This file is indexed.

/usr/include/trilinos/Thyra_LinearOpBase_decl.hpp is in libtrilinos-dev 10.4.0.dfsg-1ubuntu2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
// @HEADER
// ***********************************************************************
// 
//    Thyra: Interfaces and Support for Abstract Numerical Algorithms
//                 Copyright (2004) Sandia Corporation
// 
// Under terms of Contract DE-AC04-94AL85000, there is a non-exclusive
// license for use of this work by or on behalf of the U.S. Government.
// 
// This library is free software; you can redistribute it and/or modify
// it under the terms of the GNU Lesser General Public License as
// published by the Free Software Foundation; either version 2.1 of the
// License, or (at your option) any later version.
//  
// This library is distributed in the hope that it will be useful, but
// WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
// Lesser General Public License for more details.
//  
// You should have received a copy of the GNU Lesser General Public
// License along with this library; if not, write to the Free Software
// Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307
// USA
// Questions? Contact Michael A. Heroux (maherou@sandia.gov) 
// 
// ***********************************************************************
// @HEADER

#ifndef THYRA_LINEAR_OP_DECL_HPP
#define THYRA_LINEAR_OP_DECL_HPP

#include "Thyra_OperatorVectorTypes.hpp"
#include "Teuchos_Describable.hpp"
#include "Teuchos_ExpandScalarTypeMacros.hpp"
#include "Teuchos_PromotionTraits.hpp"


