This file is indexed.

/usr/include/trilinos/Thyra_LinearOpWithSolveBase_decl.hpp is in libtrilinos-dev 10.4.0.dfsg-1ubuntu2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
// @HEADER
// ***********************************************************************
// 
//    Thyra: Interfaces and Support for Abstract Numerical Algorithms
//                 Copyright (2004) Sandia Corporation
// 
// Under terms of Contract DE-AC04-94AL85000, there is a non-exclusive
// license for use of this work by or on behalf of the U.S. Government.
// 
// This library is free software; you can redistribute it and/or modify
// it under the terms of the GNU Lesser General Public License as
// published by the Free Software Foundation; either version 2.1 of the
// License, or (at your option) any later version.
//  
// This library is distributed in the hope that it will be useful, but
// WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
// Lesser General Public License for more details.
//  
// You should have received a copy of the GNU Lesser General Public
// License along with this library; if not, write to the Free Software
// Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307
// USA
// Questions? Contact Michael A. Heroux (maherou@sandia.gov) 
// 
// ***********************************************************************
// @HEADER

#ifndef THYRA_LINEAR_OP_WITH_SOLVE_BASE_DECL_HPP
#define THYRA_LINEAR_OP_WITH_SOLVE_BASE_DECL_HPP

#include "Thyra_OperatorSolveTypes.hpp"
#include "Thyra_LinearOpBase.hpp"
#include "Thyra_MultiVectorBase.hpp"
#include "Thyra_VectorSpaceBase.hpp"
#include "Thyra_SolveSupportTypes.hpp"
#include "Teuchos_VerboseObject.hpp"


namespace Thyra {


/** \brief Base class for all linear operators that can support a high-level
 * solve operation.
 *
 * \ingroup Thyra_Op_Solve_fundamental_interfaces_code_grp
 *
 * \section LOWSB_outline_sec Outline
 *
 * <ul>
 * <li>\ref LOWSB_intro_sec
 * <li>\ref LOWSB_solve_criteria_sec
 * <li>\ref LOWSB_solve_status_sec
 * <li>\ref LOWSB_use_cases_sec 
 * <li>\ref LOWSB_developer_notes_sec
 * </ul>
 * 
 * \section LOWSB_intro_sec Introduction
 * 
 * This interface supports linear operators (with potentially different range
 * and domain scalar types) that can also support a forward solve operation
 * (using <tt>solve()</tt>) of the form:

  \f[
    A X = B 
  \f]
 
 * and/or a transpose solve operation (using <tt>solveTranspose()</tt>) of the
 * form:

  \f[
    A^T X = B 
  \f]

 * and/or an adjoint solve operation (using <tt>solveTranspose()</tt>) of the
 * form:

  \f[
    A^H X = B 
  \f]

 * where \f$A\f$ is <tt>*this</tt> linear operator, \f$B\f$ is an appropriate
 * RHS multi-vector with \f$m\f$ columns, and \f$X\f$ is a LHS multi-vector
 * with \f$m\f$ columns that is computed by this interface.  Note that if the
 * underlying operator has real-valued entries then the transpose \f$A^T\f$
 * and the adjoint \f$A^H\f$ are the same.

 * Note that this interface does not assume that the linear operator itself is
 * nonsingular or invertible in the classic sense (i.e. an inverse operator
 * may not exist).

 * Let \f$op(A)\f$ signify either the forward operator \f$A\f$, the transpose
 * operator \f$A^T\f$ or the adjoint operator \f$A^H\f$.  What this interface
 * assumes is that for any appropriately selected consistent multi-vector RHS
 * <tt>B</tt> that a solve of \f$A X = B\f$ will yield an approximate solution
 * LHS multi-vector <tt>X</tt> such that <tt>A X == B</tt>.  Note that this
 * interface does not assume that a solution \f$X\f$ can be computed for any
 * random RHS multi-vector \f$B\f$.  Solutions for any random RHS can on be
 * expected for relatively well conditioned non-singular operators.

