/usr/include/trilinos/Thyra_ScalarProdBase_decl.hpp is in libtrilinos-dev 10.4.0.dfsg-1ubuntu2.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 | // @HEADER
// ***********************************************************************
//
// Thyra: Interfaces and Support for Abstract Numerical Algorithms
// Copyright (2004) Sandia Corporation
//
// Under terms of Contract DE-AC04-94AL85000, there is a non-exclusive
// license for use of this work by or on behalf of the U.S. Government.
//
// This library is free software; you can redistribute it and/or modify
// it under the terms of the GNU Lesser General Public License as
// published by the Free Software Foundation; either version 2.1 of the
// License, or (at your option) any later version.
//
// This library is distributed in the hope that it will be useful, but
// WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
// Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License along with this library; if not, write to the Free Software
// Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307
// USA
// Questions? Contact Michael A. Heroux (maherou@sandia.gov)
//
// ***********************************************************************
// @HEADER
#ifndef THYRA_SCALAR_PROD_BASE_DECL_HPP
#define THYRA_SCALAR_PROD_BASE_DECL_HPP
#include "Thyra_OperatorVectorTypes.hpp"
#include "Teuchos_Describable.hpp"
namespace Thyra {
/** \brief Abstract interface for scalar products.
*
* This interface is not considered a user-level interface. Instead, this
* interface is designed to be sub-classed off of and used with
* <tt>ScalarProdVectorSpaceBase</tt> objects to define their scalar products.
* Applications should create subclasses of this interface to define
* application-specific scalar products (i.e. such as PDE finite-element codes
* often do).
*
* This interface requires subclasses to override a multi-vector version of
* the scalar product function <tt>scalarProds()</tt>. This version yields
* the most efficient implementation in a distributed memory environment by
* requiring only a single global reduction operation and a single
* communication.
*
* Note that one of the preconditions on the vector and multi-vector arguments
* in <tt>scalarProds()</tt> is a little vague in stating that the vector or
* multi-vector objects must be "compatible" with the underlying
* implementation of <tt>*this</tt>. The reason that this precondition must
* be vague is that we can not expose a method to return a
* <tt>VectorSpaceBase</tt> object that could be checked for compatibility
* since <tt>%ScalarProdBase</tt> is used to define a <tt>VectorSpaceBase</tt>
* object (through the <tt>ScalarProdVectorSpaceBase</tt> node subclass).
* Also, some definitions of <tt>%ScalarProdBase</tt>
* (i.e. <tt>EuclideanScalarProd</tt>) will work for any vector space
* implementation since they only rely on <tt>RTOp</tt> operators. In other
* cases, however, an application-specific scalar product may a have
* dependency on the data-structure of vector and multi-vector objects in
* which case one can not just use this with any vector or multi-vector
* implementation.
*
* This interface class also defines functions to modify the application of a
* Euclidean linear operator to insert the definition of the application
* specific scalar product.
*
* \ingroup Thyra_Op_Vec_basic_adapter_support_grp
*/
template<class Scalar>
class ScalarProdBase : virtual public Teuchos::Describable {
public:
/** @name Non-virtual public interface */
//@{
/** \brief Return if this is a Euclidean (identity) scalar product is the
* same as the dot product.
*
* The default implementation returns <tt>false</tt> (evenn though on average
* the truth is most likely <tt>true</tt>).
*/
bool isEuclidean() const
{ return isEuclideanImpl(); }
/** \brief Return the scalar product of two vectors in the vector space.
*
* <b>Preconditions:</b><ul>
*
* <li>The vectors <tt>x</tt> and <tt>y</tt> are <em>compatible</em> with
* <tt>*this</tt> implementation or an exception will be thrown.
*
* <li><tt>x.space()->isCompatible(*y.space())</tt> (throw
* <tt>Exceptions::IncompatibleVectorSpaces</tt>)
*
* </ul>
*
* <b>Postconditions:</b><ul>
*
* <li>The scalar product is returned.
*
* </ul>
*
* The default implementation calls on the multi-vector version
* <tt>scalarProds()</tt>.
*/
Scalar scalarProd(
const VectorBase<Scalar>& x, const VectorBase<Scalar>& y
) const
{ return scalarProdImpl(x, y); }
/** \brief Return the scalar product of each column in two multi-vectors in
* the vector space.
*
* \param X [in] Multi-vector.
*
* \param Y [in] Multi-vector.
*
* \param scalar_prod [out] Array (length <tt>X.domain()->dim()</tt>)
* containing the scalar products <tt>scalar_prod[j] =
* this->scalarProd(*X.col(j),*Y.col(j))</tt>, for <tt>j = 0
* ... X.domain()->dim()-1</tt>.
*
* <b>Preconditions:</b><ul>
*
* <li><tt>X.domain()->isCompatible(*Y.domain())</tt> (throw
* <tt>Exceptions::IncompatibleVectorSpaces</tt>)
*
* <li><tt>X.range()->isCompatible(*Y.range())</tt> (throw
* <tt>Exceptions::IncompatibleVectorSpaces</tt>)
*
* <li>The MultiVectorBase objects <tt>X</tt> and <tt>Y</tt> are
* <em>compatible</em> with this implementation or an exception will be
* thrown.
*
* </ul>
*
* <b>Postconditions:</b><ul>
*
* <li><tt>scalar_prod[j] = this->scalarProd(*X.col(j),*Y.col(j))</tt>, for
* <tt>j = 0 ... X.domain()->dim()-1</tt>
*
* </ul>
*/
void scalarProds(
const MultiVectorBase<Scalar>& X, const MultiVectorBase<Scalar>& Y,
const ArrayView<Scalar> &scalarProds_out
) const
{ scalarProdsImpl(X, Y, scalarProds_out); }
/** \brief Return a linear operator representing the scalar product
* <tt>Q</tt>.
*
* All scalar products are not required to return this operator so a return
* value of <tt>null</tt> is allowed. Note that if <tt>this->isEuclidean()
* == true</tt> then there is no reason to return an identity operator.
*/
RCP<const LinearOpBase<Scalar> > getLinearOp() const
{ return getLinearOpImpl(); }
//@}
protected:
/** \name Protected virtual functions. */
//@{
/** \brief . */
virtual bool isEuclideanImpl() const = 0;
/** \brief Default implementation calls scalarProdsImpl(). */
virtual Scalar scalarProdImpl(
const VectorBase<Scalar>& x, const VectorBase<Scalar>& y ) const;
/** \brief . */
virtual void scalarProdsImpl(
const MultiVectorBase<Scalar>& X, const MultiVectorBase<Scalar>& Y,
const ArrayView<Scalar> &scalarProds_out
) const = 0;
/** \brief . */
virtual RCP<const LinearOpBase<Scalar> > getLinearOpImpl() const
{
return Teuchos::null;
}
//@}
};
} // end namespace Thyra
#endif // THYRA_SCALAR_PROD_BASE_DECL_HPP
|