a Tpetra::MultiVector.
  /*! 
    \param 
    X - (In) A Tpetra::MultiVector of dimension NumVectors to multiply with matrix.
    \param 
    Y - (Out) A Tpetra::MultiVector of dimension NumVectors containing the result.
    */
  void applyMat(const Tpetra::MultiVector<Scalar,LocalOrdinal,GlobalOrdinal,Node>& X,
                Tpetra::MultiVector<Scalar,LocalOrdinal,GlobalOrdinal,Node>& Y,
                Teuchos::ETransp mode = Teuchos::NO_TRANS) const;

  //@}

  //@{
  //! \name Mathematical functions.

  //! Computes the estimated condition number and returns the value.
  magnitudeType computeCondEst(CondestType CT = Cheap, 
                               LocalOrdinal MaxIters = 1550,
                               magnitudeType Tol = 1e-9,
                               const Teuchos::Ptr<const Tpetra::RowMatrix<Scalar,LocalOrdinal,GlobalOrdinal,Node> > &matrix = Teuchos::null);

  //@}

  //@{ 
  //! \name Attribute accessor methods

  //! Returns the computed estimated condition number, or -1.0 if no computed.
  magnitudeType getCondEst() const;

  //! Returns the Tpetra::BlockMap object associated with the range of this matrix operator.
  const Teuchos::RCP<const Teuchos::Comm<int> > & getComm() const;

  //! Returns a reference to the matrix to be preconditioned.
  Teuchos::RCP<const Tpetra::RowMatrix<Scalar,LocalOrdinal,GlobalOrdinal,Node> > getMatrix() const;

  //! Returns the number of flops in the computation phase.
  double getComputeFlops() const;

  //! Returns the number of flops for the application of the preconditioner.
  double getApplyFlops() const;

  //! Returns the number of calls to initialize().
  int getNumInitialize() const;

  //! Returns the number of calls to compute().
  int getNumCompute() const;

  //! Returns the number of calls to apply().
  int getNumApply() const;

  //! Returns the time spent in initialize().
  double getInitializeTime() const;

  //! Returns the time spent in compute().
  double getComputeTime() const;

  //! Returns the time spent in apply().
  double getApplyTime() const;

  //@}

  //! @name Overridden from Teuchos::Describable 
  //@{

  /** \brief Return a simple one-line description of this object. */
  std::string description() const;

  /** \brief Print the object with some verbosity level to an FancyOStream object. */
  void describe(Teuchos::FancyOStream &out, const Teuchos::EVerbosityLevel verbLevel=Teuchos::Describable::verbLevel_default) const;

  //@}

private:

  // @{ Internal methods

  //! Copy constructor (should never be used)
  Relaxation(const Relaxation<MatrixType>& RHS);

  //! operator= (should never be used)
  Relaxation<MatrixType>& operator=(const Relaxation<MatrixType>& RHS);

  //! Applies the Jacobi preconditioner to X, returns the result in Y.
  void ApplyInverseJacobi(
        const Tpetra::MultiVector<Scalar,LocalOrdinal,GlobalOrdinal,Node>& X, 
              Tpetra::MultiVector<Scalar,LocalOrdinal,GlobalOrdinal,Node>& Y) const;

  //! Applies the Gauss-Seidel preconditioner to X, returns the result in Y.
  void ApplyInverseGS(
        const Tpetra::MultiVector<Scalar,LocalOrdinal,GlobalOrdinal,Node>& X, 
              Tpetra::MultiVector<Scalar,LocalOrdinal,GlobalOrdinal,Node>& Y) const;

  void ApplyInverseGS_RowMatrix(
        const Tpetra::MultiVector<Scalar,LocalOrdinal,GlobalOrdinal,Node>& X, 
              Tpetra::MultiVector<Scalar,LocalOrdinal,GlobalOrdinal,Node>& Y) const;

  void ApplyInverseGS_CrsMatrix(
        const MatrixType& A,
        const Tpetra::MultiVector<Scalar,LocalOrdinal,GlobalOrdinal,Node>& X,
              Tpetra::MultiVector<Scalar,LocalOrdinal,GlobalOrdinal,Node>& Y) const;

  //! Applies the symmetric Gauss-Seidel preconditioner to X, returns the result in Y.
  void ApplyInverseSGS(
        const Tpetra::MultiVector<Scalar,LocalOrdinal,GlobalOrdinal,Node>& X, 
              Tpetra::MultiVector<Scalar,LocalOrdinal,GlobalOrdinal,Node>& Y) const;

  void ApplyInverseSGS_RowMatrix(
        const Tpetra::MultiVector<Scalar,LocalOrdinal,GlobalOrdinal,Node>& X, 
              Tpetra::MultiVector<Scalar,LocalOrdinal,GlobalOrdinal,Node>& Y) const;

  void ApplyInverseSGS_CrsMatrix(
        const MatrixType& A,
        const Tpetra::MultiVector<Scalar,LocalOrdinal,GlobalOrdinal,Node>& X, 
              Tpetra::MultiVector<Scalar,LocalOrdinal,GlobalOrdinal,Node>& Y) const;

  //@}

  // @{ Internal data and parameters

  //! reference to the matrix to be preconditioned
  const Teuchos::RCP<const Tpetra::RowMatrix<Scalar,LocalOrdinal,GlobalOrdinal,Node> > A_;
  //! Reference to the communicator object
  const Teuchos::RCP<const Teuchos::Comm<int> > Comm_;
  //! Time object to track timing.
  Teuchos::RCP<Teuchos::Time> Time_;
  //! Importer for parallel GS and SGS
  Teuchos::RCP<Tpetra::Import<LocalOrdinal,GlobalOrdinal,Node> > Importer_;
  //! Contains the diagonal elements of \c Matrix.
  mutable Teuchos::RCP<Tpetra::Vector<Scalar,LocalOrdinal,GlobalOrdinal,Node> > Diagonal_;
  //! Number of application of the preconditioner (should be greater than 0).
  int NumSweeps_;
  //! Which type of point relaxation approach to use
  int PrecType_;
  //! Minimum diagonal value
  Scalar MinDiagonalValue_;
  //! Damping factor.
  double DampingFactor_;
  //! If \c true, more than 1 processor is currently used.
  bool IsParallel_;
  //! If \c true, the starting solution is always the zero vector.
  bool ZeroStartingSolution_;
  //! Backward-Mode Gauss Seidel 
  bool DoBackwardGS_;
  //! Condition number estimate
  magnitudeType Condest_;
  //! If \c true, the preconditioner has been computed successfully.
  bool IsInitialized_;
  //! If \c true, the preconditioner has been computed successfully.
  bool IsComputed_;
  //! Contains the number of successful calls to initialize().
  int NumInitialize_;
  //! Contains the number of successful call to compute().
  int NumCompute_;
  //! Contains the number of successful call to apply().
  mutable int NumApply_;
  //! Contains the time for all successful calls to initialize().
  double InitializeTime_;
  //! Contains the time for all successful calls to compute().
  double ComputeTime_;
  //! Contains the time for all successful calls to apply().
  mutable double ApplyTime_;
  //! Contains the number of flops for compute().
  double ComputeFlops_;
  //! Contain sthe number of flops for apply().
  mutable double ApplyFlops_;
  //! Number of local rows.
  size_t NumMyRows_;
  //! Number of global rows.
  global_size_t NumGlobalRows_;
  //! Number of global nonzeros.
  global_size_t NumGlobalNonzeros_;

  //@}

}; //class Relaxation

}//namespace Tifpack

#endif // TIFPACK_RELAXATION_DECL_HPP