 * <b>Note:</b> It is recommended that clients use the non-member helper
 * functions defined \ref Thyra_LinearOpWithSolveBase_helper_grp "here" rather
 * than call these member functions directly as they support a number of other
 * simpler use cases.
 * 
 * \section LOWSB_solve_criteria_sec Solve Criteria
 * 
 * This interface potentially allows clients to specify a relative tolerance
 * on either the relative residual norm or the relative norm of the solution
 * error and can target different solution criteria to different blocks of
 * linear systems.  This interface tries to allow for mathematically rigorous
 * solution tolerances that are not based only any implementation-dependent
 * features like the number of iterations of some solver algorithm.  This
 * interface, however, allows <tt>*this</tt> operator to exclude support
 * certain types of solve measures (see the functions
 * <tt>solveSupportsSolveMeasureType()</tt> and
 * <tt>solveTransposeSupportsSolveMeasureType()</tt>).  Also, this interface
 * assumes that all implementations can support a "default" solve criteria
 * that is determined internally to <tt>*this</tt>.
 * 
 * This interface is meant to support direct and iterative linear solvers as
 * well as combinations of the two in a variety of configurations.  Because of
 * the almost infinite number of types of linear solver configurations
 * possible, this interface tries not to specify any particular
 * solver-specific solution control options.  The one exception is a maximum
 * number of iterations which is totally implementation defined.  These types
 * of control options are better specified in lower lever implementations and
 * should be kept out of an interface such as this.
 *
 * Let <tt>solveCriteria</tt> be a <tt>SolveCriteria</tt> object setup by a
 * client to be passed into a solve operation.  This object can be set up in a
 * variety of ways to support several different use cases which are described
 * below:
 * 
 * <ul>
 * 
 * <li> <b>Unspecified (Default) solution criteria type</b> [
 * <tt>solveCriteria.solveMeasureType.useDefault()==true</tt> ]: In this mode,
 * criteria for the solution tolerance is determined internally by
 * <tt>*this</tt> object.  Usually, it would be assumed that <tt>*this</tt>
 * would solve the linear systems to a sufficient tolerance for the given ANA
 * client.  This is the mode that many ANAs not designed to control
 * inexactness would work with.  In this mode, the solution criteria will be
 * determined in the end by the application or the user in an "appropriate"
 * manner.  In this case, the value of <tt>solveCriteria.requestedTol</tt> is
 * ignored and no meaningful solve status can be returned to the client.
 * 
 * <li> <b>Relative residual tolerance solution criteria</b> [
 * <tt>solveCriteria.solveMeasureType.numerator==SOLVE_MEASURE_NORM_RESIDUAL
 * && solveCriteria.solveMeasureType.denominator==SOLVE_MEASURE_NORM_RHS &&
 * solveCriteria.requestedTol!=SolveCriteria::unspecifiedTolerance()</tt> ]:
 * In this mode, the solution algorithm would be requested to solve the block
 * system to the relative residual tolerance of

  \f[
     \frac{|| op(A) X_{(:,i)} - B_{(:,i)} ||}{ ||B_{(:,i)}||} \le \mu_r,
  \f]

 * for \f$i=0 {}\ldots m-1\f$, where \f$\mu_r =\f$
 * <tt>solveCriteria.requestedTol</tt> and where the norm \f$||.||\f$ is
 * given by the natural norm defined by the range space of \f$op(A)\f$ and
 * computed from <tt>Thyra::norm()</tt>.  Many linear solvers should be able
 * to monitor this tolerance and be able to achieve it, or on failure be able
 * to report the actual tolerance achieved.
 *
 * <li> ToDo: Add examples of other types of solve measures when they are
 * needed!
 * 
 * </ul>
 * 
 * \section LOWSB_solve_status_sec Solve Status
 * 
 * After the <tt>solve()</tt> and <tt>solveTranspose()</tt> functions return,
 * the client can optionally get back a solution status for each block of
 * linear systems for of block solve criteria.  Specifically, for each block
 * of linear systems
  
  \f[
    A  X_{(:,i_{j}+1:i_j)} = B_{(:,i_{j}+1:i_j)} 
  \f]