namespace Thyra {


/** \brief Base class for all linear operators.
 *
 * \section Thyra_LO_outline_sec Outline
 *
 * <ul>
 * <li>\ref Thyra_LO_intro_sec
 * <li>\ref Thyra_LO_spaces_sec
 * <li>\ref Thyra_LO_adjoint_relation_sec
 * <li>\ref Thyra_LO_aliasing_sec
 * <li>\ref Thyra_LO_optional_adjoints_sec
 * <li>\ref Thyra_LO_initialization_sec
 * <li>\ref Thyra_LO_testing_sec
 * <li>\ref Thyra_LO_dev_notes_sec
 * </ul>
 *
 * \section Thyra_LO_intro_sec Introduction
 *
 * A linear operator can optionally perform following operations
 *
 * <ul>
 * <li><b>Forward non-conjugate apply</b> \verbatim Y = alpha*M*X + beta*Y \endverbatim
 * <li><b>Forward conjugate apply</b> \verbatim Y = alpha*conjugate(M)*X + beta*Y \endverbatim
 * <li><b>Transpose non-conjugate apply</b> \verbatim Y = alpha*transpose(M)*X + beta*Y \endverbatim
 * <li><b>Transpose conjugate (i.e. adjoint) apply</b> \verbatim Y = alpha*adjoint(M)*X + beta*Y \endverbatim
 * </ul>
 *
 * through the <tt>apply()</tt> function where <tt>Y</tt> and <tt>X</tt> are
 * <tt>MultiVectorBase</tt> objects.  The reason for the exact form of the
 * above operations is that there are direct BLAS and equivalent versions of
 * these operations and performing a sum-into multiplication is more efficient
 * in general.
 *
 * \section Thyra_LO_spaces_sec Range and domain spaces
 *
 * A linear operator has vector spaces associated with it for the vectors
 * <tt>x</tt> and <tt>y</tt> that lie in the domain and the range spaces of
 * the non-transposed linear operator <tt>y = M*x</tt>.  These spaces are
 * returned by <tt>domain()</tt> and <tt>range()</tt>.
 *
 * \section Thyra_LO_adjoint_relation_sec Scalar products and the adjoint relation
 *
 * Note that the vector spaces returned from <tt>domain()</tt> and
 * <tt>range()</tt> may have specialized implementations of the scalar product
 * \f$<u,w>\f$ (i.e. \f$<u,w> \neq u^H w\f$ in general).  As a result, the
 * operator and adjoint operator must obey the defined scalar products.
 * Specifically, for any two vectors \f$w\in\mathcal{D}\f$ (in the domain
 * space of <tt>A</tt>) and \f$u\in\mathcal{R}\f$ (in the range space of
 * <tt>A</tt>), the adjoint operation must obey the adjoint property
 *
 \f[
  <u,A v>_{\mathcal{R}} =\!= <A^H u, v>_{\mathcal{D}}
 \f]
 *
 * where \f$<.,.>_{\mathcal{R}}\f$ is the scalar product defined by
 * <tt>this->range()->scalarProd()</tt> and \f$<.,.>_{\mathcal{D}}\f$ is the
 * scalar product defined by <tt>this->domain()->scalarProd()</tt>.  This
 * property of the adjoint can be checked numerically, if adjoints are
 * supported, using the testing utility class <tt>LinearOpTester</tt>.
 *
 * \section Thyra_LO_aliasing_sec Aliasing policy
 *
 * It is strictly forbidden to alias the input/output object <tt>Y</tt> with
 * the input object <tt>X</tt> in <tt>apply()</tt>.  Allowing aliasing would
 * greatly complicate the development of concrete subclasses.
 *
 * \section Thyra_LO_optional_adjoints_sec Optional support for specific types of operator applications
 *
 * This interface does not require that a linear operator implementation
 * support all of the different types of operator applications defined in the
 * \ref Thyra_LO_intro_sec "introduction" above.  If a <tt>%LinearOpBase</tt>
 * object can not support a particular type of operator application, then this
 * is determined by the functions <tt>opSupported()</tt>.
 *
 * \section Thyra_LO_testing_sec Testing LinearOpBase objects
 *
 * The concrete class <tt>LinearOpTester</tt> provides a full featured set of
 * tests for any <tt>%LinearOpBase</tt> object.  This testing class can check
 * if the operator is truly "linear", and/or if the adjoint relationship
 * holds, and/or if an operator is symmetric.  All of the tests are controlled
 * by the client, can be turned on and off, and pass/failure is determined by
 * tolerances that the client can specify.  In addition, this testing class
 * can also check if two linear operators are approximately equal.
 *
 * \section Thyra_LO_initialization_sec Initialization states
 *
 * A <tt>%LinearOpBase</tt> object has three different states of
 * initialization.  These three initailziation states, a description of their
 * definition, and non-member helper functions that return these states are
 * given below:
 *
 * <ul>
 *
 * <li><b>Fully Uninitialized</b>:
 *     State: <tt>(is_null(this->range()) && is_null(this->domain()))</tt>,
 *     Nonmember function: <tt>isFullyUninitialized()</tt>
 *
 * <li><b>Partially Initialized</b>:
 *     State: <tt>(!is_null(this->range()) && !is_null(this->domain()))
 *            && (!this->opSupported(M_trans))</tt>
 *            for all values of <tt>M_trans</tt>,
 *     Nonmember function: <tt>isPartiallyInitialized()</tt>
 *
 * <li><b>Fully Initialized</b>:
 *     State: <tt>(!is_null(this->range()) && !is_null(this->domain()))
 *            && (this->opSupported(M_trans)</tt>
 *            for at least one valid value for <tt>M_trans</tt>,
 *     Nonmember function: <tt>isFullyInitialized()</tt>
 *
 * </ul>
 *
 * These three different states of initialization allow for the simplification
 * of the implementation of many different types of use cases.
 *
 * \section Thyra_LO_dev_notes_sec Notes for subclass developers
 *
 * There are only foure functions that a concrete subclass is required to
 * override: <tt>domain()</tt>, <tt>range()</tt> <tt>opSupportedImpl()</tt>,
 * and <tt>applyImpl()</tt>.  Note that the functions <tt>domain()</tt> and
 * <tt>range()</tt> should simply return <tt>VectorSpaceBase</tt> objects for
 * subclasses that are already defined for the vectors that the linear
 * operator interacts with through the function <tt>apply()</tt>.  The
 * function <tt>opSupportedImpl()</tt> just returns what operations are
 * supported and is therefore trivial to implement.  Therefore, given that
 * appropriate <tt>VectorSpaceBase</tt> and <tt>MultiVectorBase</tt> (and/or
 * <tt>VectorBase</tt>) subclasses exist, the only real work involved in
 * implementing a <tt>LinearOpBase</tt> subclass is in defining a single
 * function <tt>applyImpl()</tt>.
 *
 * If possible, the subclass should also override the <tt>clone()</tt>
 * function which allows clients to create copies of a <tt>LinearOpBase</tt>
 * object.  This functionality is useful in some circumstances.  However, this
 * functionality is not required and the default <tt>clone()</tt>
 * implementation returns a null smart pointer object.
 *
 * \ingroup Thyra_Op_Vec_fundamental_interfaces_code_grp
 */
template<class Scalar>
class LinearOpBase : virtual public Teuchos::Describable {
public:

  /** @name Public interface functions */
  //@{

  /** \brief Return a smart pointer for the range space for <tt>this</tt> operator.
   *
   * Note that a return value of <tt>is_null(returnVal)</tt> is a flag that
   * <tt>*this</tt> is not fully initialized.
   *
   * If <tt>nonnull(returnVal)</tt>, it is required that the object referenced
   * by <tt>*returnVal</tt> must have lifetime that extends past the
   * lifetime of the returned smart pointer object.  However, the object
   * referenced by <tt>*returnVal</tt> may change if <tt>*this</tt>
   * modified so this reference should not be maintained for too long.
   *
   * <b>New Behavior!</b> It is required that the <tt>%VectorSpaceBase</tt>
   * object embedded in <tt>return</tt> must be valid past the lifetime of
   * <tt>*this</tt> linear operator object.
   */
  virtual RCP< const VectorSpaceBase<Scalar> > range() const = 0;

  /** \brief Return a smart pointer for the domain space for <tt>this</tt> operator.
   *
   * Note that a return value of <tt>is_null(returnVal)</tt> is a flag
   * that <tt>*this</tt> is not fully initialized.
   *
   * If <tt>nonnull(returnVal)</tt>, it is required that the object referenced
   * by <tt>*returnVal</tt> must have lifetime that extends past the lifetime
   * of the returned smart pointer object.  However, the object referenced by
   * <tt>*returnVal</tt> may change if <tt>*this</tt> modified so this
   * reference should not be maintained for too long.
   *
   * <b>New Behavior!</b> It is required that the <tt>%VectorSpaceBase</tt>
   * object embedded in <tt>return</tt> must be valid past the lifetime of
   * <tt>*this</tt> linear operator object.
   */
  virtual RCP< const VectorSpaceBase<Scalar> > domain() const = 0;

  /** \brief Return if the <tt>M_trans</tt> operation of <tt>apply()</tt> is
   * supported or not.
   *
   * Preconditions:<ul>
   * <li> <tt>isPartiallyInitialized(*this)</tt>
   * </ul>
   *
   * Note that an operator must support at least one of the values of
   * <tt>ETrans</tt> (i.e. the transposed or the non-transposed operations
   * must be supported, both can not be unsupported)
   */
  bool opSupported(EOpTransp M_trans) const
    {
      return opSupportedImpl(M_trans);
    }

  /** \brief Apply the linear operator to a multi-vector : <tt>Y =
   * alpha*op(M)*X + beta*Y</tt>.
   *
   * \param M_trans [in] Determines whether the operator is applied or the
   * adjoint for <tt>op(M)</tt>.
   *
   * \param X [in] The right hand side multi-vector.
   *
   * \param Y [in/out] The target multi-vector being transformed.  When
   * <tt>beta==0.0</tt>, this multi-vector can have uninitialized elements.
   *
   * \param alpha [in] Scalar multiplying <tt>M</tt>, where <tt>M==*this</tt>.
   * The default value of <tt>alpha</tt> is </tt>1.0</tt>
   *
   * \param beta [in] The multiplier for the target multi-vector <tt>Y</tt>.
   * The default value of <tt>beta</tt> is <tt>0.0</tt>.
   * 
   * <b>Preconditions:</b><ul>
   *
   * <li> <tt>nonnull(this->domain()) && nonnull(this->range())</tt>
   *
   * <li> <tt>this->opSupported(M_trans)==true</tt> (throw
   * <tt>Exceptions::OpNotSupported</tt>)
   *
   * <li> <tt>X.range()->isCompatible(*op(this)->domain()) == true</tt> (throw
   * <tt>Exceptions::IncompatibleVectorSpaces</tt>)
   *
   * <li> <tt>Y->range()->isCompatible(*op(this)->range()) == true</tt> (throw
   * <tt>Exceptions::IncompatibleVectorSpaces</tt>)
   *
   * <li> <tt>Y->domain()->isCompatible(*X.domain()) == true</tt> (throw
   * <tt>Exceptions::IncompatibleVectorSpaces</tt>)
   *
   * <li> <tt>Y</tt> can not alias <tt>X</tt>.  It is up to the client to
   * ensure that <tt>Y</tt> and <tt>X</tt> are distinct since in general this
   * can not be verified by the implementation until, perhaps, it is too late.
   * If possible, an exception will be thrown if aliasing is detected.
   *
   * </ul>
   *
   * <b>Postconditions:</b><ul>
   * <li> Is it not obvious?  After the function returns the multi-vector <tt>Y</tt>
   *      is transformed as indicated above.
   * </ul>
   */
  void apply(
    const EOpTransp M_trans,
    const MultiVectorBase<Scalar> &X,
    const Ptr<MultiVectorBase<Scalar> > &Y,
    const Scalar alpha,
    const Scalar beta
    ) const
    {
      applyImpl(M_trans, X, Y, alpha, beta);
    }

