/usr/include/trilinos/Thyra_MultipliedLinearOpBase.hpp is in libtrilinos-dev 10.4.0.dfsg-1ubuntu2.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 | // @HEADER
// ***********************************************************************
//
// Thyra: Interfaces and Support for Abstract Numerical Algorithms
// Copyright (2004) Sandia Corporation
//
// Under terms of Contract DE-AC04-94AL85000, there is a non-exclusive
// license for use of this work by or on behalf of the U.S. Government.
//
// This library is free software; you can redistribute it and/or modify
// it under the terms of the GNU Lesser General Public License as
// published by the Free Software Foundation; either version 2.1 of the
// License, or (at your option) any later version.
//
// This library is distributed in the hope that it will be useful, but
// WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
// Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License along with this library; if not, write to the Free Software
// Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307
// USA
// Questions? Contact Michael A. Heroux (maherou@sandia.gov)
//
// ***********************************************************************
// @HEADER
#ifndef THYRA_MULTIPLIED_LINEAR_OP_BASE_HPP
#define THYRA_MULTIPLIED_LINEAR_OP_BASE_HPP
#include "Thyra_LinearOpBase.hpp"
namespace Thyra {
/** \brief Interface class for implicitly multiplied linear operators.
*
* This interface represents a multiplied linear operator <tt>M</tt> of the form:
\verbatim
M = Op[0] * Op[1] * ... * Op[numOps-1]
\endverbatim
*
* where <tt>Op[]</tt> is an array of <tt>numOps</tt> <tt>LinearOpBase</tt>
* objects. Of course the operator <tt>M</tt> is not constructed explicitly
* but instead just applies the constituent linear operators accordingly using
* temporaries.
*
* In other words, subclasses define <tt>apply()</tt> as:
*
\verbatim
y = alpha*M*x + beta*y
= alpha * ( Op[0] * ( Op[1] * ( .... ( Op[numOps-1] * x ) ... ) ) ) + beta * y
\endverbatim
*
* \ingroup Thyra_Op_Vec_extended_interfaces_code_grp
*/
template<class Scalar>
class MultipliedLinearOpBase : virtual public LinearOpBase<Scalar> {
public:
/** @name Pure virtual functions that must be overridden by subclasses */
//@{
/** \brief Returns the number of constituent operators.
*
* A return value of <tt>0</tt> indicates that <tt>this</tt> is not fully
* initialized.
*/
virtual int numOps() const = 0;
/** \brief Determine if the <tt>k</tt>th constituent operator is const-only or not.
*
* \param k [in] The zero-based index of the constituent operator to return.
*
* <b>Preconditions:</b><ul>
* <li><tt> 0 <= k < this->numOps()</tt>
* </ul>
*/
virtual bool opIsConst(const int k) const = 0;
/** \brief Return the <tt>k</tt>th non-constant constituent operator.
*
* \param k [in] The zero-based index of the constituent operator to return.
*
* <b>Preconditions:</b><ul>
* <li><tt> 0 <= k < this->numOps()</tt>
* <li><tt>this->opIsConst(k)==false</tt>
* </ul>
*/
virtual Teuchos::RCP<LinearOpBase<Scalar> > getNonconstOp(const int k) = 0;
/** \brief Return the <tt>k</tt>th constant constituent operator.
*
* \param k [in] The zero-based index of the constituent operator to return.
*
* <b>Preconditions:</b><ul>
* <li><tt> 0 <= k < this->numOps()</tt>
* </ul>
*/
virtual Teuchos::RCP<const LinearOpBase<Scalar> > getOp(const int k) const = 0;
//@}
};
} // namespace Thyra
#endif // THYRA_MULTIPLIED_LINEAR_OP_BASE_HPP
|