 * whose solution criteria is specified by a <tt>SolveCriteria</tt> object, a
 * <tt>SolveStatus</tt> object can optionally be returned that lets the client
 * know the status of the linear solve.
 *
 * A note about direct solvers is in order.  The "inexact" solve features of
 * this interface are primarily designed to support "loose" solve tolerances
 * that exploit the properties of iterative linear solvers.  With that said,
 * any decent direct solver can assume that it has met the convergence
 * criteria as requested by the client but does not have to return an estimate
 * of the actual tolerance achieved.
 *
 * If <tt>solveStatus</tt> is a <tt>SolveStatus</tt> object returned for the
 * above block linear system the the following return status are significant:
 * 
 * <ul>
 * 
 * <li><b>Converged</b> [
 * <tt>solveStatus.solveStatus==SOLVE_STATUS_CONVERGED</tt> ]: This status is
 * returned by the linear solver if the solution criteria was likely achieved
 * (within some acceptable cushion cased by round-off etc.).  This should
 * almost always be the return value for a direct linear solver.  The maximum
 * actual tolerance achieved may or may not be returned in the field
 * <tt>solveStatus.achievedTol</tt>.  The two sub-cases are:
 * 
 *   <ul>
 * 
 *   <li><b>Known tolerance</b> [
 *   <tt>solveStatus.achievedTol!=SolveStatus::unknownTolerance()</tt> ] : The
 *   linear solver knows the approximate order-of-magnitude estimate of the
 *   maximum tolerance achieved.  An order-of-magnitude (or so) estimate of
 *   the achieved tolerance would likely be known by any iterative linear
 *   solver when
 *   <tt>solveCriteria.solveMeasureType.numerator==SOLVE_MEASURE_NORM_RESIDUAL
 *   &&
 *   solveCriteria.solveMeasureType.denominator==SOLVE_MEASURE_NORM_RHS</tt>.
 *   Most direct linear solvers will not return a known tolerance except for
 *   the case where
 *   <tt>solveCriteria.solveMeasureType.numerator==SOLVE_MEASURE_NORM_RESIDUAL
 *   &&
 *   solveCriteria.solveMeasureType.denominator==SOLVE_MEASURE_NORM_RHS</tt>
 *   and where iterative refinement is used.

 *   <li><b>Unknown tolerance</b> [
 *   <tt>solveStatus.achievedTol==SolveStatus::unknownTolerance()</tt> ] : The
 *   linear solver does not know the tolerance that was achieved but the
 *   achieved tolerance should be very close to the requested tolerance.  This
 *   would be the most likely return status for a direct linear solver.
 * 
 *   </ul>
 * 
 * <li><b>Unconverged</b> [
 * <tt>solveStatus.solveStatus==SOLVE_STATUS_UNCONVERGED</tt> ]: The linear
 * solver was most likely not able to achieve the requested tolerance.  A
 * direct linear solver should almost never return this status except for in
 * extreme cases (e.g. highly ill conditioned matrix and a tight requested
 * tolerance).  The linear solver may not be able to return the actual
 * tolerance achieved and the same two cases as for the <it>unconverged</it>
 * case are possible and the two subdcases are:
 * 
 *   <ul>
 * 
 *   <li><b>Known tolerance</b> [
 *   <tt>solveStatus.achievedTol!===SolveStatus::unknownTolerance()0</tt> ] :
 *   The linear solver knows the approximate order-of-magnitude estimate of
 *   the maximum tolerance achieved.
 * 
 *   <li><b>Unknown tolerance</b> [
 *   <tt>solveStatus.achievedTol==SolveStatus::unknownTolerance()</tt> ] : The
 *   linear solver does not know the tolerance that was achieved but the
 *   achieved tolerance is most likely significantly greater than the
 *   requested tolerance.
 * 
 *   </ul>
 * 
 * <li><b>Unknown status</b> [
 * <tt>solveStatus.solveStatus==SOLVE_STATUS_UNKNOWN</tt> ]: The linear solver
 * does not know if the solution status was achieved or not.  In this case,
 * the value of
 * <tt>solveStatus.achievedTol==SolveStatus::unknownTolerance()</tt> may or
 * many not be returned.  This may be the return value when there is no
 * reasonable way that the linear solver algorithm can know now to compute or
 * estimate the requested tolerance.  This will also always be the return
 * status when <tt>solveCriteria.solveMeasureType.useDefault()==true</tt> since
 * the client would have no way to interpret this tolerance.  The value of
 * <tt>solveStatus.achievedTol!=SolveStatus::unknownTolerance()</tt> in this
 * case should only be returned when
 * <tt>solveCriteria.solveMeasureType.useDefault()==true</tt> and therefore the
 * client would have no way to interpret this tolerance as a residual or an
 * solution norm.
 * 
 * </ul>
 *
 * The implementation of the function <tt>accumulateSolveStatus()</tt> defines
 * how to accumulate the individual solve status for each RHS in a block into
 * the overall solve status for an entire block returned in the
 * <tt>SolveStatus</tt> object from teh <tt>solve()</tt>.
 * 
 * \section LOWSB_use_cases_sec Use cases
 *
 * This interface supports a variety of use cases where where described, more
 * or less, in the above sections.  Here, we give specific examples for a
 * number of important use cases and show how to use the non-member helper
 * functions defined \ref Thyra_LinearOpWithSolveBase_helper_grp "here".
 *
 * ToDo: Finish documentation!
 * 
 * \section LOWSB_developer_notes_sec Notes to subclass developers
 * 
 * This interface assumes, by default, that subclasses will only support the
 * forward solve operation.  See <tt>LinearOpBase</tt> for what other virtual
 * functions must be overridden to completely define a concrete subclass.
 */
template<class Scalar>
class LinearOpWithSolveBase
  : virtual public LinearOpBase<Scalar>
  , virtual public Teuchos::VerboseObject<LinearOpWithSolveBase<Scalar> >
{
public:

  /** \name Public interface funtions. */
  //@{

  /** \brief Return if <tt>solve()</tt> supports the argument <tt>transp</tt>.
   *
   * The default implementation returns <tt>true</tt> for non-transposed,
   * non-conjugate solves..
   */
  bool solveSupports(EOpTransp transp) const
    { return solveSupportsImpl(transp); }

  /** \brief Return if <tt>solve()</tt> supports the given the solve measure
   * type.
   *
   * The default implementation returns <tt>true</tt> for
   * <tt>solveMeasureType.useDefault()==true</tt>.
   */
  bool solveSupportsSolveMeasureType(EOpTransp transp,
    const SolveMeasureType& solveMeasureType
    ) const
    { return solveSupportsSolveMeasureTypeImpl(transp, solveMeasureType); }

  /** \brief Request the solution of a block linear system.
   *
   * \param A_trans [in] Determines if the elements are non-conjugate
   * non-transposed (<tt>NONTRANS</tt>) or conjugate transposed
   * (<tt>CONJTRANS</tt>).
   *
   * \param B [in] The RHS multi-vector with <tt>m = B.domain()->dim()</tt>
   * columns.
   *
   * \param X [in/out] The LHS multi-vector with with <tt>m =
   * X->domain()->dim()</tt> columns.  On input, contains the initial guess
   * for the solution (only significant for iterative solvers) and on output
   * contains an estimate of the solution.
   *
   * \param solveCriteria [in] Gives the desired solution criteria for linear
   * systems.  A value of <tt>solveCriteria==null</tt> means to use the
   * default solve criteria.
   *
   * \returns Return the solve status if any program has been made.
   *
   * <b>Preconditions:</b><ul>
   *
   * <li><tt>this->solveSupports(transp)==true</tt>
   *
   * <li><tt>X!=NULL</tt>
   *
   * <li><tt>op(this)->range()->isCompatible(*B.range())==true</tt>
   *
   * <li><tt>op(this)->domain()->isCompatible(*X->range())==true</tt>
   *
   * <li><tt>B->domain()->isCompatible(*X->domain())==true</tt>
   *
   * </ul>
   *
   * <b>Postconditions:</b><ul>
   *
   * <li>If any progress on solving the linear systems could be achieved, then
   * the function will return normally with the solve status.  However, if no
   * progress could be made in solving the linear systems, then an exception
   * of type <tt>CatastrophicSolveFailure</tt> will be thrown.  If the
   * function returns normally, then the following postconditions apply.
   *
   * </ul>
   *
   * See the above introduction for a more complete description of how this
   * function behaves and the meaning of the argument <tt>solveCriteria</tt>
   * and the return value.
   */
  SolveStatus<Scalar> solve(
    const EOpTransp A_trans,
    const MultiVectorBase<Scalar> &B,
    const Ptr<MultiVectorBase<Scalar> > &X,
    const Ptr<const SolveCriteria<Scalar> > solveCriteria = Teuchos::null
    ) const 
    { return solveImpl(A_trans, B, X, solveCriteria); }

  //@}

  /** \name Deprecated. */
  //@{

  /** \brief Deprecated. */
  THYRA_DEPRECATED
  bool solveSupportsConj(EConj conj) const;

  /** \brief Deprecated. */
  THYRA_DEPRECATED
  bool solveTransposeSupportsConj(EConj conj) const;

  /** \brief Deprecated. */
  THYRA_DEPRECATED
  void solve(
    const EConj conj,
    const MultiVectorBase<Scalar> &B,
    MultiVectorBase<Scalar> *X,
    const int numBlocks = 0,
    const BlockSolveCriteria<Scalar> blockSolveCriteria[] = NULL,
    SolveStatus<Scalar> blockSolveStatus[] = NULL
    ) const;