  /** \brief Clone the linear operator object (if supported).
   *
   * The primary purpose for this function is to allow a client to capture the
   * current state of a linear operator object and be guaranteed that some
   * other client will not alter its behavior.  A smart implementation will
   * use reference counting and lazy evaluation internally and will not
   * actually copy any large amount of data unless it has to.
   *
   * The default implementation returns <tt>is_null(returnVal)</tt> which is
   * allowable.  A linear operator object is not required to return a non-NULL
   * value but many good matrix-based linear operator implementations will.
   */
  virtual RCP<const LinearOpBase<Scalar> > clone() const;

  //@}

  /** \name Deprecated. */
  //@{

  /** \brief Deprecated. */
  THYRA_DEPRECATED bool applySupports( const EConj conj ) const;

  /** \brief Deprecated. */
  THYRA_DEPRECATED void apply(
    const EConj conj,
    const MultiVectorBase<Scalar> &X,
    MultiVectorBase<Scalar> *Y,
    const Scalar alpha = static_cast<Scalar>(1.0),
    const Scalar beta = static_cast<Scalar>(0.0)
    ) const;

  /** \brief Deprecated. */
  THYRA_DEPRECATED bool applyTransposeSupports( const EConj conj ) const;

  /** \brief Deprecated. */
  THYRA_DEPRECATED void applyTranspose(
    const EConj conj,
    const MultiVectorBase<Scalar> &X,
    MultiVectorBase<Scalar> *Y,
    const Scalar alpha = static_cast<Scalar>(1.0),
    const Scalar beta = static_cast<Scalar>(0.0)
    ) const;

  //@}

protected:

  /** \name Protected virtual functions to be overridden by subclasses. */
  //@{

  /** \brief Override in subclass. */
  virtual bool opSupportedImpl(EOpTransp M_trans) const = 0;

  /** \brief Override in subclass. */
  virtual void applyImpl(
    const EOpTransp M_trans,
    const MultiVectorBase<Scalar> &X,
    const Ptr<MultiVectorBase<Scalar> > &Y,
    const Scalar alpha,
    const Scalar beta
    ) const = 0;

  //@}

private:
  
  // Not defined and not to be called
  LinearOpBase<Scalar>&
  operator=(const LinearOpBase<Scalar>&);

};


/** \brief Determines if a linear operator is in the "Fully Uninitialized"
 * state or not.
 *
 * \relates LinearOpBase
 */
template<class Scalar>
bool isFullyUninitialized( const LinearOpBase<Scalar> &M );


/** \brief Determines if a linear operator is in the "Partially Initialized"
 * state or not.
 *
 * \relates LinearOpBase
 */
template<class Scalar>
bool isPartiallyInitialized( const LinearOpBase<Scalar> &M );


/** \brief Determines if a linear operator is in the "Fully Initialized"
 * state or not.
 *
 * \relates LinearOpBase
 */
template<class Scalar>
bool isFullyInitialized( const LinearOpBase<Scalar> &M );


/** \brief Determines if an operation is supported for a single scalar type.
 *
 * \relates LinearOpBase
 */
template<class Scalar>
inline
bool opSupported( const LinearOpBase<Scalar> &M, EOpTransp M_trans );


/** \brief Non-member function call for <tt>M.apply(...)</tt>.
 *
 * \relates LinearOpBase
 */
template<class Scalar>
void apply(
  const LinearOpBase<Scalar> &M,
  const EOpTransp M_trans,
  const MultiVectorBase<Scalar> &X,
  const Ptr<MultiVectorBase<Scalar> > &Y,
  const Scalar alpha = static_cast<Scalar>(1.0),
  const Scalar beta = static_cast<Scalar>(0.0)
  );


