This file is indexed.

/usr/include/trilinos/Thyra_ScalarProdBase_decl.hpp is in libtrilinos-dev 10.4.0.dfsg-1ubuntu2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
// @HEADER
// ***********************************************************************
// 
//    Thyra: Interfaces and Support for Abstract Numerical Algorithms
//                 Copyright (2004) Sandia Corporation
// 
// Under terms of Contract DE-AC04-94AL85000, there is a non-exclusive
// license for use of this work by or on behalf of the U.S. Government.
// 
// This library is free software; you can redistribute it and/or modify
// it under the terms of the GNU Lesser General Public License as
// published by the Free Software Foundation; either version 2.1 of the
// License, or (at your option) any later version.
//  
// This library is distributed in the hope that it will be useful, but
// WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
// Lesser General Public License for more details.
//  
// You should have received a copy of the GNU Lesser General Public
// License along with this library; if not, write to the Free Software
// Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307
// USA
// Questions? Contact Michael A. Heroux (maherou@sandia.gov) 
// 
// ***********************************************************************
// @HEADER

#ifndef THYRA_SCALAR_PROD_BASE_DECL_HPP
#define THYRA_SCALAR_PROD_BASE_DECL_HPP

#include "Thyra_OperatorVectorTypes.hpp"
#include "Teuchos_Describable.hpp"


namespace Thyra {


/** \brief Abstract interface for scalar products.
 * 
 * This interface is not considered a user-level interface.  Instead, this
 * interface is designed to be sub-classed off of and used with
 * <tt>ScalarProdVectorSpaceBase</tt> objects to define their scalar products.
 * Applications should create subclasses of this interface to define
 * application-specific scalar products (i.e. such as PDE finite-element codes
 * often do).
 *
 * This interface requires subclasses to override a multi-vector version of
 * the scalar product function <tt>scalarProds()</tt>.  This version yields
 * the most efficient implementation in a distributed memory environment by
 * requiring only a single global reduction operation and a single
 * communication.
 *
 * Note that one of the preconditions on the vector and multi-vector arguments
 * in <tt>scalarProds()</tt> is a little vague in stating that the vector or
 * multi-vector objects must be "compatible" with the underlying
 * implementation of <tt>*this</tt>.  The reason that this precondition must
 * be vague is that we can not expose a method to return a
 * <tt>VectorSpaceBase</tt> object that could be checked for compatibility
 * since <tt>%ScalarProdBase</tt> is used to define a <tt>VectorSpaceBase</tt>
 * object (through the <tt>ScalarProdVectorSpaceBase</tt> node subclass).
 * Also, some definitions of <tt>%ScalarProdBase</tt>
 * (i.e. <tt>EuclideanScalarProd</tt>) will work for any vector space
 * implementation since they only rely on <tt>RTOp</tt> operators.  In other
 * cases, however, an application-specific scalar product may a have
 * dependency on the data-structure of vector and multi-vector objects in
 * which case one can not just use this with any vector or multi-vector
 * implementation.
 *
 * This interface class also defines functions to modify the application of a
 * Euclidean linear operator to insert the definition of the application
 * specific scalar product.
 *
 * \ingroup Thyra_Op_Vec_basic_adapter_support_grp
 */
template<class Scalar>
class ScalarProdBase : virtual public Teuchos::Describable {
public:
  
  /** @name Non-virtual public interface */
  //@{

  /** \brief Return if this is a Euclidean (identity) scalar product is the
   * same as the dot product.
   *
   * The default implementation returns <tt>false</tt> (evenn though on average
   * the truth is most likely <tt>true</tt>).
   */
  bool isEuclidean() const
    { return isEuclideanImpl(); }

  /** \brief Return the scalar product of two vectors in the vector space.
   *
   * <b>Preconditions:</b><ul>
   *
   * <li>The vectors <tt>x</tt> and <tt>y</tt> are <em>compatible</em> with
   * <tt>*this</tt> implementation or an exception will be thrown.
   *
   * <li><tt>x.space()->isCompatible(*y.space())</tt> (throw
   * <tt>Exceptions::IncompatibleVectorSpaces</tt>)
   *
   * </ul>
   *
   * <b>Postconditions:</b><ul>
   *
   * <li>The scalar product is returned.
   *
   * </ul>
   *
   * The default implementation calls on the multi-vector version
   * <tt>scalarProds()</tt>.
   */
  Scalar scalarProd(
    const VectorBase<Scalar>& x, const VectorBase<Scalar>& y
    ) const
    { return scalarProdImpl(x, y); }

  /** \brief Return the scalar product of each column in two multi-vectors in
   * the vector space.
   *
   * \param X [in] Multi-vector.
   *
   * \param Y [in] Multi-vector.
   *
   * \param scalar_prod [out] Array (length <tt>X.domain()->dim()</tt>)
   * containing the scalar products <tt>scalar_prod[j] =
   * this->scalarProd(*X.col(j),*Y.col(j))</tt>, for <tt>j = 0
   * ... X.domain()->dim()-1</tt>.
   *
   * <b>Preconditions:</b><ul>
   *
   * <li><tt>X.domain()->isCompatible(*Y.domain())</tt> (throw
   * <tt>Exceptions::IncompatibleVectorSpaces</tt>)
   *
   * <li><tt>X.range()->isCompatible(*Y.range())</tt> (throw
   * <tt>Exceptions::IncompatibleVectorSpaces</tt>)
   *
   * <li>The MultiVectorBase objects <tt>X</tt> and <tt>Y</tt> are
   * <em>compatible</em> with this implementation or an exception will be
   * thrown.
   *
   * </ul>
   *
   * <b>Postconditions:</b><ul>
   *
   * <li><tt>scalar_prod[j] = this->scalarProd(*X.col(j),*Y.col(j))</tt>, for
   * <tt>j = 0 ... X.domain()->dim()-1</tt>
   *
   * </ul>
   */
  void scalarProds(
    const MultiVectorBase<Scalar>& X, const MultiVectorBase<Scalar>& Y,
    const ArrayView<Scalar> &scalarProds_out
    ) const
    { scalarProdsImpl(X, Y, scalarProds_out); }

  /** \brief Return a linear operator representing the scalar product
   * <tt>Q</tt>.
   *
   * All scalar products are not required to return this operator so a return
   * value of <tt>null</tt> is allowed.  Note that if <tt>this->isEuclidean()
   * == true</tt> then there is no reason to return an identity operator.
   */
  RCP<const LinearOpBase<Scalar> > getLinearOp() const
    { return getLinearOpImpl(); }

  //@}

protected:

  /** \name Protected virtual functions. */
  //@{

  /** \brief . */
  virtual bool isEuclideanImpl() const = 0;
  
  /** \brief Default implementation calls scalarProdsImpl(). */
  virtual Scalar scalarProdImpl(
    const VectorBase<Scalar>& x, const VectorBase<Scalar>& y ) const;

  /** \brief . */
  virtual void scalarProdsImpl(
    const MultiVectorBase<Scalar>& X, const MultiVectorBase<Scalar>& Y,
    const ArrayView<Scalar> &scalarProds_out
    ) const = 0;

  /** \brief . */
  virtual RCP<const LinearOpBase<Scalar> > getLinearOpImpl() const
    {
      return Teuchos::null;
    }

  //@}

};


} // end namespace Thyra


#endif  // THYRA_SCALAR_PROD_BASE_DECL_HPP