  /** \brief Deprecated. */
  THYRA_DEPRECATED
  bool solveSupportsSolveMeasureType(EConj conj,
    const SolveMeasureType& solveMeasureType) const;

  /** \brief Deprecated. */
  THYRA_DEPRECATED
  bool solveTransposeSupportsSolveMeasureType(EConj conj,
    const SolveMeasureType& solveMeasureType) const;

  /** \brief Deprecated. */
  THYRA_DEPRECATED
  void solveTranspose(
    const EConj conj,
    const MultiVectorBase<Scalar> &B,
    MultiVectorBase<Scalar> *X,
    const int numBlocks = 0,
    const BlockSolveCriteria<Scalar> blockSolveCriteria[] = NULL,
    SolveStatus<Scalar> blockSolveStatus[] = NULL
    ) const;

  //@}

protected:

  /** \name Protected virtual functions to be overridden by subclasses. */
  //@{

  /** \brief Virtual implementation for solveSupports(). */
  virtual bool solveSupportsImpl(EOpTransp transp) const;

  /** \brief Virtual implementation for solveSupportsSolveMeasureType(). */
  virtual bool solveSupportsSolveMeasureTypeImpl(EOpTransp transp,
    const SolveMeasureType& solveMeasureType) const;

  /** \brief Virtual implementation for solve(). */
  virtual SolveStatus<Scalar> solveImpl(
    const EOpTransp transp,
    const MultiVectorBase<Scalar> &B,
    const Ptr<MultiVectorBase<Scalar> > &X,
    const Ptr<const SolveCriteria<Scalar> > solveCriteria
    ) const = 0;

  //@}

private:

  THYRA_DEPRECATED
  static Ptr<const SolveCriteria<Scalar> >
  convertBlockSolveCriteriaToSolveCritiera(
    const int numBlocks,
    const BlockSolveCriteria<Scalar> blockSolveCriteria[]
    );

private:
  
  // Not defined and not to be called
  LinearOpWithSolveBase<Scalar>&
  operator=(const LinearOpWithSolveBase<Scalar>&);

};


/** \brief Call <tt>solveSupports()</tt> as a non-member function.
 *
 * \relates_LinearOpWithSolveBase
 */
template<class Scalar>
inline
bool solveSupports(
  const LinearOpWithSolveBase<Scalar> &A,
  const EOpTransp transp
  )
{
  return A.solveSupports(transp);
}


/** \brief Call <tt>solveSupportsSolveMeasureType()</tt> as a non-member
 * function.
 *
 * \relates_LinearOpWithSolveBase
 */
template<class Scalar>
inline
bool solveSupportsSolveMeasureType(
  const LinearOpWithSolveBase<Scalar> &A,
  const EOpTransp transp,
  const SolveMeasureType &solveMeasureType
  )
{
  return A.solveSupportsSolveMeasureType(transp, solveMeasureType);
}


/** \brief Call <tt>solve()</tt> as a non-member function
 *
 * \relates_LinearOpWithSolveBase
 */
template<class Scalar>
inline
SolveStatus<Scalar> solve(
  const LinearOpWithSolveBase<Scalar> &A,
  const EOpTransp A_trans,
  const MultiVectorBase<Scalar> &B,
  const Ptr<MultiVectorBase<Scalar> > &X,
  const Ptr<const SolveCriteria<Scalar> > solveCriteria = Teuchos::null
  )
{
  return A.solve(A_trans, B, X, solveCriteria);
}


// Deprecated


/** \brief Deprecated.
 *
 * \relates_LinearOpWithSolveBase
 */
template<class Scalar>
THYRA_DEPRECATED
void solve(
  const LinearOpWithSolveBase<Scalar> &M,
  const EOpTransp M_trans,
  const MultiVectorBase<Scalar> &B,
  MultiVectorBase<Scalar> *X,
  const int numBlocks,
  const BlockSolveCriteria<Scalar> blockSolveCriteria[],
  SolveStatus<Scalar> blockSolveStatus[]
  )
{
  if (real_trans(M_trans) == NOTRANS) {
    M.solve(transToConj(M_trans),
      B,X,numBlocks,blockSolveCriteria,blockSolveStatus);
  }
  else {
    M.solveTranspose(transToConj(M_trans),
      B,X,numBlocks,blockSolveCriteria,blockSolveStatus);
  }
}