/** \brief Calls <tt>apply<double>(...)</tt>.
 *
 * Non-tempalted double inlined non-member helper function.
 *
 * \relates LinearOpBase
 */
inline
void apply(
  const LinearOpBase<double> &M,
  const EOpTransp M_trans,
  const MultiVectorBase<double> &X,
  const Ptr<MultiVectorBase<double> > &Y,
  const double alpha = 1.0,
  const double beta = 0.0
  );


// Deprecated


/** \brief Deprecated. */
template<class Scalar>
inline
THYRA_DEPRECATED void apply(
  const LinearOpBase<Scalar> &M,
  const EConj conj,
  const MultiVectorBase<Scalar> &X,
  MultiVectorBase<Scalar> *Y,
  const Scalar alpha = static_cast<Scalar>(1.0),
  const Scalar beta = static_cast<Scalar>(0.0)
  );


/** \brief Deprecated. */
template<class Scalar>
inline
THYRA_DEPRECATED void applyTranspose(
  const LinearOpBase<Scalar> &M,
  const EConj conj,
  const MultiVectorBase<Scalar> &X,
  MultiVectorBase<Scalar> *Y,
  const Scalar alpha = static_cast<Scalar>(1.0),
  const Scalar beta = static_cast<Scalar>(0.0)
  );


/** \brief Deprecated. */
template<class Scalar>
THYRA_DEPRECATED void apply(
  const LinearOpBase<Scalar> &M,
  const EOpTransp M_trans,
  const MultiVectorBase<Scalar> &X,
  MultiVectorBase<Scalar> *Y,
  const Scalar alpha = static_cast<Scalar>(1.0),
  const Scalar beta = static_cast<Scalar>(0.0)
  );


}	// end namespace Thyra


//
// Inline and other Template Implementations
//


template<class Scalar>
inline
bool Thyra::isFullyUninitialized( const LinearOpBase<Scalar> &M )
{
  return ( is_null(M.range()) || is_null(M.domain()) );
}


template<class Scalar>
bool Thyra::isPartiallyInitialized( const LinearOpBase<Scalar> &M )
{
  return
    (
      ( !is_null(M.range()) && !is_null(M.domain()) )
      && 
      (
        !opSupported(M,NOTRANS) && !opSupported(M,CONJ)
        && !opSupported(M,TRANS) && !opSupported(M,CONJTRANS)
        )
      );
}


template<class Scalar>
bool Thyra::isFullyInitialized( const LinearOpBase<Scalar> &M )
{
  return
    (
      ( !is_null(M.range()) && !is_null(M.domain()) )
      && 
      (
        opSupported(M,NOTRANS) || opSupported(M,CONJ)
        || opSupported(M,TRANS) || opSupported(M,CONJTRANS)
        )
      );
}


template<class Scalar>
inline
bool Thyra::opSupported( const LinearOpBase<Scalar> &M, EOpTransp M_trans )
{
  return M.opSupported(M_trans);
}


inline
void Thyra::apply(
  const LinearOpBase<double> &M,
  const EOpTransp M_trans,
  const MultiVectorBase<double> &X,
  const Ptr<MultiVectorBase<double> > &Y,
  const double alpha,
  const double beta
  )
{
  apply<double>(M, M_trans, X, Y, alpha, beta);
}


// Deprecated


template<class Scalar>
inline
void Thyra::apply(
  const LinearOpBase<Scalar> &M,
  const EConj conj,
  const MultiVectorBase<Scalar> &X,
  MultiVectorBase<Scalar> *Y,
  const Scalar alpha,
  const Scalar beta
  )
{
  M.apply(conj, X, Y, alpha, beta);
}


template<class Scalar>
inline
void Thyra::applyTranspose(
  const LinearOpBase<Scalar> &M,
  const EConj conj,
  const MultiVectorBase<Scalar> &X,
  MultiVectorBase<Scalar> *Y,
  const Scalar alpha,
  const Scalar beta
  )
{
  M.applyTranspose(conj, X, Y, alpha, beta);
}


template<class Scalar>
inline
void Thyra::apply(
  const LinearOpBase<Scalar> &M,
  const EOpTransp M_trans,
  const MultiVectorBase<Scalar> &X,
  MultiVectorBase<Scalar> *Y,
  const Scalar alpha,
  const Scalar beta
  )
{
  apply(M, M_trans, X, Teuchos::ptr(Y), alpha, beta);
}


#endif	// THYRA_LINEAR_OP_DECL_HPP