/** \brief Deprecated.
 *
 * \relates_LinearOpWithSolveBase
 */
template<class Scalar>
THYRA_DEPRECATED
SolveStatus<Scalar> solve(
  const LinearOpWithSolveBase<Scalar> &A,
  const EOpTransp A_trans,
  const MultiVectorBase<Scalar> &B,
  MultiVectorBase<Scalar> *X,
  const SolveCriteria<Scalar> *solveCriteria = NULL
  )
{
  using Teuchos::ptr;
  return A.solve(A_trans, B, ptr(X), ptr(solveCriteria));
}


/** \brief Solve a set of forward linear systems with a single set of
 * tolerances.
 *
 * See the implementation of this function for details.
 *
 * \relates_LinearOpWithSolveBase
 */
template<class Scalar>
THYRA_DEPRECATED
SolveStatus<Scalar>
solve(
  const LinearOpWithSolveBase<Scalar> &A,
  const EConj conj,
  const MultiVectorBase<Scalar> &B,
  MultiVectorBase<Scalar> *X,
  const SolveCriteria<Scalar> *solveCriteria = NULL
  )
{
  typedef SolveCriteria<Scalar> SC;
  typedef BlockSolveCriteria<Scalar> BSC;
  typedef SolveStatus<Scalar> BSS;
  SC defaultSolveCriteria;
  BSC blockSolveCriteria[1];
  BSS blockSolveStatus[1];
  blockSolveCriteria[0] = BSC(
    solveCriteria ? *solveCriteria : defaultSolveCriteria,
    B.domain()->dim() );
  A.solve(
    conj,B,X,1,
    blockSolveCriteria,
    blockSolveStatus
    );
  return blockSolveStatus[0];
}


/** \brief Solve a set of transpose linear systems with a single set of
 * tolerances.
 *
 * See the implementation of this function for details.
 *
 * \relates_LinearOpWithSolveBase
 */
template<class Scalar>
THYRA_DEPRECATED
SolveStatus<Scalar>
solveTranspose(
  const LinearOpWithSolveBase<Scalar> &A,
  const EConj conj,
  const MultiVectorBase<Scalar> &B,
  MultiVectorBase<Scalar> *X,
  const SolveCriteria<Scalar> *solveCriteria = NULL
  )
{
  typedef SolveCriteria<Scalar> SC;
  typedef BlockSolveCriteria<Scalar> BSC;
  typedef SolveStatus<Scalar> BSS;
  SC defaultSolveCriteria;
  BSC blockSolveCriteria[1];
  BSS blockSolveStatus[1];
  blockSolveCriteria[0] = BSC(
    solveCriteria ? *solveCriteria : defaultSolveCriteria,
    B.domain()->dim());
  A.solveTranspose(
    conj,B,X,1,
    blockSolveCriteria,
    blockSolveStatus
    );
  return blockSolveStatus[0];
}


/** \brief Solve a set of forward linear systems with two or more sets of
 * tolerances.
 *
 * See the implementation of this function for details.
 *
 * \relates_LinearOpWithSolveBase
 */
template<class Scalar>
THYRA_DEPRECATED
void solve(
  const LinearOpWithSolveBase<Scalar> &A,
  const EConj conj,
  const MultiVectorBase<Scalar> &B,
  MultiVectorBase<Scalar> *X,
  const int numBlocks,
  const BlockSolveCriteria<Scalar> blockSolveCriteria[] = NULL,
  SolveStatus<Scalar> blockSolveStatus[] = NULL
  )
{
  A.solve(conj,B,X,numBlocks,blockSolveCriteria,blockSolveStatus);
}


/** \brief Solve a set of transpose linear systems with two or more sets of
 * tolerances.
 *
 * See the implementation of this function for details.
 *
 * \relates_LinearOpWithSolveBase
 */
template<class Scalar>
THYRA_DEPRECATED
void solveTranspose(
  const LinearOpWithSolveBase<Scalar> &A,
  const EConj conj,
  const MultiVectorBase<Scalar> &B,
  MultiVectorBase<Scalar> *X,
  const int numBlocks,
  const BlockSolveCriteria<Scalar> blockSolveCriteria[] = NULL,
  SolveStatus<Scalar> blockSolveStatus[] = NULL
  )
{
  A.solveTranspose(conj,B,X,numBlocks,blockSolveCriteria,blockSolveStatus);
}


} // namespace Thyra


#endif // THYRA_LINEAR_OP_WITH_SOLVE_BASE_DECL_HPP